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INTRODUCTIGN

1. In the present paper we construct holomorphic vector
bundles and reflexive sheaves on a complex manifold of dimension 22

from configuration of divisors on it. The construction is done by

the C;ch—stratification theoretical method, which was introduced in
our previous paper [Sa-11].

The content of the paper is as followgin § O we recall some
facts in [Sa-1]. In § 1.1 we give basic definitions and praoblems an
bundles and reflexive shpaves of the type just above.(Such sheaves

are said ta be of type’(C)= configuration type.) In § 1.2 we see

that two important bundles on the projective spaces, Horrocks-
~-Mumford bundle{(LH-MJ) and null correlation bundle(L0~-5-5]), are

constructed from configuration of hyperplanes in a very simple

manner,cf.Theorem 1.1, This fact leads us to the following problem:

™) To find more bundlies and sheaves of (C)

See Prublém 1.11.6, § 1 for the precisision of (*). In § 1.3 we
propose some answers to (*) by forming examples of bundles and
sheaves of type (C):(1) those of rank = 2, which may be a
generalization of the above two bundles,cf.Theorem 1.2, and (2)
those of rank Z3,Theorem 1.3. These examples have interesting
combinatorial properties and seem to provide.neu classes of sheaves;

see § 1.4 for more such examples.
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2. The rest of the paper concerns some general arguments on the
structure of reflexive sheaves of tybe (C) and of more general type:

In§ 2«08 5 we discuss what we call inductive structure of reflexive

sheaves of type (C). This structure is a central notion in the

theory of reflexive sheaves of type (C}, and enables us to study the -

sheaves inductively on the subvarieties, which are constructed from
the interesctions of the divisors in question;for the content 6? §2

§5, see the beginning of each section. Also see § 5.2 for the
inductive structure of the sheaves in § 1.3 . In Aépendix, we
discusss the structure of the endomorphisms of bundles. Thié is a
refinement of Part B, § 4 [Sa-11, and our idea is to analyze closely
the adjoint of the transition matrix in question. The content of
Appendix is applied to each algebraic bundle on a normal quasi
projective variety, and may be useful for investigations of those
bundles.

3.1. It has been knouwn that cqnfiguration of divisors appear
in interesting geometric problems on varietiesje.g. the theary of
the branched covering(cf.[Hirl and [Ka-Nal) and the topology of the
complement aof the divisurs(cf.[OfS;TJ)f The present paper may shouw

that it appears also naturally in the theory of vector bundles and

reflexive sheaves. The content of the paper should be regarded, as
in [Sa-11, rather experimental and provisional, but it may be a
necessary step for clarification of the fascinating subject of
relations between configuration of divisors and bundles and
reF]éxive sheaves.

3.2. Many important results on bundles and’reflexive sheaves
on the projective space Pn have been knownjcf.for examples,
[Har-1,23, [0-S-S1,[Ba-2] and [0-5-1,2,3]. It is a necessary and
interesting task to clarify roles of bundles and reflexive sheaves

of type (C) on Pn among all such sheaves. This sags to be not easy.
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We hope to discusévit é]seuﬁ%re.

In uriting this paper, the author stayed at Universitat der
Gottingen as a member of SFB 170 in sprihg of 1986. Discuésinns"
there are useful to confirm our back ground on coherent sheaves in
general and on bundles. The author express his thanks for
‘hospitality of Professors H.Grauert, H.Flenner, H.Spindler and other
members. Also I thank to T.Hosoh and H.Kaji for useful discussians;
Hosoh gave an intrinsic definition of the imbedding of End E, cf.
Appendix, which Qasvorigina1ly given by a matrix computation. The’
Fact'that the null correlation bundle is of type (C) is based on a
computation of Kaji. His result is a very encouraging fact for our

proposed theory oFusheaves of type (C).

Notation and terminology

In this paéer we use the following abbreviation:
(1 bundle = holomorphic vector bundle
For a complex space X we always mean by Qi its structure sheaf. For
a complex subspace Y of X, we write Ig for its ideal sheaf. Letrgi
be a bundle over X. By a frame of g; we mean sections e =(e1,..,er);
ER,‘r=rank EY’ Wwhich’ generate Ef,p at each p €X.(For a reflexive
sheaf, we use the word frame only for the open set where the sheaf

is locally free.) We write ”m n(U,gi), with m,n €Z_ and an open

subset U of X, for the F(U,g§)~module ”m n(F(U,_QE)) consisting of

Ed
mxn-matrix whose cogefficient is in F(U,Qy). Also we abbreviate as
H(U,gi) when (m,n) is forgettable. For an integer m O we set:

2 & ={i,eee,ml

In this paper, we should sometimes consider subvarieties of X at one

time. A subvariety ¥ of X is written as Y', i=codimension of Y in X,

when we want to make clear that i is the codimension of Y .
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Cﬁapter I. Reflexive sheaves aof type (C)

In § O we recall some facts in [Sa-1] in order to make claer
the back ground of the present paper. In § 1 we give basic facts gn

the sheaves in the title.

§ 0. Preliminaries

Here we recall some facts in our previous paper in [Sa-113. This
is done chiefly to make clear the back ground of the present paper.

Also we make some refinements of the content of the previous paper.

O0.1. Prebundle. First of all the following may be a natural

idea in treatments of holomorphic vector bundles{(=bundles).

. To form frames of the bundle, which reflect properties of the
-1

bundle closely, and to use them for studies of the bundle.
Corresponding to this, our basic idea in the construction of bundles
and reflexive sheaves is as follous:
o9 To form not only bundles and reflexive sheaves but also their

suitable frames.
Note that this approach is a cohomological one. Our appreocach alsgo
depends on ideas and methods in stratification theory. In our
approach, strata are, in principle, taken to be subvarieties where
the frames fail to be the ones(= singular locus of the frames). This
apprbach has an advantage in the point that
(*-3) the singularity of the frames is examined closely.

Now we recall some relavant definitions in our prévious paper

[Sa-1]. Let X be an irreducible normal complex space of dimension
-2+ Then our construction of holomorphic vector bundles(=bundles)

and reflexive .sheaves aver ?vconsists of the following two steps,
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C{‘c S 0:[83_13:
To find a bundle EX over X endowed with suitable frames, where

. X =X -{codimension two reduced complex subspace of X3, and to
*")

investigate the direct image gi of gx with respect to the

inclusion:X  X.

More precisely, by a prebundle over X, we mean a pair 01=(i2,gx>

consisting of a codimension two reduced complex subspace X2 of X and

2

a bundle E, over X:=X - X“. We furnish E, with frames from a

stratification theoretical vieuw point, cf. § 0,[Sa-1]: By an

1

s—repesentation datum for Dl’ we mean 02 =(X ,Nl,go,gl) as follows:

?1 = a reduced divisor of X containing YZ
(0.1.1) N1 = an open neighborhood of Xl:= il— 22 in X
ei - sl

a frame of gx,Ni,i=o,1 , with No= X- X

Figure 1-1
e1
22 = N1 il
° N

By an s—prebundle over X we mean a pair (01’02) as above;thé precise

form of (*-2) is:To find an s—pre bundle (DI’DZ) over X and to

investigate the direct image EY of gx. Thefe are encouraging facts
for such an approach:It may be regarded as a generalization of
classical approaches to bundles on Riemann surfaces, cf. [Bil,[TjJ
and [Wel(cf.§ 0,[Sa-11). Moreover, if X is a normal quasi projective
(resp.Stein) variety, then we have ,cf. Lemma 0.1, [Sa-11:

each algebraic(resp.h01Uﬁnrphic) bundle over X is
(0.1.2) ‘ _
obtained as the direct image of an s—-prebundle over X.
Moreover, the first step in (*-2) of finding the bundle gx concerns

interesting geometric properties of divisors;cF.SvQ,ESa—lj. See also

§ 0.2 and 8§ 1 in the present paper.
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Remark 0.1. Let the s—pre bundle (01,02) be as. above,
When there is no fear of confusions, we call EX also an s—-prebundle

over X, ¢f. § O in [Sa-13. In latef arguments, the divisor YI as in

(0.1.1) plays important roles; we say that gx is attached to 21.

