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Generic Torelli- theorem for hypersurfaces‘of’

Kahler C-spaces with b.9 = 7
Kazuhiro KONNO (5 %% -7 %1t K 1%)

0. Introduction. A simply connected homogeneéus Kahler
manifold is called a Kahler C-space. A Kahler C-space is known to
be rational and admit ‘an "algebraic cell-decomposition”. In this
report, we review our recent result [Kon.2] on the generic Torelli
problem of smooth hypersurfaces of a Kahler C-space. We shall
omit most proofs because of the limit on pages.

Let # be the coarse moduli space of varieties under
consideration and P : # —— I'\2 be the period map. We say that
the generic Torelli theorem holds if P is generically injective.
The theory of the infinitesimal varialion of Hodge structure
{abbreviated IVHS) opened a way to attack the generic Torelli-
problem (especially for hypersurfaces). Ih fact, using IVHS,
Donagi [D]l showed the generic Torelli theorem for projective
hypersurfaces of almost all degree.

Recall that a Kahler C-space with bZ = / can be constructed
by a possible pair (g, ar) of a complex simple Lie algebra g
and a simple root o« of g . We define two positgve integers

.7
k(Y) and m(Y) for each Y = (g, o)

(0.1 The canonical line bundle KY i8 expressed as KY =
0,(-k(Y)) , where 0,(-k(Y)) denotes the -k(Y)-th power of the

ample generator GY(E) of Pic(Y). (cf. [Kon.1l, (1.2)1).
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(0.2) mY) = n.(ap) + I, where nr(dn)’ denotes the
eoeffiéient of o, in the highest root ®p of g which has the
same length as o, (cf. [H, p. 66, Table 21).

In [Kon.21, we have shown the following along the same liné as

in [D1 and [G].

(0.3) Generic Torelli Theorem. Let Y be a Kihler C-space

! which is not isomorphic to a projective space.

it

wilth bZ(Y)

Assume that a positive integer d satisfies the conditions,

4

(1> d > aY) , and (2) G.C.D.(d, k(Y)) < d/2

If ﬁd denotes the coarse moduli space of smooth hypersurfaces of
degree’ d of Y , then tﬁe period map P : ﬂd — M\2 1is
generically injective except in the following cases

(a) Y = (A4, az) od = 3,

b v=0": dinztz1, diNz2, diN-4,

) Y:(CL; 0,0, 123 dlk() £ 1, dlky - 2,
() Y =D, a), L=5 6: d=3, ’
(e) Y = (BL’ aZ); i =3, (DL’ a2); 1 > 4, (Eg, az) )

(E77 az) ’ (Eg, ag) ’ (F49 Olj) N dlk(Y) - j ' dlk(Y) - 2 s

= : » 4 ‘ ' £ : 4
(P Y (Bl, QS),l =2 4, (BL, q4),L 2 5, (Cl’ a3),L = 4,

€ il 25, Dy )il 26, Dy, il 26, (Egy @),

gy Y = (F4, o« 2 dlkY) £ 1, dlk(Y> - 2, dlk) - 3

It is known (cf. [Ki.2] and [Sakl) that the Kahler C-space

(Cl’ ®,) , L 2 3, (resp. (F4, @) ) is a hypersurface of degree
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! of the grassmannian Grass(2, 2i) = (A9L—Z’ ®,) (resp. the
symmetric space of type El = (55, a,) )N of course, a complex

PN+1 Thus, our-

gquadric QN is a hypersurface of degree 2 of
result contains informafions about some complete intersections
though the generic Torelli still remains open even for ones in a
. projective spaée.

In case of hypersurfaces of irreducible Hermitian symmetric

spaces of compact type, (0.3) is obtained by M.-H. Saito [Sail,

independently.

