0000000000
0 6340 19833 b336-357

(+)

Characteristic classes for singular varieties
by
Shoji Yokura (E@ é? 56 Qﬁ)

INTRODUCTION. Some time Dback, at the Ninth Brazilian
Mathematical Colloquium Robert MacPherson [Mac 2] gave a survey
talk on characteristic classes for singular varieties. The
introduction of his survey article goes as follows:"An important
program in mathematics is to extend the large body of theory of
smooth spaces or manifolds to singular spaces. Algebraic
varieties form a fruitful context in which to work because the
study of algebraic singularities is particularly well-developed.
Our object here is to survey several results extending the theory
of characteristic <classes to singular algebraic varieties."
His survey was about "singular"” Whitney classes (due to
Sullivan), Chern classes (conjectured to exist by Deligne and
Grothendieck, and constructed by MacPherson) and Todd classes
(due to Baum, Fulton and- MacPherson). The present paper is sort
of an appendix to his article, and so the first part of this
paper contains a repetition of some parts of MacPherson’s survey
article. Throughout this paper our varieties are projective

{algebraic) varieties over C, the complex numbers.

(+) Some of the problems listed in this paper were suggested by
Clint McCrory, while the author was visiting him at MSRI,
Berkeley, in October, 1886.
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1. Classical Theory of Characteristic Classes.

First of all, "usual"” characteristic classes are defined for

vector bundles as follows:

Definition 1.1. A  characteristic class cl is a rule
assooiating to any vector bundle E over any variety X a
cohomology class cl(E) € H*(X) such that’

i) el{E@®F) = cl(E)-cl(F),

ii) for any map f: Y—X the pull-back property

c1(f¥E) =f*c1(E) holds.

Or, it may be better to say the definition fashionably as
follows: +the classical definition of a characteristic class is a
natural transformaﬁion from the Grothendieck K-functor to the
ordinary cohomology functor with suitable coefficients:

cl

Typical examples of such characteristic classes are Whitney

classes, Chern classes, the Chern character, Todd classes and
Segre classes (=zinverse Chern classes).
Remark 1.2. The set of all possible characteristic classes forms

a ring because cohomology has a ring structure by the cup-

product.

In the above definition of characteristic classes the

smoothness of the base space X 1is not required. When it comes
to a smooth variety X , we can consider characteristic classes
of the space X 1itself, by taking characteristic classes of the



328

tangent bundle TX over X; i.e.,

cl(X):= ¢l(TX) K
where cl in the right hand side is a classical characteristic
class.
Example . 1.3. Let cln(X) = on(X) be the top dimensional Chern
class of X . Then Cn(X)rﬂX] :)((X) , the topological Euler-

Poincaré characteristic of X

Example 1.4. Let cln(X) = tdn(X) be the top dimensional Todd
class of X . Then tdn(th[X] = ga(X) , the arithmetic genus
of X .

Remark 1.5. Useful or meaningful characteristic classes are

related to some other invariants of varieties.

2. Extension of characteristic classes from the case of smooth
varieties to the case of singular varieties.

A principal difficulty in making the extension is that one
cannot have a tangent bundle over a singular vériety any longer
and that there 1s no exact analogue of the tangent bundle,
although there are some generalized "tangent bundles" (e.g.

tangent cones).

Problem 1: What is a reasonable (or fruitful) theory of

characteristic classes for singular varieties ?

MacPherson claims in [Mac 2] that (%) the key to a wuseful

extension of a given characteristic class lies in finding a

theorem relating that class with other invariants which already
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extend to singular varieties. So far, a few characteristic

classes of smooth varieties have been individually extended to

-gingular varieties, in the sense of (%) above.
2.1. MacPherson’s Chern classes (or Chern-MacPherson classes)

Motivated by Sullivan’s definition of singular Whitney

classes, Deligne and Grothendieck conjectured the existence of
gingular Chern classes as a natural transfofmation (described
below), which was affirmatively proved by R. MacPherson in 1974
[Mac 1]:

Theorem 2.1.1. (Deligne-Grothendieck, MacPherson) Let F be the
covariant functor from complex algebraic varieties to abelian
groups whose value F(X) on a variety X is the group of
constructible functions from X to Z, the ring of integers, and
whose value f* on a proper map f: X——>Y 1is determined by the
condition that f*(lv)(p) =j(ﬁf—l(p)r\V) , for all p €Y, where V
is a closed subvariety of X . Then , for all X, there exists
a unique natural transformation

ex ¢ F(X)—>H (X; 2)

C

such that (C*X is simply denoted by C*)

Axiom(1l): c*(o(+§) = c*(o() + C*(ﬁ) ,
Axiom(2): c*(ffX) = f*C*QX) ’
Axiom(3): c*(lX) = c(X)n[X] , if X 1is smooth, where

c{X) 1is the usual total Chern (cohomology)

class of X .