Letting the s—pre bundle gx be as above, the transition

matrix, denoted by H, between the frames 20 and 31:30=31H in (NdﬁNl)

plays very bas&c roles in our studies of the s—pre bundle gx.(See
[Sa-113. A]sn‘tﬁe main part of the present paper concerns the
transition matrix in question.) Moreover, in the definition of the
s;pre bundle, one can replace the role of the frames (go,gl) by that
of tBe transition matrix H. Precisely, we have the following
equivalence:

_ i to find a datum
(0.1.3) to find an s-prebundle over X <

1 g2

(X*,X WNysH)

Here X1 are subvarieties of X of codimension i(i=1,2) satisfying

vilD ?2, N1 is an open neighborhood of X1:=§1- X

is an element of GL(NdﬁNl,g R) with N0=Y - fl.

Actually, remarking that X =NdJN1, we see that the matrix H defines

a bundle gx over X and frames gl of EXIN (i=0,1) satisfying:
i

(0.1.4) e® = e'H in (NS

0 ne checks (0.1.3) immediately from (0.1.4)3in later arguments our
construction of s-prebundles will be done by finding data as in the
ROHnSo D‘F (00103)-

0.2. Determinantal divisor. A very important topic in the

theory of bﬁndles is relations between them and subvarieties which
are the loci of sections of the bundles.(See [Sel,[Gr-Mul and
CHar-11 for the beautiful relation between bundles of rank two on
the projective spaces and subvarities of codimension two of them.)
Here we point out that our s—prebundle has an intimate relation with

thenries of divicors: Let the normal complex space X be as before

4
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and ?1 an effective divisor of X . Moreover, let r be an integer'ZQ
. Then we make the following definition.(The definition below may be
a popular one. But, we do not know a suitable reference.)

Definition 0.1. An reflexive sheaf Ey over X has X! as its

determinantal divisor, if there is an element e GFP(ER), r =rank gi,

such that’

= x!

(Argli_sqii))o li—Sggy)' with the singular locus

(06.2.1)
S(Ei) of Ei’z{P ex;gi,p‘is not gmi’p—Free 3.

The following problem may be also popular. For completeness wé make:

Problem O.1. Determine if there is an indecomposable reflexive

sheaf(or more strongly, locally free sheaf)gi of rank r such that
(0.2.2) Ey has X! as its determinantal divisor.
We shouw that s—prebundle has an intimate relation to Problem O.1:

Lemma O.1. Let X be a smooth quasi projective variety and ?1

a divisor of X. If an algebraic vector bundle E? has il as its

determinantal divisor, then fhere is an s—prebundle gx over X, which

is attached to X!, such that

Ei is the direct image of gx with respect to the inclusion:

(06.2.5)
X, X .
Proof. Take an element e er”(gi) such that (Arg)o =Yl . Also
take a codimension two subvariety %2 of X! satisfying S8 G = L

1_31_32

~¥X2, js a trivial bundle and (3) X!

Ey1:=Egl , X"=X is an affine

variety. Taking a suitable open neighborhood N1 of Xl, we may assume

1 0

that Eg\ has a frame e'. Clearly, ((X%,Eg ), (X' ,N;e e}, uith
1

X =7-Yz, is an s-pre bundle over X and gi is the direct image of gx.

qseede.

Remark 0.2. In Lemma 0.1, we assumes that gi is locall free.
Instead assume that it is reflexive. Then, by replacing X by X
~s<g§), we have the similar result to Lemma O.1.

0.3. S-prebundle of type (G). Here we recall some results from

7
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a type of s—-prebundle, which is said to be of type (G)(=Grassmann
type), cf.§S 2,[Sa-1]. Such an s—pre bundle is the main subject in
(Sa-1]. In that paper we worked with a normal complex space. Here,
for simplicity, we work with a connected complex manifold of
dimension 2. Let Li be a line bundle over X, and let s

=(syseeess 140 rZ 2, be elements of F'(Ly). We assume:
=1

= ; . . 2, gl %1
X = (sr+1)0 is reduced and irreducible, and X“:=X"N X,
(0.3.1) ’
1 . . L. . -
where X °= (Sr)O,red’ is of codimension two in X.
We then set N1 =X -X 1 and NO =X —?1, and form a matrix H €
GLr(NOONl’g?) as follous:
1, 1 fFo=s,/s, 1£02 r-1,
(0.3.2) H=| § e beowith 0 B
r- r r+1” “r
FIGURE I-2
X 1 gl
~N .
\7N1 Ng L .
By (0.1.2) we have a bundle, denoted by gx gs over X‘=Y—§2 and
frames gi of EXIN (i=0,1) which satisfy the re]ation:go = ng in
i

NoﬂNl. An s-prebundle of type (G) is such an s—prebundle EX,S’ cf.
Definition 2.1 and (2.5.1,2), [Sa-11. The direct image g-,s is also
said to be of type (G). Such reflexive sheaves have also g;nerality.
Actually, coresponding to (0.1.2) we have:

each algebraic bundle over a noraml quasi projective variety
(©:3:9 is of type (G), up to a tensor product of a line bundle.
This follows from that the universal quotient bundle over a
Grassmann variety is of type (G),cf. Appendix, [Sa-1] and (0.3.8
10) below, and from the imbedding theorem to a Grassmann variety,
cf.CFul. Nany.problems arise concerning s-pre bundies of type (G).
Here we discuss some relations of such s—-prebundles to Problem O.1.
For this we first recall a basic invariant of the s—-prebundle E_,s

just above. Define a subvariety Y of X by

Y r+1

8
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In our studies of s—prebundles, the variety Y plays a very important

role;See § 4, [Sa-1] for the role of such a variety in the

determination of r<gx S) and ' (End gx S).) The variety Y plays also
AR R D

an important role in the determination of the local structures of

Eg.g0¢fy §3. Here uwe only recall the following, cf.Theorem 3.1.1,2:
s> .
If the direct image Eg _ 3 , X :={p €X; X is
X,glxsmooth smcoth‘
(0.3.5) smooth at p}, is locally free, then:
YOX_ o4 = ¢ or codimension of it in Rsmoothz 2.

The second condition is very strong, since Y is the intersection of
r+l _3 divisors. It looks like that many interesting bundles of type

(G) satisfy the second condition; we make:

Problem 0.2. Find inaecompnsable bundles of type (G
satisfying the second condition in (0.3.5). |
In connection with this we see that there are many indecomposable
bundles of type (G), which satisfy the first condition in (0.3.5).
Actually assume thét

(0.3.6) SysecesSnyq are linearly independént over C, and ¥ =0.