1. Kahler C-spaces with b2 =
(1.1) Let g be a complex simple Lie algebra. If b is a
Cartan subalgebra of g and
A = {aj, cee, al} ,» L =krank 8 ,‘
is a base of the root system ® of g with respect to b , we
denote by ®+ (resp. ® ) the set of all positive (resp. negative)

roots. Then we have a Cartan decomposition

g=bh +2 g, + 2 g

XED « a€¢+ «

Let {(x,, ---, AL} be the fundamental weight system with respect

st i s ; ;)= ( ;y ; ;s e = AV S |
to A hat is <AL, aj) 2 lz aj)/(aj aj) Std where

( , ) denotes the Euclidean scalar product induced by the Killing

form on the real vector space spanned by & in b*

(1.2) Choose a simple root o 1 £r<1, and put

r’
duw) = { ¢« € ® | n.() 20,

where nr(a) is the coefficient of ar when we exXpress O as an
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integral sum of o;'s : o = > FRCT - P Put

Ww="h + 3 g
XEP(u)

o
Take a simply connected complex simple Lie group & and a
connected Lie subgroup U of & 1in such a way thét, Lie G = g
and Lie U = u . Then the factor space Y = G/U is a Kahler
C-space and its second Betti number is one. anversely, every
Kahler C-space with b2r= 7 arises in this way ([W1). For this
reason, we express the manifold thus obtained by Y = (g, ar)
Since this notation depends on the numbering of, the simple roots,
we fix it as in Table 1. In this table, the notation " Q r"
implies that the Kahler C-space (g, ar) is an irreduoible
Hermitian symmetric space of compact type. In Table 2, we collect
all Kahler C-spaces with bé = 7/ (up to isomorphisms) together with
some numerical invariants of them such as dim Y , k(Y) and
m(Y)y (cf. (0.1) and (0.2)). |

(1.3) We denote by @Y(!) the homogeneous veétor bundle on
Y = G/U = (g, ar) induced by the irreducible representation of

U with the lowest weight —kr . It is known that this is a line

bundle and generates Pic(Y) . Further, we have the following

(1.4) Lemma. ([ST1) For any positive integer a , the line

®a

bundle @Y(a) = OY(f) is normally generated, that is, the

nuliiplication map

0

’(@Y(a))) — Y

sy ’(@Ymbn ,

is surjective for any positive integer b
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Let
(1.5) s=o s%, g%.-= HO(@Y(a)) :
a=({
be the homogeneous coordinate ring of Y . We can show the

following by means of the Main Theorem in [ST]

(1.6) Theorem. The Koszul sequence,
ABSa ® Sb—a . 5% g Sb __; Sa+b —_ 0,

is exact provided 0 < a < b and b =2 m(Y)

We call the projective embedding

v, ¢ Yy —— Ps*® , a >0,
given by the complete linear system I@Y(a)l , the a-th Veronese
embedding of Y . The following is a direct consequence of (1.6),

(1.7) Theorem. The homogeneous ideal of the a-th Veronese
image va(Y) i8 generated in degree < [a(Y)/al . In

particutar, it is generated by quadrics if 3a > m(Y)
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Tabie 1;‘

2-1

2-1

. —0
4-2

Z.

2-3
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Table 2.
8 r N = dim Y k(Y) mey)
Ag 1< 1 < Q+1-r r(2+1-r) 2+ 1 2
@ =1
By 1I<r<d-1 2r(Q-ry+r(r+1)/2 20 - r (r =10
@ > 2) 3 (r>2)
o 2<r <@ 2r(f-r)+r(r+1)/2  20-r+l 3 (r <
@ =3 | 2 (r = Q)
. 2 (r = 1)
D, 1<r < 0-2 2r(Q-r)+r(r-1)/2  24-r-1 AL
@2 3 ) 2L - 1)/2 20 - 2 2
1 16 12 2
E, 2 21 11 3
3 25 9 3
4 29 7 4
1 33 17 3
2 42 14 3
3 47 11 4
E, 4 53 8 5
5 50 10 4
6 42 13 3
7 27 18 2
1 78 23 3
2 92 17 4
3 98 13 5
Eg 4 106 9 7
5 104 11 6
6 97 14 5
7 83 19 4
8 57 29 3
1 15 3
v, 2 20 4
3 20 4
1 15 11 3
G 2 5 3 3




2. Vanishing theorems for Hq(Qgia)) . To discuss the
vanishing of Hq(Qg(a)) , we use the generalized Borel-Weil (heorem
([Kos, P. 317]1) which treats the cohomology of a homogeneous vector
pundle on Y = G/U induced by an irreducible representation of U

It is known that the subalgebra-

(2.1) = 3 g

d(n’) = (¢ €0 | n, () > g }‘,
aew(n+)

a ’

of g 1is invariant by Ad{U) and induces the cotangent bundle

Qé . Thus, Apn+ induces 95 . This tells us the impotance to
study the U-module structure of Apn+ . In case of irreducible