Axiom(l) 1is additivity, Axiom(2) is naturality and Axiom(3)

is normalization. One might think this to be in analogy with the
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X
natural transformation from the K-functor to the H -functor inp
X
the classical set-up, by replacing K and H by F and H*

respectively. Here one might be tempted to pose the following

Problem 2: What are all possible nontrivial additive natural
transformations from the constructible function functor F to
the homology functor H* (i.e., transformations from F +to H*

satisfying Axioms (1) and (2) , not necessarily satisfying Axiom

(3)) ?
Remark 2.1.2. For any non-zero integer m , m-c, is clearly a
nontrivial additive natural transformation from F to H* . If m
#1 , then m-c, does not satisfy Axiom (3) . It seems that the
requirement of Axiom (3) in the theorem leads to the uniqueness
of Cy
Definition 2.1.3. For all X , c*(lx) is called the Chern-
MacPherson class and is simply denoted by C(X) , which is the
total homology class .

Note that the 0O-dimensional component of C(X) , CO(X)G
HO(X;Z) , is equal to the topological Euler-Poincare

characteristic ;((X) of X

MacPherson [Mac 1] proved the above theorem via his graph
construction- and using Chern-Mather classes. Later, A.Dubson

[Du]} gave an explicit formula for Chern-MacPherson class C(X):
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Theorem 2.1.4. (Dubson’s formula)

c(x) = c(x) + § e(s,x)- c'(s)
se ,XX

s C Xsing

where CM(#) is the Chern-Mather class of # , XX is a Whitney
stratification of X with X being the top stratum,
: smooth

e(s,X) is some integer associated with each stratum SE9&% (for

more details see below).

Definition 2.1.5. (Mather) Let ))t%———aX'be the Nash blow-up of
: la)
X and f& be the tautological Nash tangent bundle over X . Then

the Chern-Mather class CM(X) of X is defined by

M ~~ ~
cM(x) 1= w (e (TOAIXD)
~ A
where c(TX) is the classical Chern class of the vector bundle TX.

Definition 2.1.6.(cf.Dubson [Dul) Let )gX be a Whitney
stratification of X such that the top stratum of X is the smooth

prart of X. Then for 'each stratum Séy&(,

e(s,X) ::1-X(Xanl‘;dim SI\BS(S)) ,

where s €S , 0<E<<J‘, and Hit?lm S is a plane of codimension
14dim S , which does not go through s and is close to s within

the distance €. (see Figure 1)

Dubson [Du] showed that the definition of 6(S,X) above is

independent of the choice of s ¢S .



Figure 1.

Motivated by Mather’s Chern classes, one might be tempted to
define the following characteristic classes for singular
varieties, which may be called "Nash'" characteristic classes

since they are defined via the Nash blow-up:

Definition 2.1.7.(Nash characteristic classes) Let cl denote any

classical characteristic class for a vector bundle. Then the Nash



~ : :
characteristic class cl{(X) of a variety X is defined by:

N . /N ’~
cl(X):= w, (e1(TX)nIX]) ,
A
where ¢l(TX) is the classical characteristic class of the vector

bundle fi and p is the Nash blow-up of X .

Remark 2.1.8. Nash characteristic classes are a naive theory of
characteristic classes for singular varieties, apart from the
problem of whether it fits the principle (%) suggested by
MacPherson in his survey article. One can interpret Dubson’s
formula as a formula for the difference between Chern-MacPherson
classes and Nash-Chern classes (i.e., Chern-Mather classes),
which 1is measured systematically by singularities together with
some reasonable invariants ©(S,X). Chern-MacPherson classes and
Chérn—Mather classes have been studied by many mathematicians in
connection with polar classes, Whitney stratifications, numerical
invariants and equisingularity (e.g. see Dubson [Du], Lé-

Teissier [LT], Piene [Pi 1,2] and Urabe [U 1,21)