Theorem 0.1. If X is compact, gi < is simple and locally free,
2

and has X! as its determinantal divisor.

Proof. (0.3.4) insures the local freenegs of gg. Thearem 4.6,
[Sa-11 insures that I'(End gx’s) =C. The secﬁnd fact is clear from
Lemma O.1. q.e.d.

The condition Y =% is a generic one, if rank gi’s :idim X, and we
have many indecomposable bundles with:rank of it—'Z'dim X.(This fact
was first found by Maruyama in [Mal by meansknf the theory of

elementary transformation. In § 4, [Sa-1] we gave an another proof
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from the Cech-stratification theoretical view point.) The follouwing
follows easily from what was mentioned above:

Corollary. Let 71 be an irreducible and reduced divisor of

the projective space PN(N§;2). Then ?1 is a determinantal divisor of

an_indecomposable bundle of rank r, for any r‘ZN.

This corollary seems to follow alsoc from the earlier fesults in
[Mal. It seems that a determinantal divisor of a bundle of low rank

has, in general, singularities. We add the following problem:

1

Problem 0.3. Let X~ be an effective divisor of PN:N'zﬂ. if it

is a determinantal divisor of an indecomposable bundle of rank N,
then X! has a singularity ?

When the bundle is of type. (G), Praoblem 0.3 seems to Ee
afirmative from (0.3.4) and the Lefschetz theorem for Pic(PN).-A
similar problem to Problem 0.3 uas given by Ockonek-Spindler([0-S1)
for mathematical instanton bundle.

Finally we give two examples of bundles of type (G).
Example 1. Let s =(51,...,sn+1) be a basis of F(QP (1. Then\

n
Pn in the manner

we have a reflexive shaf gp < of type (G) over P
2
son above. then we have:

(0.3.7) E

E =T,(~1), with the tangent bundle T, of P.
P,s P

P
This is checked by computing the transition matrix of TP. Note that

the variety Y in (0.3.4) =¢.

Example 2. Let X =Grd(vn) be the Grassmann manifold of the

d-dimensional linear subspaces of a vector space V of dimension n.
We assume that d and r:=n-d 2 2. Denote by Eg the universal quotient
bundle over X:

(0.3.8) gi= WxX 8 Eg~> 0.

Take a basis el,...,en of V. We regard them as the elements of
F(Ui). Then we form sections S5 GF(APER);i =1l,..,r+1, as follous:

(0.3.9) 5y s = elA Aeq . Aer+1 ( ei is omitted).

Setting s =(sy,..,s ,4) we form a reflexive sheaf Eg _ over X. Then

r+li

4

FARS



we have:

(0.3.10) gi’s coincides with the universal quotient bundle gi .
This fact is not trivialjsee Appendix, ESa—lJ. The variety Y in
(0.3.4) in the present situation is the Schubert subvariety of

codimension two, which represents (-1)x(the second chern class of

the universal subbundle);cf.also [Sa-11].

/!
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§ 1. Reflexive sheaves of type (C)

1.1. Definitions. Let X be a connected complex manifold of

dimension _2 and X! a divisor of X as follows:

il:UieAmii’ A ={1,.,m}sm_ 2, is a reduced and reducible
(1.1.0.0)

S P . . 1
divisor of X, whose irreducible components Xi are normal.

1

The divisor X' must satisfy the following:

(1.1.0.1) ??J = ?1 N ?},i#J eAm, is of codimension tuwo in X .
The purpose here is to form an s—prebundle from Yl along the line of

§ O. For this we first form subvarieties of X as follows,cf. §.0.1:

72 2 s g2 z gl
X L, XS =X - =X -
(1.1.0.2) HipXip XK N X
1 351 g2 . wi_gl 52_ 1
X{=Ki1-%%,1 ea , x!=X'-3 —lﬁieAmxi
and take an open neighborhood of X1 of the following form:
L . 1
leuieAle,i’ where Nl,i is an open neighborhood of Xi
(1.1.0.3)
in X, and Nl,in Nl,j=¢ if i#]
Figure II-1
N T ot
7= lyi—x2— X,
No
e
P S Y — LY
Next take a matrix H EMP N gg), r =2, such that(ieém):
ali)
1 Fl
1
(1.1.0.4) H = 1 | ;
INg 4 falid . t{ a (i)
i 1
L fr 1]
Alternatively, HlN is as follows:For an a(i) EAP uwe have:
1,1
55 £ if t # a(i)
(1.1.0.9) the (s,t)-component of HIN = :
l’i . _ -
FSIN , 1f t= (i)

1,i

/2



Here f.,J €A , is an element of ' (N »03) and satisfies;i €A
J r 1°=X m
_opl , , C L
(fa(i)INl ‘)0 = Xi’ and fJIXi’ Jd eﬁr,15 the restrictiaon

1

(1.1.0.6) to Xi of a (unique) meromorphic function over ?% with

the pole ?%ﬂ?z .
Clearly we have:

and so (det H) = xl,

(1.1.0.7) det H = f N
|N1,. (i)

. —en - vl oo _y 1 ‘
Now remarking that N/ N, =(N,- x* =L ST Xi), we have:H e

6L (NN, ,05)« The datum (X!,¥?

over X of rank r, which is characterized as follows, cf.(0.1.3):

’Nl’H) defines an s—pre bundle gx

EXIN. has a frame gl(i=0,1), and the transition relation
(1.1.0.8) !

between them is:go = ng in NdﬁNl.

Such an s—pre bundle is our main subject in the present paper:

Definition 1.1. (1) An s-prebundie over X is said to be of

type (C) (= configuratibn type), if it is constructed in the manner
1 52

just above ,cf.(1.1.0.8), from data like (X',X N, H) as in (1.1.0.0

6).(2) A reflexive sheaf aver X is said to be of type (C), if it
is the direct image, with respect to the inclusion:X X, where X is
an open part of X in question, of an s—prebundle of type (C).

As we will see in the course of the diséussions,'the sheaf of
type (C) has some peculiar properties, which general sheaves do not
have;cf.Proposition 1.1 and § 4 an § 5. This stems chiefly from the

following:

The divisor fl is reducible and gx is a praduct bundle in

") ‘
1

the neighborhood N1 of X .

Let the s—prebundle EX and the frames 20 and gl be as above.

Then EX is attached to fl, cf.Remark O0.1. Moreover, uwe have:

Proposition 1.1. Each component of the frame go is a section

of gx, and we have:

/3
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¢ r 0)

(1.1.1.1) the determinantal divisor of e (:=(A e 0 1

} = X7

Proof. This is clear from that H € MP(N 0g) and that (det H)

1295 0
= x!, cf.(1.1.0.6).  q.e.d.

Thus EX has the reduced divisar ?1 as its determinantal divisor.

Remark 1.1. (1) From the meromorphy of fslxl’ cfe(1.1.0.6), we.
i
see that the direct image gi =i*§x, where gx is as above and i is
the injection:X X, is coherent, cf.Corollary to Theorem 4.0.
(2) Note that Nl,iﬂNl,J =p3;i#j, and we have:F(Nl,gg) =2 A
(N, .,03). Thus an element f €I'(N
1,i’=X

1,92) can behave independetliy on

~each N1 i.(IF Wwe do not assume the disjoince condition, the unicity

of the analytic continuation implies that the behavior of f in Nl,
determines that in Nl,J’ i#j+) We use this fact frequently in
treatments of the bundle gx as above.