Hermitian symmetric spaces of compact type, Kostant [Kos]l showed

pn+ is a completely reducible U-module and wrote down its

that A
irreducible decomposition in the language of the Weyl group.
Thus,.in this case, we already have the essential tools. In fact,
by means of this decomposition and the generalized Borel-Weil

theorem, Kimura [Ki.1l] obtained the complete vanishing theorem for
N

q p 1 = {

H (QY(a)) in case Y Q (EB’ aj) and \E7, a7) . On the
other hand, if Y 1is not symmetric, the U-module Apn+' is not
completely reducible. We -introduced in [Kon.1] a filtration on

-Ap-n+ such that the quotients GL(Apn+) are completely reducible.

Though its irreducible decomposition still remains open, we can

show the following two theorems.

(2.2) Theorem. Let Y = (g, o) be a Kahler C-space with
bZ(Y) =171 . If positive integers a and p satisfy the
following conditions, then Hq(Qg(a)) vanishes for any q 2= !

(1) o, is a long root : -d 2 p

- 8 -
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2y Y = (Cl’ ) (F4, y) © a2 min(p * 1, 2p — 1)

3) Y = (F4, ag) Da =z minip + 3, Z2p — 1)

(2.3) Theorem. Let Y be as in (2.2). Set dimY = N and
assume that positive integers p , q and an integer a -satisfy

the following conditions. Then Hq(Qp(a)> =g

Y
(1 Y # (F4, a,) . (i) p+t 1 - k¥Yy <a<p,
(ii) q=2N+p+ 1 - k¥) - a
(2) Y = (F, x5) |
(i) min(p * 4, 2p) - k(Y) < a < min(p * 3, 2p - 1) ,

{(ii) q =2 N * min(p *+ 4, Zp) — k(Y - a

We note that we can make (2.3) :sharper if we consider Y .
individually. Further, we have some concrete informations about
the vanishing of Hq(Qg(a)) for small p .as well. For the

detail, see [Kon.2].

3. Jacobian rings and IVHS.

(3.1) Let X be a smooth hypersurface defined by a section

f € Sd.. -Then the (#-7)-th cohomology HN~1(X) admits the Hodge
decomposition. Further, we can define the primiftive part by means
of the ample class @ = ef(GX(d)) € Hj(Qi) . In this way, we get

a polarized Hodge structure (Hy, H? 9, @y  of weight W - 1),

where
_ N1, N-1 o
(PHS. 1) Hy = ' Tk Iy a By ®
) P _ 0 4q, -1
s.2) KO T = P a0 O
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[\\

(PHS.3) @Q : szx Hy, —> HZ , the cup-product.

Let

(3.1.1) T = (8 € HZ(TX | 80 = 0

pe the Kuranishi space of deformations of the polarized manifold
X, @) . Then, as 'is well known, the differential of the period

map is identified with the so-called infinifesimal period map

-1 + 7
(3.1.2) v : T — @ Hom€<Hp’q, g 4Ty
ptq=N-1

induced by the contruction T, ® Qf — Qﬁ*f . The data
{HZ’ Hp’q, Q, T, vy is the infinitesimal variation of Hodge

structure (aBbreviated IVHS) of X . Thanks to the linear map
v , IVHS has rich "algebraic" structure. In fact, we can
interprit the first piece of the algebraic part H”9 T, vy of
IVHS in the language of the Jacobian ring of X

‘(3.2) Before recalling the definition of the Jacobian ring
due to Green [G]l, we need some preparations. Put L =0Y(d) ‘and
let ZL be the sheaf of first order differential operators on
sections of L (the firstvprolongdtion bundie in the terminology

of [G1). There are two‘iundamental exact sequences involving‘ EL

The first is induced by the symbol map ZL — TY

T

(3.2.1) g - 0 > Z >y

Y L Y
The contruction with the /—jet extension J(f) of f vyields the

second

]

(3.2.2) 0 — T, (-log X) — %, FAC DI > 0

where TY(—Log X) is the subsheaf of TY consisting of

- 10 -
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derivations which sends the ideal sheaf of X into itself.
(3.3) Let a be a non-negative integer. Tensoring (3.2.2)

with @Y(a-d) and taking cohomology, we get a natural map

o HO(ZL(a—d)) I s - gl an

a Y
set J% = Ker(p_ ) and R% = Coker(p ) Wé call
X a X a’
(3.3.1) J=d, =0 J%
X az0 X
and
(3.3.2) R=R,= R%,
X az( X

the Jacobian ideal and the Jacobian ring of X , respectively.