Remark 2.1.9. MacPherson’s theory of Chern classes 1is for
singular algebraic varieties over the complex numbers. Recently
in [Ke] Gary Kennedy introduced "stiff" Chern classes to extend
MacPherson’s theory to varieties over an arbitrary algebraically
closed field of ' characteristic zero. In Kennedy'’s théory,
MacPherson’s constructible function functor F is replaced by his
"stiffﬁ functor St: for X , St(X):= aﬂé(W), where W is any
closed subvariety of X and &(W) denotes the Chern-Mather class

(i.e., Nash-Chern class) of W . For more details see [Ke].
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2.2. Baum-Fulton-MacPherson’s Todd classes

An extension of Todd classes of smooth varieties to singular
varieties 1is based on Grothendieck’s Riemann-Roch Theorem (GRR)
about the classical Todd classes. Baum, Fulton and MacPherson

[BFM] proved the following generalization of GRR:

Theorem 2.2.1. (BFM’s Riemann-Roch) Let K* denote the covariant
functor from complex algebraic‘varieties to abelian groups whose
value K*(X) on a variety X is the Grothendieck group of coherent
algebraic sheaves on X and whose value f! on a map f:X—>Y is
determined by the condition that

f!? = Y -0 'R F
Then, for all X, there exists a unique natural transformation

Td : K, (X)—>H,(X;Q)

such that Axiom(1l): Td(ol + @) = Td(L) + Td(ﬁ) ,
Axiom(2): Td(f &) = f*Td(d) R
Axiom(3): TA(E) = [ch(E)utd(X)]A[X] , if X is smooth

and E is a vector bundle (locally free sheaf),
where ch(E) is the Chern character of E and .

td(X) is the classical Todd class of X

Definition 2.2.2. For all X, the (singular) Todd class of X is
defined to be Td(l) , where 1 is the trivial line bundle over X .
This is denoﬁed simply by Td(X) . {Hence, if X is smooth, then
by Axiom(3) Td(X) 1is the Poincaré dual of the classical Todd

class td(X) of X.)

Note that the O-dimensional component of Td(X) is equal to the

arithmetic genus of X.



In analogy with Dubson’s formula for Chern-MacPherson classes,
one may ask if one could express Baum-Fulton-MacPherson’s - Todd
. class Td(X) as the sum of the Nash-Todd class f&(x) and some
class supported on the singular locus of X. For example we may

pose the following:

Problem 3: Let X be a singular variety with isolated
singularities. Formulate the difference between BFM’s Todd class
N .
Td(X) and the Nash-Todd class Td(X):= w, (td(TX)A[X1). Perhaps,
~ , v
Td(X) = Td(X) + E ai[xi] ’
where a, is some integer attached to each singularity X5 which

may be describable in terms of known invariants of singularities.

Remark 2.2.3.([F, Example 18.3.3.1]) If‘n:§;—9X is a proper
birational morphism, isomorphic off ZCX, then
Td(X) = M,Td(X) + & ,
wheret& is some class supported in Z . In particular,
o
Tdk(X) :'ﬂ}Tdk(X) for k > dim Z
If X is an n-dimensional singular variety with a finite number of
singularities, and'ﬂﬁi——?X is a resolution of singularities, then
Tdk(X) :’w*(tdn_k(TX%\[X]), for k > 0,
and
Tdy(X) = qry (td_(TX)NIX]) +§ n,tpls
where p’s are singularities of X , and P
n-1 . .
i-1 i
n_ =2, (-1 length(R ~) - length(W ~'6& .
p 2 (1) eth(R'm,0p) g (*OX/ )

Here length(?ap denotes the length of the stalk of the sheaf at p

2.3. Segre classes ("inverse" Chern classes)

10



Segre classes are 1inverse Chern classes when the given

varieties are smooth. One might ask oneself what would be the
"inverse" of Chern-MacPherson classes. Since we do not know,:
right now, the meaning of "inverse'", let us consider (Fulton-)
Johnson’s Segre classes for singular varieties. First of all we

recall the following definition from Fulton’s book [F]:

Definition 2.3.1.(Relative Segre classes) Let X be a scheme and Y
a subscheme of X. Then the relative Segre class SKY,X) of Y to X
is defined by: S(Y,X): Zp* (c (0(1) A[P C)1) :/>

where C is the normal cone of Y in X , P(C) is the- projectivized
normal cone, p:P(C)—Y 1is the projection, and (9(1) is the

associated line bundle over P(C).