1.1.2. Here we propose some basic problems for reflexive
sheaves of type (C). The problems are essentially the restriction of
the ones in § O to the present situation. The complex manifold X
and its reducible divisor fl are as in the beginning of § 1.1.1.

First, corresponding to‘Probiem 0.1, we make:

Problem 1.1. Determine if 21 is a determinatal divisor of an

indecomposable reflexive shéaf of type (C).
We sharpen Problem 1.1 as follouws:

Problem 1.2. Determine if ?1 is a determinantal divisor of an

indecomposable bundle of type (C) satisfying:the rank of it dim X.

o
€

We may say that the bundle satisfying the above inequality is of

|

rank(with respect to the dimension of X.) We add the following

wearker version of Problem 1.2:

Problem 1.3. Determine if X

is a determinantal divisor of an
indecomposable reflexive sheaf of type (C), say gi, satisfying:
codimQS(Ei) rank g; + 2; with the singular locus s<gi) of ER’
cf.(0.2.3). '

7%
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also said to be of louw rank. Actually we set r+k =codim§S(§¥), 2 5
k, and take a subvariety Y of X satisfying:dim Y = r+k’, with 1g k’
k and s<gi)nv =p. (If X has many subvarieties, such a Y exists.)
Thus gil? is leocally free and of louw rank.{One should check if Efl?
is indecomposable or not. In this paper we do not enter into this
problem. We hope to discuss it in an another place.) See Theorem 1.2
and 1.3, § 1.3 for a partial answer to Problem 1.17\~,1.3.

1.2. Examples...1. Here we see that the two important

examples of vector bundles on the projective spaces, Horrocks-
-Mumford bundle([H-M1) and the null correlation bundle(L0-S-S1),
are of type (C),cf.Introduction. This is checked by giving a
transition matrix attached to them in an explicit form. (The null
correlation bundle is treated here only in the case of P3. The
higher dimensional cases will be discussed elsewheressee also §1.3.)
Now Tet PN denote the projective space of dimension N, and let
gl

) be its homogeneous coordinates. We set Xi =(Zi)o .

In the rest of § 1.2 we write X for P3 or P4, and, according as X =

z=(zl,...,zn+1

3P3 or P4, define a divisor il as follows:

(1.2.1.00 %!

X, {(case of P4).

=7} Uié(case of P3), or ¥ =
FIGURE 11-1 /

| &
Xl__

>
N

When we are concerned with P3 define a 2x2-matrix as follows:
1 z...,/2.

(1.2.1.1) o z‘;i 1+2]; i=1,3e2/42
) i"%i+2 .

When we are comcerned with P4 we define a matrix as follouws:

1 2i4+22i+372i+1%1+4

0 p4 /z

(1.2.1.2) 31 €2/52

(2, a2
i“i+1" "i+1°i+4

The (2,2)-term =z,/2,.4) we write it as above to make it as the
L ¥T§ ,

s 5
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quotient of monomials of degree 2. Also note
that the pentagqn phenomenon ,cf.LH-M] and i+1

[B-H-M1, in the (1,2)-component; we like to

emphasize the simple form of the above transition matrices.
Now we apply the argumens in § 1.1 to the above matrices:As
previously we set:
(1.2.1.3) iz;ui-J(iiuiﬁ), and X =X-%2, xl;lei(=(ilfizqﬂjii—22)
. _ . e 1 . -
Also tahe an open neighborhood Nltﬂ&Nl,i of X -Lgxl’i_ln X,

‘ satisFying:N1 iﬂN .+{The neighborhood N1 is just additional to the

1,

data in (1.2.1.0~3)). Now define a matrix H €M (Nl,gi) by:

2
HIN = the matrix in (1.2.1.1) or (1.2.2.2), according
(1.2.1.4) 1,1
as we are concerned with P3 or P4;1 eAm
The datum (X1,%%,N,,H) defines a bundle E, over X and its

frames e', i=0,1, of E such that go =ng in NdﬁNl.(Here N, =X

XIN, 0
L i
-X%.) UWrite Ey the direct image of E, with respect to the

inclusion:XC;;io In the theorem below we write Ei as EP3 or EP4’

according to whether X =P5 or P,.

Theorem 1.1.1. E, and EP are locally free and indecomposable.

~P3 4
Moreover we have:
EP = null correlation bundle twisted by OP Q9
(1.2.3) 3 ‘ 3
EP = Horrocks-Mumford bundle
4

This thearem is proven in two ways:First, using the representation
of those bundles by monad, cf.CH-MJ and [0-5-S1, one checks that the
above bundles admit frames of the above types. This is essentially a
tedious computation, and Qil] be given elsewhere. Second, without
using any known facts on the null correlation and Horrocks-Mumford

bundles, we check that the bundles E and E

P P
3 4
simple. Also we check the characteristic properties aof the above two

are locally free and

bundles;see § 5 and Appendix.

7€
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1.3, Examples...2. Here we give some examples of reflexive

sheaves of type (C).

1.3.0. Data in § 1.3. Here we work with a connected caomplex

manifo]d‘i of dimension _3 and data as follouws:

a line bundle gy over X and sections s =(51"”Sm);mé>2’

(1.3.0.1) _1
CTLyg)swe set X, =(s.)

1
X i i’0 =;

and X X, .

We assume that ii,i €A, is irreducible and smooth and that 3!
satisfies (1.1.0.1). More strongly we assume the condition (2.0.0),
which is introduced in the beginning of § 2.(This insures that x'oie
a narmal crossing and satis?ies some global conditions.) From the
data in (1.3.0.1) we form a codimension two subvariety 22 and the

cpen parts X and Xl,Xi of X and ?1,Y% as in (1.1.0.2):

52 vl~gl _g_v2 1,_1 1y _31._32,.

XS=U; XiMRpy, x =X-X7, and x° (=l X)) =XT-X7
(1.3.0.2) m

-1 52
lhea Xi—X PR
m
. - _ 1 _ 1 .
We take an open neighborhood Nl_ iGAle,i of X° = iEAmxi satisfying
N1 iﬂNl j =, cf.§ 1.1. WUe fix an element f EF(N1’9§) satisfying
y ’
(1.3.0.3) <r>0=x1.
(Such an f exists. For example define f by F‘Nl i=si/si+1;i€Am.) We
use the following element frequently in § 1.3:
A _ ®(m—1)

(1.3.0.4) sy —(HJ.GA Sj)/si Gr(gx > .

m
Remark 1.2. In § 1.3 we assume that dim X _3, cf. the

beginning of § 1.3. The case of dim X =2 will be discussed by my
students, Y,Hino and M.Kagesawa, in an another place.

1.3.1. First we generalize the transition matrix of the null

carrelation bundle. For this take an element tier(gi®(m—1));i€Am,
and form a matrix H 6”2(N1’9i) as follouws:
1 t./s%
i" 71 .
(1.3.1.0) Hin = S with 87 in (1.3.0.4)
1,1
0 f
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1 52

The datum (X',X ,Nl,H) defines a bundle gx over X and its frames ef

o 1

‘of E i=0,1, satisfying e~ =e"H in (NdﬂNl), cf.(0.1.4). Assume

=XIN,"’
i

the following generic condition for ti;i eam:

. , 7 . ! N _
For any IChm satisfying XI.=ﬂieAmXi¢¢ we have.(l)ta]XI l¢
. H]
O;aenm, and (2) for any JCAm ve have:rbeJ(tBIRI 1)0 is of
’

(1.3.1.1) _
codimension _#J in Xl’i.(Here Xl,l is an irreducible

component of YI.)