We can show the following

(3.4) Lemma. If Y 1is nmot a complex projective space, then

the Jacobian ideal JX of a smooth hypersurface X of degree d

is generated in degree d . In particular, R% s¢ if a < d

(3.5) By means of the dual sequence of (3.2.2), we can

construct the following exact Koszul sequence

(KS) : 00— L P st eI™P L ... 5 A% 0 1V7P

p L L
NN Ap‘*’zz o L1 — APz} — oliog x) — 0
Then (KS)p+j and (KS)N+Z yvield the exact sequence
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g — QY (log X) — A ZL ® [ —

S L U

1 F

Note that we have AN ZL S KY by (3.2.1) and, there is a
. . . i Vi 7 Tl

canonical isomorphism A ZL ~ A EL @ A Z[ . Put
(3.5.1) t(p> = H-prd — k(Y)

Then the above sequence yields the following (cf. [G, p. 1371):

(3.6) Lemma. Assume that the following conditions are

satisfied.

(1) HN'D"S<AP+Z+SZz(sd>) =0 for 1 <s<N-p-1I

Hs-f(AN+Z—S *

(2) 'ZL((N—D—S)d)) =0 for Z<s8 <N - p - !

tio) H”'f‘p<g$+’(zog X))

Then R

The conditions in (3.6) can be simplified if we use

(3.6.1) 0 — QP — APx7

Y L Qg_z — 0,

derived from the dual of (3.2.1). Further, the Poincare residue
sequence

+1 +1
(3.6.2) 0 — QP71 — 9P (109 X) — 92 — ¢

Y Y X ’
will connect RYP?Y with #Y I 7P@P) passing through
prim X
_f— + . . .
HN ! p(Q$ J(log X)) . Summing up, we would have

(3.7) Pfopositibnu' If the foZLouing conditions are satisfied,

- 12 -
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then REP) o pl~1-P P,

prim X

(HC-1) : 2p = N - 2
HC l)p D N

oG-t ot A . e
(HC-2) 1 H' "Qup-W-p=t)d)))= 0 for 1<t < l-I-p .

L Nttt o ) o

(HC-3) 1 H' “Qp-W-p-1-t)d)))= 0 for [ <t < H-2p .

R B S o L
(HC—4)p. H (QY( N-p-t)d)) = G for 2 < t < N-I-p .

Further, we have

(3.8) Lemma. Assume that Y is not a projective space.

(1) R HE(TY(—Log X)) = T ezcept in the following cases

-~

" and d=2, b v=0° and d =3,

I

(a) Y

ey Y = (L, o), (Fyy oy, and d = 7

(2) There is a commutative diagram

R% » Hom(RY(P), REPTDD,
! !
1 M- = 7 —
H (T (~log X)) — Hom¢#! ™ p<Q§+1<Log Xy, #" p(Qﬁ(Log X))
T Hom(Hp’thﬁp, Hp—Z,N~p)

By (3.7), (3.8) and the vanishing theorems for Hq(Qg(a)) , we

get the following

{3.9) Theorem. ‘Lgt Y be an N—dﬁmensional Kahler C-space
with bPLY) = ! which is not a complex projective sSpace. Let X
ke a smooth hypersurface of degree d , d > m(Y) , and R be the

Jacobian ring of X . Then, for the positive integer pg

_13_
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satisfying t(pO) =0 and t(pO%Z) < G-, the infinitesimal period

nap T e gy 10, yP~1N"D  oin be identified with the

multiplicatibn map

Rd ® Rt(pO) Rt(pa“f)

exceplt in the following cases

(E8’

(CL’

(E7,

(z)r (Ap o) (Ag o), Q' » Dy gy, (Eg 0t d =3
2y Dy oy ¢+ d =3, 6.
@ o v
@ d =3 and 3|N-2i Ffor some i ,! < i <5 .
2

(by d =4, & and d|N-2i for some i, I £ i<
(c). d 286 and dlN-2i for some i, 1 <1< 2.