Then, Johnson’s Segre class of a scheme (or a variety) X is
defined to be the relative Segre class S(Z&,X x X) .of the

diagonal l& of X x X to X x X, i.e.,

Definition 2.3.2. (Johnson’s Segre classes) Let X be a schemne.

Blow up X x X along the diagonall&znui let P(X) denote the

exceptional divisor of the blow-up X x X, and p:P(X)—>X the

projection, and let z be the first Chern class of the associated

line bundle over P(X). Then the i-th Segre class Si(X) of X is
n-1+i

defined by: Si ) o= p*(} NIPX)1) .

Here we note that if X is smooth, then P(X) is isomorphic to
the projectivization of the tangent bundle TX and that it is
known (e.g., see Kleiman's Oslo article [K1]) that Si(X) is the

Poincaré dual of the usual i-th Segre (cohomology) class of X,

11
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i.€4y Si(X) = si(XJrﬂX] . (Warning: Si(X)éHz(n_i)(X), not in

HZi(X). Of course we can define Si(X) so that Si(X)GEHZi(X) by

changing *§n—1+1 to §2n—1+1 in the definition, but we will stick
to the above definition.)
K.Johnson [Jol, with this definition of Segre classes,

showed the Todd formula and the double-point formula for
projective varieties, which 1led him to discover the quite
surprising fact that if a (possibly singular) variety X in PN can
be immersed into the lower\dimensional projective variety p™ by a
projection then it can be so embedded if N < 2 dim X. The present

author has been interested in what properties Johnson’s Segre

classes have, such as 1its connection with Chern-MacPherson
classes, its behaviours under push-forwards and so on (e.g., see
[Y 1, Remark 4.9] and [Y 3]). Again, motivated by Dubson’s
formula for Chern-MacPherson classes, the present author asked

what would be the relation between Johnson’s Segre classes and

Nash-Segre classes, which are défined below again.

Definition 2.3.3. (Nash-Segre classes) Let X be a singular
‘ T
variety. Then the i-th Nash-Segre class Si(X) is defined by:
) N ~
S,(X) 1= Yy (s, (TOAIX])
. ~ P
where p :X—>X is the Nash blow-up of X, TX is the tautological

~ A
Nash tangent bundle over X and si(TX) is the classical i-th Segre

~
{cohomology) class of the bundle TX,

A
Here again, we note that if we let P(TX) Dbe the

~
projectivization of the tautological Nash tangent bundle TX,

(;L(fi)(l) the dual canonical line bundle (i.e., the dual of the
' ‘ ’ A A
tautological line bundle (Dp(fk)(—l)) over P(TX) , t:P(TX)—>X

12
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the projection map, p,=p.t and © = c, ( o~ (1)), then
1 1 (TX)
— i 7~
S, (X) = py, (6" TR IR(T) ).

Since P(f&) and P(X) are isomorphic over the smooth part of X,
one could expect that the difference between Si(X) and gi(X)
comes from the singular loci. A difficulty in comparing these
classes lies in P(X): even if X is irreducible, P(X) . is not
necessarily irreducible and it may have many irfeducible
components over the the singular locus, whereas P(é&) is always
irreducible. It is kﬁown [Jo] that theifiber P(X)X of P(X) over x

is set-theoretically the projectivization of the union of all the

limiting secant lines 1lim ff}. , where x.y. is the line going
x 3% i ivi .
yix

through the points X, and y; on X . This is nothing other than

Whitney’s tangent space C5 (see [Wh, Chapter 7]). For example, if
X 1is a plane curve with Singularities X , then P(X)X is , set-
theoretically Pl, the projective line, and if X C P3 (or CS) is the -
union of three lines not‘lying in a plane which intersect in a
point x, then P(X)X is, Set—theoretically, the projectivization
of the union of three planes spanned by the three pairs of lines
of X , i.e., the -union of three projective lines whose
intersections are three different points which correspond to

A
three lines of X itself. In passing, we note that P(TX) is

Whitney’s generalized tangent space C4 (see [Wh, Chapter 7]

Roughly Speaking, the typical component of P(X), which is

A
not supported on the singular locus, 1is more or less P{TX). In
fact, one can see (e.g., see [Y 1]) that there is a canonical map