For each ie€A ,(t‘/sA) <1 and (t‘/sA)Q-l and l1(=constant
m 1771 IXi i7 714 IXi

(1.3.1.2)
function with the value 1) are linearly independent over C.

When m =2 we also assume:

(ti|§2)@2 and (t'ii )82 are linearly independent over C
(1.3.1.3) i] W
| eAm'

Theorem 1.2.1. The direct image gi of gx with respect to the

inclusion:X X is simple and

(1.3.1.4) Codin S(§§)=4 with the singular laocus s<g;> of g; .
(See (0.1.2) for S(Ef)') The prooF»oF Theorem 1.2.1 and more

informations on gi will be given in § 5 and Appendix.(le use

(1.3.1.1) for the proof of (1.3.1.4) and (1.3.1.2,3) for that aof the
simplenes of g§.> Theorem 1.2.1 insures the existence of simple
reflexive sheaves of rank two whose singular locus has a large

codimension, cf. Problem 1.2 and 1.3. In particular assume that X

=Pn;n: 3, L? =Q§[1] and m satisfies:2< m< n+l. Then one sees readily
that (1.3.1.1,2,3) are generic conditions for tj EF(QE(m—l));JEAm-
Thus we we have:
gl,.._ . . Lo .
X (.—HieA Si)O is a determinantal divisor of a simple
(1.3.1.3) reflexive sheaf,gg, of type (C) and rank two satisfying:
c0d1mi8(gi) Z 4.

Remark 1.2.1. In Theorem 1.2.1, assume that X iPs,and 51521159

=z4 and t, =22,t2=24. Then gg is the null correlation bundle,

/8§



cf.Theorem 1.1. Restrict the bundle to P2. Then (1.3.1.3) is not

gatisfied. From this we can check that the restriction is not
simple. This is a well known fact, cf.for example,[0-S-S1.

1.3.2. Here we generalize the transition matrix of Horrocks-
Mumford bundle,cf.(1.2.2). We assume here that m is of the form:

m =4n+l;n €Z_. For each i €Z/mZ, form elements 94 aeF(L;%Qan), a

1,2, as follouws:

(1.3.2.0) 9,2 =Husu, u=i+a, and 94,1 =Husu, u=i+(n+a)sa=1l,..,n .

i

We define a matrix H GMZ(NI’QY) as i+1 i-1
9i,2°2 " :
’ i+n  _ _ i=n_.
follows: 1 9. ./q. ‘1 . 1+q+1 1—2—1
: i,1"%1,2 ¢ 9.1~ . .
(1.3.2.1) Hjy = | ( T d#2n i=2n
. L] * N .—
. 1,1 : 0 f _
As previgusly the matrix H defines a bundle, denoted by EX’ over X

and frames gl of gxIN »i =0,1, with go =ng. Assume the follsouwing:
i

. 2

For each i GAm, (gi,ljgi,Q)IXi’ (91;1/91,2)IX% and 1 are
linearly independent owver C. Moreover,. for each i#] EAm,
(1.3.2.2)

. . 82 _ ®2_ , N,
if we have.ba@';',mxij —bBQSBIX?j’ with ba and bB GF(LXi?,

o, B s —{i,j} and L§i=_—| » then b, =bB =0.
We write g; for the direct image of E

x|

i .
with respect to the inclusion

>

$ X X.
Theorem 1.2.2. Ey is simple and codimgS(ER)Z 4.

The proof of Theorem 1.2.2 and more informations on EX will be given

in § 5 and Appendix. Theorem 1.2.2 gives an another method to form
indecomposable reflexive sheaves of rank two whose singular 1qcus is
of large codimensionjcf.Problem 1.2 and 1.3.

Remark 1.3.2.In Theorem 1.2.2 if n=1(and so m=3) then the true

inequality: 4 holds. The inductive structure of EY in this case is
discussed in detail up to codimension four, cf.§ 5. Moreover, if
§=Pq and gy =0p (1) and if s,=z, we have the Horrocks—Mumford

- =)
bundles, cf.Theorem 1.1.

/1
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1.3.3. Here we discuss reflexive sheaves of type (C),
Definition 1.1, and of rank 23. Contrary to the case of rank tuwg,
we can not construct a new example of such a sheaf satisfying:

(1.3.3.0) (rank of it) +17>codim§(singular locus of the sheaf).

But one can construct such sheaves satisfying the equality instead

of the inequality just above. Our example is as follows:Let r be an

®(m-1)

integer_ 3, and take sections Uy EF(LE )31 as r-1. We define

a matrix H Emr(Nl’g?) as follous:

(1.3.3.0) H = [‘Ir—l el < <
lNl,i [ o P 31 S as r-l

i

(See (1.3.0.3,4) for f and s?.) As previously the matrix H defines a

bundle gx over X and frames ei of EX!N ,i=0,1, satisfying 30 =ng.
i :

We write gi for the direct image of gx with respect to the
inclusion:X X . Now assume the following conditions:

U | X #0 for each « EAr—l and i eAm, and

(1.3.3.1) !
v r—-1, .

codlmx(xaﬁ(ﬂazl(ua)o’red)) _ r+l .

. Ay _ A®2, _,,
(1.3.3.2 For each 1 GAm and « ear_l, (UT/Si)IXi’(UaQUT/(Si) )|Xi’
7 €A , and 1 are linearly independent over C.

r-1 :

For each i €A , take elements v, el(Lg Jjsaer _,. If
(10303.3) m lga xi r 1

r-1 - A —A.
za=1ua|?§Vi,a ZO(mOd'SiIXi) then Vi =03 eﬁr—l .

Theorem 1.3.1. gi is simple and cndim§§(§§)=r+1. Moregver, uwe

have:

(1.3.3.4)  S(Ep =§2h<n;;i<ua)o’red> |

We prove this in § 5.2 and in Appendix.(lWe use (1.3.3.1) for
the proof of (1.3.3.4). We use (1.3.3.2,3) for the procf of the
simpleness of gi. Assume that X =Pn;n _3 and that (1? Lf =gi<1) and
(2) SyserresSy GF(Qi(l)) are linearly independet over C. Moreover,
We assume that m =n+1 and r =n. Then Wwe have:

(1.3.3.5) General elements ui,.,un_ler(oi(n)) satisfy (1.3.3.1 3).

(This is aobvious for (1.3.3.1). In order to check (1.3.3.2,3), it

2C
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suffices to see that they holds for a (ul,..,u ) € Fn—l <g§”>. We

‘ n-1
®n ®n,

cee easily that UT =S +1 +ST 31 _7 ;n—l satisfy (1.3.3.2,3).

Thus ,over Pn;n -3, there is a simple bundle of rank n such that

it is of type (C) and it has (nieansi)o as its
(1.303.5) ' :
determinantal divisor.(Here si;iGAn,is a basis of r(gi).)