4 (CL’ ay)s l =24, (BL’ o035 L 2 3, (DL’ a2§; 1 =4,

a,) (E7’,“f) y (Eg ag) , (Fy o) @ dlk-1, dlkr-2.

(5 (Bl’ ag); 1 =2 4, (BL’ a4); I = 5, (Cl, a3); 1 24,

0 L26, Dy, a3 L2b, (D, a5 126, (B o)

), (Ej @) (Eg @), (Fy ag) @ dlk(r)-1

(6 (Co ap) , (Fy ) dlk(r>-i for some i, I < i< 3.

4. The Duality Theorem and the Symmetrizer Lemma.

Put

(4.1) o = 0o, d) = (N + 1)d - 2k(Y)

>Tensoring (KS)N+Z with GY(O - a - k) , we obtain the exact

Koszul sequence :

_14_
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#

0 — 0,(-a-k) — I (d-ak) — -+ — APZZ(pd—a-k) —

- = AV wd-a-to — 0,000 — 0.

Then, following the analoguous steps as in 83, we cah show

(4.2) Duality Theorem. Let Y be a Kahler C-space uith

bZ(Y) = 7 . Assume that Y is not a complex projective space

and dimY =2 5 . Let R be thevJacobian ring of a smooth

hypersurface of degree d of Y , d > m(Y) . Then, for the

integer ¢ in (4.171), R ~ ¢ . Consider the natural pairing
(DP), R* e R %~ ,

for an integer a ‘with 0 < a < d . Then (DP)a gives the

exact sequence,

— : x
(DS), RO — Y — 0o,

except for the case : Y =Q° and a =d = 3 . Further (DP),
gives the exact sequence,
RO-a

D, : 0 — — RS,

except in the following cases.

) v=a%: @ @ = d-2), 3 2, 3 D, 4, D
) Y= g xp . Egoap i (Do) = (5 D)
(3) Y = (Cly az) , (F4, 0£4 M (dy a) = (d1 d—j)

(4.3 We recall the notion of the symmetrizer introduced b?
Donagi [D1]. Let V, , V, and V, be vector spaces and suppose

that we are'given a bilinear map'

_15_
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(4.3.1) B V,xVy,—V,
consider a homomorphism defined by
: X R
Hom(Vf, VS) oS VZ ® V2 — (A Vj) ®V
v W _
‘ > Bz, P(z,)) - B(xz’ Px,y) . T, T, € V..

o i

o
T

1f we-denoté by VG the kernel of this map, then we get a new

pilinear map
(4.3.2)  B_:VyxV,—V,, (P, ) > P@

We say that B

is the symmeirizer of B

(4.4) Symmetrizer Lemma. Let Y and R be as in (4.2).
Let a and b be positive integers satlisfying a < b < d . Then
the Koszul sequence,

- o +
(sL) : o0 — RP7C — RYH* & P — ARHT e g4

is exact except in the following cases
N

(1 ' Y=Q  , N=23:b-a-= -2, d=3 and b - a = 2
2y Y = Q3 cta =b=d =3
(3 Y = (CL’ ag); 1 =3, (F4, a4) ct b —a=d - 1

In other words, the symmetrizer of the multiplication map

a . pb a+b
Ba,b R ® R — R

ts nothing but the multiplication map

b-a

RP b

B ® R — R,

b—'ay a )
except in the above cases.

. Sketch of the proof. Dualizing (SL) and connecting the

_16_
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— £ — — .
natural maps r° g (Rc) and ¢ — g7°°¢ , we get the

commutative diagram

b b—a. *

athb,*  — RPTY p

ABRa (R —_ Ra_® (R

1 1
AZRa Ro—(a+b) —— r% e Ro-b Ro—(bfa)__% 0
T 1

Z So—(a+b) — 5% g So~b o-(b-a)__, 0.

Acs?

@ - ® - ®

— S

It follows from (1.6) that the bottom row is exact except for the
case (2. Since, by (3.4), the Jacobian ideal is generated in

degree d , it is easy to see that the middle row is exact, too.

By diagram chasing, we see that the top row is exact if Ro“b —
* - — — #
(Rb) is surjective and r° (b-a) — (Rb 4 is bijective.