N\ Lol
q:P(TX)—> P(X) such that q restricted to P(TX)\ is an

X emooth
is the +typical

oS -
isomorphism and that q(P(TX)) :'P(X)\
: ’ Smmﬁh

13
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component with multiplicity one. Hence P(X)red has the -
deoomposifion q(P(f&))u{Vi} , where the Vi’s are supported on the
singular locus. It is not easy to identify these extra components
Vi’s and also it 1is not easy to compute the (geometric)

multiplicity of Vi in P(X), 1ength(<9p( These difficulties

x),v, )
AN
make it difficult to compare S*(X) and S*(X). But, it is not hard
A
to show the following naive formula relating S*(X) and S*(X), by

knowing the above decompositioﬂ P(X)red = q(P(TX)U{Vi}

Proposition 2.3.4. ([Y 1]) Let X be a projective variety. Then
N
S*(X) = S*(X) + o

where o( is some class supported on the singular locus of X

We can be more precise about the correction term X for

certain cases:

Theorem 2.3.5. ([Y 1, 21) Let XnC:PN be a singular variety of .
equidimension n with Yk denoting the singular 1locus, whose
dimension is k . Then

) A
(i) if N-n>n -k , then = 0, i.e., §(X) = S(X) ,

(ii) if N - n = n - k , then

. 2 N Z Z
where Y? is‘the component of Yk, of dimension exactly k, m‘j =
length(aé ) , V. the component of P(X) supported on Yk,
(X),V; J J
Si—n+k(PN) is the pull-back of the classical (i-n+k)-th Segre

{cohomology) class of PN by the inclusion of X into PN.

We have been unable to solve the following problem, which

seems to be quite subtle (cf.[Y 2]):

14
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Problem 4: Formulate the correction term in Proposition 2.3.4

above in the case when N - n <( n - k

If N = 2n and k = 0 in (ii) of Theorem 2.3.5, then we can

give a more "dynamic" description of the multiplicity mj.

Definition 2.3.6. (shift multiplicity) Let X°C P°" with isolated

be an isolated singularity. Let H be a
2n

singularities. Let XO

generic hyperplane off’x and let us set Xa = XA(P

O’
. . . . 2n 2n
associated affine variety in C = P - H . Let Q (# XO) be a

- H), the

point such that any limiting tangent line at thé singularity X
does not go through the point Q. Let §be a small positive'number
and S be a sufficiently small number such that 0 < S<<€ . Shift
x? slightly in the direction of the shift-vector ;za such that
its shift-distance is é'. Then the number of the intersections of

a

X and the shifted X% inside the € -ball B is called the’

E(XO)

shift multiplicity of X, {see Figure 2.)

15
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We can show that by a generic shift, X% and the shifted X*

intersect each other transversally within a small ball Be(xo).

Theorem 2.3.7.([Y 11) Let Xn(:PZn be a singular variety with

ijsolated singularities X1 Xgy see 5 X o Then

. ;
S*(X) = S*ﬁX) + E mJ.[xJ.] ,

where mj is the shift multiplicity of the singularity Xj

Remark 2.3.8. Under the same hypothesis above, if we use Fulton’s

notation (see 6.1 of [F] and a remark right after Lemma7.1,

p.120), we can see the following:

{(x,,x.)}

Zn_(x x x)) HxpexE

mi[Xi] = (P

may call this the localized self-intersection class of X at X

and denote it simply by (XoX){Xi}.

Problem 5: Give a more "dynamic" (or "down-to-earth") description
for m‘j appearing in Theorem 2.3.5.. Can we express mj in terms of

some (possibly known) invariants associated to the irreducible

components Yk of the singular loci X . ?
J sing
For the «case when N = n+l and k=n-1, i.e., if X is " a
hypersurface with the singular locus Xsing being of codimension
exactly 1, then, using a result to R.Piene [Pi 1,2], we can show

the following:

n+1

Theorem 2.3.9.([Y 1]) Let XnC:P be a hypersurface having a

codimension 1 singular loci. Then we have

16
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' i n+1 n-1
S (X) = S, (X) + s._ (P wE e; Y571,

where Y?_l is an irreducible component of XS. of dimension =

1nga =
n-1, and ej is the Jacobian multiplicity of Yg—l {which 1ig
defined Dbelow) and si_l(Pn+l) is the pull-back of the classical

(i-1)-th Segre class of Pn+l by the inclusion of X into Pn+l.