We add one another example of a reflexive sheaf of type (C)
whose frames(and the resulting transition matrix) have an

interesting combinatorial property:Here we assume that m_ 3. For
@ (m-1).8m

each i eﬁm define a vector gier<(£§ )77) as follows:
t _,.®(m=1) ®(m-1) A ®(m-1) ® (m—1)
(1.3.4.1) 9; —(s1 seeSi g »Si0 541 seesS ) .
Also we define a matrix H emm<N1,g§) as follows:
I q. /g, _
(1.3.4.2) H o= |07 ThE Ty e
1,1 B
(Here 9500 is the a-th componen of gi)
FIGURE 1I-3
1 2 i m
T em-1 em-1 em-1]
! 1 1 51 51
m-1 ~ em-1 ®m-1
2 52 52 52 52
. om-1 em-1 ' N em-1
i S5 55 s | S
m S®m--1 S®m—-1 S®m—1 ~ . SA ‘
m m m m

(Note:gi a_z(a,i)—component of the matrix.) As previosuly the matrix
’

H defines a bundle gx over X and its frames gi of E i=0,1, such

=XIN,’
i
that go =§1H . L et gi denote the direct image of gx with respect to

~the inclusion:X X.(Note that the rank of gi =m.) Assume the
following conditions; cf.also (1.3.3.2,3):

For each i GAm we have:Take elements Vi,a Gggi;a eAm—l'

m—1 - —(yed
(1.3.4.3) 1If Za=1 (gi,alx%)evi,a ‘O(mod'gi,miX1)’ then Vi,a =031 €Am

and a €A .
m—1

>/
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For

(1.3.4.4)and
over

Theorem

each iGAm and aEAm_1 » the Functiops 1,(91, /9

2
. .99, X
(91,7 gl,a/g1

C.

113700y

7 i.m)li¥
i

are lineraly independent

(Actually we

1.3.2. gy is indecomposable and codim§8(§§)=m.

have:S(Eg) =ﬂieA'(si)0.)

m
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This is also proven in § 5.2 and Appendix. Here we remark that
the singular locus S(Ei) has interesting property:Take a point p
es(gi). Then we have the following:

‘ Ez is generated by (m+l)—elements, and for an element
(1.3.4.5) NP 0 r A, @(m-1)
gEEY’P, we have:(Ae )0={(Za=1cal®(sa +s, )+CnBEAmSi)O}
(Here 1 is a frame of L%? at p, and C,+C are in g?,p.) The degree of

A L2m=1y _ AL em-1)
24 24 x @

6

(s Jel =(m-1), while that of Hiesi =m. In the

expression of (Ago)o in (1.3.4.35), the fisst term is a main term.

Now the divisor (52+sz(m_130 is a typical one in the theory of the

toric singularity, cf.for example,(L0dal); The example in Theorem
1.3.2 shows that reflexive sheaves of type (C) provide also
interesting examples of singularities.

Assume that X =Pn, gi ;Qi(l) and m =n. Also assume that Syseee
1Sy eF(Q;(l)) are lineraly independent aver C. One checks readily
that if m(=n) _4, then (1.3.4.3,4) hold. Uhen n =3 one also checks

that gg is simple and codimP S(Ei)‘=3.‘Thus Theorem 1.3+2 provides
3
an interesting example aof a reflexive sheaf an Pn.

1.4. Some remarks. Here we make some remarks on the content

hitherto in § 1:First, for r =3, we can find some other examples of
indecmposable reflexive sheaves of type (C) which satisfies:
(1.4.1.0) the codimension of the singular locus of the sheaf =4 .
Such examples will be discussed elsewhere. Here we give only one
example. We take (X, ;i) to be (Pé,gpé(l)). Moreover we set:m=7 and

Syre9S7 to be a basis of T'(L ?)' For each i EAT we form elements

g, €@, (4));a=1,2,3, as follous:

i,c P6
I g, /9.
_n 3 2 i,a” 1,31, _
(1.4.1.1D 9,0 = HB=lsijB/siia and [jo Si/si+1il ja =1,2
52 1 _g1°32 . sl_in’ 7
We set X =LL#B((Sa)On(SB)O) and X° =X"-X° with X _(na=15a?0' Also
, . 7 .

take an open neighborhood N;= i=1N1,i’ where Nl,i is an open
neighborhood of (Si) —YQ. In the similar meanner to Theorem 1.1

0

1.3.2 we have a bundle gx over X:=P6—22

and frames e, of EXINENO =P6

23
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-X',i=1,2, such that ey =e,H in (NS ). Here the matrix H is

1

defined by:H|N1’i= the matrix in (1.4.1.1). UWe write §P6 for the
direct image of EX with respect to the inclusion:X Pé. The sheaf
Epé does not have so good properties as the Horrocks-Mumford bundle.
But we have:(The proof is given elsewhere.)

(1.4.1.3 Ep is simple and codimP S(_f;:P ) =4.
13 é é
Next, in connection with the existence of reflexive sheaves of

type (C) satisfying the condition in Problem 1.2 or 1.3, we make:

Remark 1.3.1. The null correlatinn bundle on P2n+1’ twisted

. , _ 2n
by Qp2n+1(1), which is denoted by EP(P_P2n+1)’ has 2y 2,0 has

its determinantal divisor. Moreover, when n =2, we have:

(1.4.2.1> EP is of type (C).

(This fact is given elsewhere. Also (1.4.2.1) seems to hold for any

n.) The rank of Ep =2n, and EP is an important bundle of type (C) of

high rank. On the otherhand, we can not construct, at the present

moment, a new example of indecomposable reflexive sheaves os rank r
3 satisfying:

codimension of the singular locus of the sheaf > r+2;
(1.4.2.2) -
cf.Problem 1.3.
We add the following to Problem 1.2 and 1.3:

Problem 1.4. Find indecomposable reflexive sheaves gver Pn;

n. 4, which are of type (C) and whose rank r _3. The sheaf must
differ from the null correlation bundle and must satisfy (1.4.2.2).
Next Horrocks—Mumford bundle and null correlation bundles
occupy peculiar roles among bundles and reflexive sheaves aon the
projective spaces.(See [Har-11, [0-5-S] and [Ba-23. See also
(Har-2,31,[H03,[0-5-1,2,33 and [0-1,2] for general results on
bundles ahd reflexive sheaves on the projective spaces.) In § 1.2 we'
saw that the above two bundles have frames of peculiar types; it

seems to be reasonable to expect the followina in treﬁtments of

2%
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bundles and reflexive sheaves in general:

Those sheaves, which have some peculiarly good properties
(**) have frames of peculiar types, tﬁ which properties of the

‘sheaves closelyjcf.the beginning of § O.

From our view point, frames gi, i =0,1, of a reflexive sheaf of type
(C) as in Definition 1.1 seems to be a typical one whcih has
peculiar properties. The position of the sheaves of type (C) on the
projective spaces may also be peculiar among all reflexive sheaves
on those spacesjwe add the following

Problem 1.5. Take an element ¢ =(c1,.,,cn) eZ™. Determine

if ¢ is the Chern classes of reflexive sheaves, say EP » of type
(C), over the projective space Pnt "

(1.4.3) ci(gP ) =ci.(Here we identify Hzi(Pn) with Z usually.)
Finally the Har:Dcks-HumFUPd bundle admits the many symmetries,cf

[H-M]. The following question may be a natural one:

Problem 1.6. Find reflexive sheaves of type (C) on the

projective spaces, which admit many symmetries.

2§
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Chapter I1. Inductive structure of reflexive sheaves

The structure in the title is a central subject in the theory
of reflexive sheaf of type (C). In § 2 and § 3 we give some genera)
arguments for it. In § 4 and § 5 we give explicit forms of the

structure for the sheaves of type (C) and the sheaves in § 1.3.