Then, the assertion follows from (4.2). Q.E.D.

5. Sketch of the proof of (0.3). We can show the following as

in the case of projective hypersurfaces (cf. [PS1).

(5.1) Proposition. Let 'Y be a Kahler C-space with bZ(Y) =
! mnot isomorphic to a complexr projective space and d an integer
such that d > m(Y)

(1) Two smoolh hypersurfaces of degree d are isomorphic to
each other if and only if they are relatled by an automorphism of
Y

2y Ir Ud c P(Sd) is the Zariski open sdbset bardmetrizing
all smooth hypersurfaces, then every closed point of Ud is a
stable point under the action of Aut(Y) and the quotient space

ﬂd = Ud/Aut(Y) i8. the coarse moduli space of smoolh hypersurfaces

- 17 -
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of degree d . Further, there exists an Aut(Y)-invariant Zariski
open subset Od of . Ud such that the quptient space ﬁdv=
&d/Aut(Y) ig smooth and there -is a family of smooth hypersurfaces
over ¥, .

(3 The tangent space T[X](&d) at [X] € ﬂd is isomorbhic

to R% and the tangent space along the fibre of &d —_— ﬁd at X
. ig isomorphic to J% . For two smooth hypersurfaces X and Z

d d

of degree d , JX = JZ in Sd

holds if and only if they a?e'
related by an automorphism of Y . |

(4> The period map P : ﬁd — I'\? is well-defined and has a
‘regular value, where 9 is a Griffith domain and I the monodromy
gfoup.

(5) The period map P = Py Rd — '\2 is an immersion

o

and partially cbmpactified as a proper holomorphic map.
(6.2) Let X and Z be two smooth hypersurfaces in &d and
assume that P([X1) = Pcrz1 . Then they have isomorphic IVHS

and, under the hypoteses in (0.3), wé ha#e a commutative diagram

t(p,) tip,—1)
® RX 0’ — RX a =

| R

(D), : Y 1 1¢t(p0) l¢t(p0—1)
d
z

Rl o pEPY) __, ptpy~1

Z Z

by (3.9), where the horizontal maps are multiplication and the
vertical maps ¢@_ 's are unknown isomorphisms. Applying the
‘Symmetrizer Lemma (4.4) successively, we obtain a sequence of

commutative diagrams



Ra(i) ® Rb(i) Ra(i)+b(i)

X X X
(SD), : “’au;)l l“"b(i) l Pair+b(i)
aii) b (i) a(£)Y+b(i)
which terminates at
g g 29
(SD) oy 0 l Lpg l Pog
g g 29
where g = G.C.D.(d, k(Y>) . Since we have assumed that 2Z2g < d ,
. 9 _ p9d _ o 29 _ pl9 _ <l9
we see from (3.4) that RX RZ S and RX = RZ = S
Further, it is easy to see that @g and @é are essentially the

same. Thus the diagram (SD)end is nothing but

s9 e 59 — 529

¢gl lwg> l 29

s9 & 59 —, 549

There may be two possibilities : (i) 3g > m(Y) , (ii) 3g < m(Y)
We treat the first case only, since the latter is quite similar

(but slightly complicated). The above diagram yields

o

y4
Fegy

2 2
—_— Sym“(sg) — 5“9

®
g% 1 l -

z 2s9y — g9

](9)

— Syn ’

where Ifg) denotes the degree 2 piece of the defining ideal of

the g-th Veronese image of Y . By (1.7) and the above diagram,

- 19 -
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we see that @g comes ffom an auvtomorphism of - Y . Then going
back the symmetrizer step one by one, we see that fhe unknown

“isomorphism wc- appearing in (SD)i comes from Qg s0- long as
¢ < d (since R; = R; = 5%. Finally, we would arrive.at the

commutative diagram,

: Sd_

@ o gb — | T R§
@al( \1¢b 3 Gy Sjwd
s¢ g gb RS

\\\\\)Sd///7

with o, , wb and @d come from Oy > where @ and b are some

positive integers such that a + b =d . Thus we have $d(J§) =

J% . Since @g (and thus Gd) comes from an automorphism of Y ,

we may assume that J% = J% in Sd . Thus (0.3) follows from

(5.1), (3
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