Remark 2.3.10. As +to Problem 5 in the hypersurface case, vig
Theorem 2.3.9 and a little work we can show that m‘j = ej (see
[VY]). Here it should be remarked that Theorem 2.3.5 and Theorem
2.3.9 do not immediately imply mj = e‘j , because they are at the
level of homology classes. As for the plane curve case, Wwe can
conclude that mj in Theorem 2.3.5 is equal to the shift
multiplicity and also to the Jacobian multiplicity, hence that

the Jacobian multiplicity of a plane curve singularity is equal

to the shift multiplicity. (Professor Hironaka gave me a
reasonable idea for a direct proof of "shift multiplicity =
Jacobian multiplicity", but I have not been successful yet.)

The Jacobian multiplicity is defined as follows (cf.[F]):
Let X be an irreducible hypersurface in Pn+l defined by an’
equation F(XO,..., Xn+l) of degree d. The singular, or Jacobian
subscheme of X 1s the scheme J of =zeros of the partial
derivatives FXO, ce ey F&ui . Let V be any irreducible component
of J. Then the Jacobian multiplicity of V is defined to be the
coefficient éf [V] in the relative Segre class S(J,X), which
turns out to be the same as Samuel’s multiplicity e(J) of the
ideal determined by J in the local ring A = (OX,V’ i.e., if
n=dim(A)=codim(V,X), then

length(A/Jt) = e(J)tn/n! + lower terms, for t>>0.

17
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In a more general set-up where X is a closed subscheme of a
pure-dimensional scheme Y and V is an irreducible component of X

, the multiplicity of Y along X at V, denoted (eXY) is defined

Vl

£o be the coefficient of [V] in the relative Segre class S(X,Y).

If V = X, then we write simply eXY. This multiplicity is the same

as Samuel’s multiplicity e(q) of the ideal q determined by X in

the local ring A :(3§,V'

As for the Jacobian multipicity of singularities for the
case of hypersurfaces with isolated singularities, B.Teissier[Te]
showed the following nice formula: e = + m - 1 ,
where 3 is the Milnor number, m is the ordinary multiplicity of

n+1

the singularify. If}flc C is an irreducible hypersurface with

the origin being an isolated singularity, defined by an equation
f(Xl’ R Xn+1) = 0, then
= di (9 +1 f f “a f
B im} Uentl 4 ( Xi’ Xy’ ,, &LI
Examples: If X C.Cz is defined by y2 - X? =0 (yz- X2— x3= 0,
resp.), then the Milnor number P of the singularity =(0,0) is
equal to 2 (1, resp.). So the Jacobian multiplicity of the

singularity is equal to 3 (2, resp.) If XCC2 is defined by
ya— xb: 0, where a<b and (a,b)=1, then p:(a—l)(b—l) and
e= (a-1)(b-1) + a - 1 = b(a-1).

Here we givé a "shift" argument for ezb(a-1) in the above
example: Let X = {(x,y)€ C2 ya— sz 0}, where a<b and (a,b)=1.
Any point Q on the y-axis except the origin 1is not in the
limiting tangent line (= the x-axis) of X at the origin. So we

consider the following shift:

(x, Y)l_"‘—_)(xr y + t)

18
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for a sufficiently small t # 0. (see Figure 3)

At

Figure 3.

Then by a simple computation we get that
#(Xn(shifted X)nBE(O)) = b(a-1) , where 0 < t << &
Indeed, shifted X = {(x,y)€ czl (y-t)%- xP= 0}. Then

(shifted X)X = {(x,¥y)€ Cz‘(y—t)a— Xb: 0, yo- xb:O}.

)a a )a =z 1(since y # 0), hence 1 - t/y is

From (y-t -y, (1 - t/y

an a-th root of the unity, except 1. Letting ;i (1giga-1) be a-th

roots of the unity other than 1, the solutions of (y—t)a = ya are

t/(1- 3 Y (1£ia-1). For each y; = t/(1- 51), let us consider Xb:

i 22

a . .
Yo which can be rewritten as

19
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So, letting )?j (143¢b) be b-th roots of the unity, we get that

. b b .
the solutions of x = y? are y?/.ﬁs (1<jgb).