§ 2. Inductive structure ...1

Let U be a polydisc in CN with coordinates x=(x1,..,xN) and ¢
a holomorphic function in U. For an I CAN we set xlzﬁiel(xi)o' Then

¥ has the follaowing power series expansion with respect to ﬁI;ICAN:

o ® :¢lCﬂ&nJ€aN—li>wI’ where ¥1 does nat contain Xi:1€I and is
regarded as an element of réuﬂil,gg ).
I

In§ 2 and § 3 we give an analogue of (*)-to a certain caherent
submadule of a locally free sheaf over a complex manifaold:The main

notian, inductive structure, in Chapter II is given in Definition

2.3, Same preceeding argumemts, like a type of complex and the

cobundary of a morphism, are also important, cf.Definition 2.1 and

See also the beginning of § 3.)
Remark 2.0. e treat (*) from ocur view point of the inductive

structure, cf. Example in & 2.3 and § 3.4. Cur naive idea in § 2 and

§ 3 appears clearly in those treatments.
Data and Notations
S [ ) . . : N _1__ ' "'1 >
In § 2 and § 3 we work with a pair (X, X = Lie&<‘; ,MZ=2)
F e
m

consisting af a caonnected complex manifold X with dim X 2 and its
. Tl . . . =1 . . .
divizor X with the irreducible components Xi, cfel(1.1.0.0),. We

szoume the tollowing candition:

24
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For a subset I C&m we set XI =ﬂi€lxi. Then:XI =5, 1f # 1>

(2.0.0) dim X. If # I £ dim X then cndimyfl =#] and fl is smaoth.
' »

Moreover, Xl is irreducible unless # I =dim X .
Setting m:=min(m,dim X), we take an integer a:l& ag ™, and we set:
(2.0.1)  X%= U;X;, with I:#I =a .

e write Xl and 8XI for a generic open part of RI and its boundary:

%y = UJ ?J , where J satisfies: #J #1+1 and J D I, and

(2.0.2)
We admit»the case I=¢. In this case we understand:
(2.0.3)  X. ,X. and aX, = %, %-%! and X! .

I I I

2

2.1. A type of complex. (i) We begin § 2 with an algebraic

preparation. For an I CAm and a lacally free Q? -module ﬁg s we define
I I

a complex C'(ni ) as follows:
I

2.1.1> ¢z ) = e My 3, where J satisfies:I C J and #J= HI+k.
I I'"J K
If k+#l m, then Ck(ﬂi J= 0. The coboundary gperator 61:6 (ﬂg ) -

I I
Ck+l(ﬁ§ ) 1s described as follows:If k+#I+1 m, then 51 is the zero
I
map. Assume that k+#I+1 m. Then:

=+ s v e 2,
J I Ty

&, =e, 6§

k = —
L J 10 (Mg ) (=8 M

133 1 Jf.i(I‘X

Wwith J:J DI and #J =#1+k , and K:iX DI and #K=#I+k+1,

where 5I;J is gs follows:

6I;J:$K61;K,J:ﬂ§ 1% eK ﬂ} |5 ywith KiK O J and #K =#J +1,
1'"J 17K
where 61 1 T ey, K wl;K,J’D?IJEJ K BXII?K'Here “Iik,J 1°

, ] L c e o —¢_13y5"1
(2.1.3) the restriction mnrphlsm.ﬂxlijéﬂxllxK and EI;JK (-1

with the integer s as follows: (J-1)=(K-1)-{s-th element of
(K-I>)3> .

Y.

Definition 2.1. We call C' (M )  complex attached to (A ,Mg
—XI m XI
Lemma 2.1.1. (1) The following exact sequence holds:

27
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0 81 1 51
(2.1.4.1) 0=1,, Mg omg =iz 0 =L ctarg s s " F g 5 4o,
1 ¥ ¥ 1 1 1
Here ;axl=ideal of BXI(CF.Intrroduction). When 3><I= &, ;a)(l:gg o)
(2) Setting Z (Mg >:= kernel of 6 :ClMg »=C2(y ) we have:
Setting 27y 1*t Oy, X0 s have
1 o .
(2.1.4.2) Vs ) = Mo , if a
, %, X lox;

m-#1

~
moe

N



435

Proof. This Iemma may be well knnun. For completenes we give

g proof in detail. (1) First we check (2.1.4.1) inductively on EI =

m -#L. If m; =0, then (2.1.4.1) is the sbvious fact:lly =My . Assume
, N ‘T 1

that m; 'O and that (2.1.4.1) holds for: M+ (1) Take an element ¢

s P GYI. Clearly, 5I(¢) =0 implies: ¢Elaxlﬂil’p. This insures.
the first part in the exact sequence (2.1.4.1). (2) Next remark that

o

m
kernel of 61 at the degree %I=C

EDEI’P

Log o c=o

I J
¢ 1 DJ1 and #Jl =%1—1,vue have:

Jﬁilli >, with J:#J=mI and

J D2I. . 0On the other hand, for any J1
oM. _ S ) s et 1
M |5 (M IXJ1)|XJ’ Thic implies the ;urJeLL1»1Ly af 51( the last

part of the exact sequence in (2.1.4.1). (3 Thirdly take a k:l_ k

~o ’ ‘ ! .
ml—l. Letting m be the maximal element of Am -1 we form the

following subcomplex of C'(ﬁg )¢
I

? ’
(a) C '(ﬁi ) =8 My 5 with those J:J sm .
1 I1'"J
We easily check:

C "M ) and C" (Ms )/C’°(M— ) are isomorphic to the complexes
—X —X =X
(b) I I I ‘ ,
. X . _ " 4 ,;\ _
which are attached to (Am’DXIIIU{m }) and (am {m J,ﬁxl) .
(For (b) see Definition 2.1. In the first isomorphism, an element af

’

C '(QEI) correspaonds to the element of the other complex, with the
degree . :1.) In the exact sequence:0 %C"(ﬂgl) - C'(ﬁgl) -

C.(DYI)/C '(Bgl) - 0, the induction hypothesis is applied to the first
and third terms, and (2.1.4.1) halds for these terms. Fraom this we

get easily (2.1.4.1) for C'(ﬂy ) except the first term in (2.1.4.1).
I

But the first part in (2.1.4.1) was proven in (1), and we have

(2.1.4.1), Next (2.1.4.2) is a consequence of (2.1.4.1)(ar, is

checked directly). q.e.d.
(ii) Take an integer a:0 a m, and let M° = {ﬁﬁ }l be a
I
collection of an Qg -module ﬁg , With #1 =a. We form a complex of
I I

Qia~ modules as follows:

(2.1.5) ¢'(M* =e.C' (Mg ), with the coboundary operator &6 =& 7.
- %1 Xy a1 %1

27
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(2.1.6.2) 2'® = e with I:#I =a, if a M.

Proof. Immediate from Lemma 2.1.1. q.e.d.

Remark 2.1. Take elements a;k62+0:0: a+k_ m. Then we have:

(2.1.7.1 Ck(ﬁa) =9 s with I,J:#I=a, #J=a+k and I CJ.

1,J - IX
For a J we use the fol]oulng dlrect summand of C (H ) frequently in
later arguments:
(2.1.7.2) k@) = o s
We call it J-part of CX(yd).