Hence
t a/b t
(shifted X)NAX = . )7 _—
- J -
1 Si ) 1 gi .
1diga~1
1<ig¢b .
Therefore, as long as t is sufficiently small,
#((shifted X)AXaBg(0)) = b(a-1) .
3. A few more problems
Problem 6: Can we describe Johnson’s Segre class as a natural

transformation from some kind of functor to the homology functor

just like Chern-MacPherson class ?

Problem 7: Can we develop a unified theory of characteristic
classes of singular varieties as Nash characteristic classes plus

some invariants of singularities ?

Since Goresky-MacPherson-Deligne’s intersection homology
theory IH? is well-developed for singular varieties, it is

natural to consider the following:

Problem 8: Can we develop a theory of characteristic classes of

singular varieties in intersection homology theory ?

Finally, I want to cite one more thing from MacPherson’s
article [Mac 21]: "It remains to be seen whether there 1is a
unified theory of characteristic classes for singular varieties

like the classical one."”

20



REFERENCES

[BFM] : P.Baum, W.Fulton and R.MacPherson, Riemann-Roch for
singular varieties, Publ.Math.I.H.E.S.45(1975),101-145,

[BDK] .+ J.-L.Brylinski, A.Dubson and M.Kashiwara, Formule de
1’indice pour les modules holonomes et obstruction
d’Euler locale,C.R.Acad.Sci.Paris,t.293 (30 novembre
1981), 573-576,

[Du] : A.Dubson, , Calcul des invariants numériques des
singularites et applications, S.T.B.Theor.Math.Universitét
Bonn, 1981, : '

[F] : W.Fulton, Intersection Theory, Ergebnisse der Math.
Springer-Verlag, Berlin, 1984, :

[GM 1] : M.Goresky and R.MacPherson, Intersection homology theory
Topology 19(1980), 135-;62,

[GM 2] : , Intersection homology theory
II, Inventiones Math. 72(1983), 77-129,

[Jo] : K.W.Johnson, Immersion and embedding of projective
varieties, Acta Math. 140(1978), 49-74,

[Go] : G.Gonzalez-Sprinberg, L’obstruction locale d’Euler
et le théorém de MacPherson, Astérisque 82-83(1978-
1979), 7-32,

[Ke] : G.Kennedy, Stiff Chern classes of singular algebraic
varieties, preprint{(1985),

[K1] : S.Kleiman, The enumerative theory of singularities, in
Real and Complex Singularities, Oslo 1976, Sijthoff and
Noordhoff, 1977, 297-396,

[LT] : Le Dung Trang and B.Teissier, Variétés polaire locales
et classes de Chern des variétés singuliéres, Ann.of
Math. 14(1981), 457-491,

[Mac 1] : R.MacPherson, Chern classes for singular varieties,
Ann. of Math. 100(1974), 423-432,

[Mac 2] = , Characteristic classes for singular vari-
eties, Proceedings of the Ninth Brazilian Mathematical
Colloquium (Pocos de Caldas, 1973), vol.II, Instituto
de Mathematica Pura e Aplicada, Sao Paulo, 1977, 321-
327,

[Pi 1] : R.Piene, Polar classes of singular varieties, Ann.Sci.
E.N.S. 11(1978), 247-276,

21



[Pi 2]

"[Tel

[U 1]

[U 2]

[Wh]

[vyl

(Y 1]

[y 2]

[y 31

Dept.

357

singularités des surfaces (Demazure-Pinkham-Teissier)
1977-1978, Ecole Polythéchnique, France, 1-26,

B.Teissier, Cycles evanescents, sgctions planes et
congitions de Whitney, Singularites a Cargese 1972,
Asterisque 7-8(1973), 285-362,

T.Urabe, Duality of numerical characters of polar loci,
Publ. RIMS, Kyoto Univ.,17(1981), 331-345,

, Generalized Plicker formula, Ibid., 347-362,

H.Whitney, Complex Analytic Varieites, Addison-Wesley,
1972,

R.Varley and S.Yokura, On Jacobian multiplicities of
hypersurface singularities, in preparation, ’

S.Yokura, Polar classes and Segre classes for singular
projective varieties, to appear in Trans.Amer.Math.Soc.
(1986),

, Segre classes for singular projective varie-

________ , On degree-invariance of Johnson’s Segre
classes of projective hypersurfaces, preprint.

of Math.

Faculty of Engineering
University of Kagoshima
1-21-40 Korimoto

- Kagoshima,

JAPAN"

890

22