X » With I:4#1 =a and I CJ.
J

2.2. Coboundary af a mgrphism. (i) Here we add an algebraic

argument to the one in § 2.1:For an a GA%, take collections Na } M

and 3° as follows:

Na—1= Mg 2 My 1is a locally free Oy —module
- =X:1 =X =X
’ I I 1
(2.2.1) ﬂa = {N, ? where My 1is a locally free Og-madule
X,"J . =X =X
: J J J
a _ . _ a-1
$ = {QJ}J @l is an O Jmorphlsm ij(C M » J

Here #I =a-1 and #J =a.(See also (2.1.7.2).)

.~ Remark 2.2. When there is no fear of confusions we write:

n® for c%®y=e My and &2 for the Oya-morphism:
(2.2.2) J

a-1 1
J J *C (M ) —eJ(C

The following definition is important in the arguments from now on:

(M ))J’ Wwith J:#J =a .

Definition 2.2. Assume that a m. By the coboundary of @a,

denoted by 832, we mean the collection of QX -marphism, denoted by

K
(68),,#K =a+1:682 =((68) ;#K =a+13}, with an Og-morphism (6&),:

K B K : 9 K
el acc2<ma”1>>K,.cf.<2.1.7), which is characterized by the
following commutative diagram:

e —> @ h

K = 2@ )

a+l-

(C (N ))

K K

Here pr& denotes the projection:Cl(ﬂ

e ca11 A3% the K-payr' of (5§67

AL sty st



437

Remark 2.3. We write 3% alsa for the QOpa+l-morphism:
1

’

¢

L loua - 1,.a o plam - 2,81
(2.2.4) :CT (M (—@K(C " ))K) > CT (M )(—eK(C M ))K)

k¥ K
(ii) Here we give some properties of 682, Firet we clearly have

the following commutative diagram:

] a _
& 25 clpr

(2.2.5) \Nﬁa . \& 8 a-1
| clady 28 s 2l

Also naote:

(2.2.6) ker 682 = @, ker(d@a)K, Wwith Ki#K =a+l.
Nest>the explicit form of 682 is as follouws:for each J Cam:#l =3, we
write @ 0 1y »ct @) | as follows:
A PP -t I . HTen_
(2.2.7) QJ‘QIQI,J‘DXJ*‘C (M ))J‘elﬂxlzxj’ with I:#I=a-1 and I CJ.

Proposition 2.1.1. For a K CA_:#K =a+l, the K-part 6%, of

582 is as follows:

(6@8)K = QJQJ;K’ with J:#J =a and J CK, uwhere
i - 2,.,a-1
[ g — * — — —_ — —
§J;K (eISI;JKQI,J[X“)‘HXJIXK eImXIlXK( o ))K)’

with I as in (2.2.7) and aI‘J K= 1or -1 ds in (2.1.3) .

Proof. Take an element § M. By (2.2.3) and (2.1.3) we have:

a -y = . o ik Ta
(6% )K(CIXK) _elal;JKwI;J,K@I,J(C)( QIEXIIXK)’ with I:#1

=a-1 and I CJ, where wI;JK is as in (2.1.3).

(a)

But wl;K,J@I,J(C) =®I’J!XK(C‘%K), and wWe have (2.2.8). q-e.d-

7/
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. . o —matl corlom@ - ; . _
Next take an element ¢, =6__ ¢ = (CT (7)) (= QSEXK(’LXK)’ Qlth

2

e e a-1
K(s)=K-{s—th element of K3. We have: (CT{M )) lgs<t<a+1
ﬁ..

% |5 with K(s,t) =K-{s—and t-th elements of K. Let PPy
K(s,t) "K

denote the pr‘oJection:(Cz(_lja_l))K éﬁg % From (2.2.6,7) we
) Kis, t) K

(2.2.9) pr_ (037 (g 0= I>Ms,t),K(s)lx Kis)) " FKis, 1), K(t)lx Py’

Finally we write down (6@8)K, far a =2,3, explicitly: First‘

assume that #K=2. We write K ={i,j2.

1 | 0
(Z.2.10) (531, =(-8.8 & )5 (M= oMz >z -1V .
K i 22RO %,
Next assume that #K =3, and we write K ={i,j,kl}:
1,.2 '
(CTM*» =My 8Mg Mg )y 2 ¢.. ., 8 ¢, & ¢.
K Xij Xik xjk IXK 131K ik K Jk1iK
2y =M= ® M@ M ds > @ Y where
20y =y e Hge Ny Jy 13K k3%
i J k "K
wi;K:_éi,ijlfK(wiJ;K) + @i,iklRK‘wik;K)
(2.2.11) |
PR i) T kR Pk
Pk ikl R Cakakd T B kiR P ik K’
Figure Eﬂ
ij ik Kk
i . &, . S
1’1JlXK lalleK
J -®. ...z &. . =
J,IJ“\K J,JkiXK
K &, .7 S
k,1kIXK k,JK‘XK

2.3. Inductive strucure., This subsection i< central in § 2.

(i)Let <mo,g§> be a pair consisting of a locally free Qg

-module EO and an OE—submoduTe Eg af ﬂo. Far each a:L;agﬁ, Tet ﬁa

and 32 be collections as follows:

a _ _ - e _
M- o= {Dxl}l ﬂxllJ an Qxl madule
(2.3.1) where
3% = (33 & is an 0o -morphismiMg »(Ccr¢n® 1),
I l I Xl l’\l I
with I:#I =a. See also (2.1.7) for the I-part (Cl(ma_l)) of

I
Cl(ﬁa_l). We set:

32



(2.3.2) M= (M%), and & = (8%)_, with a:llaln
As befare we regard % also as an—morphismzwjéj:ﬁa=8JﬁJ *leﬂ’) =

@JCI(QaJJ, with J:#J =a. Now the following definition is most

important in § 2:

Definition 2.3. We simply say that the pair (M,$) is an

inductive structure faor (ﬁo,gg), if the folleowing holds:

Ez = @ talambnzt %), and
(2.3.3.1) |
331 = ker62® D, 2¢ a< & -
{(For the cacycle Zl(ﬂo)(cclfﬂo)) and the coboundary 5@8_1 of @a—l’

see Lemma 2.1 and Definition 2.2.)

FIGURE TV ¥
] 1 1. 0. ,0 x © i
M R N Y el
a 1 632 Yy 2 a-2

o 25 clgrth QALY RS
(iid)The following example may illustrate our naive idea in
introducing the abaove definition:

0

Example. Here we assume that (I ’EX) =(Q§{Q§). Far each I € Am

we define a pair (ﬂy ,@I) as follows:

I
A - C iy eMe so el m@Tl - _
DXI—QXI. and @l—@a(ld).ﬂxl wl C N )I( @Szlgxl(s)lxl
{(2.3.3.2)
. ®a a .
—QXI )995:1 ws, with ¢S=$I-

Here a =#I and I(s) = I -{s-th element of I} ., Then we have:

The pair (M,%), with M 2{321}1 and ¢ ={@I}l;l cam, is an

)
’ inductive structure of (gg,gg).

This is checked in § 2.6 in a somewhat more general faorm.
(iii) Now we give some basic properties of the inductive

structure:first the follpwing is obvious from Definition 2.3:

Eg 3;?1DO, cf.Lemma 2.1.2, and 0633 he? zo( &

(2.3.3.3 a-1
(5% )I@I = 0 for each I:#I=a) .

33
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- a VM 1,431 ey &
Note that, writing @I as es=1®l(s),l'mxlé(c M ))I—@S=

1-X
with I(s) =I-{s—-th element of I}, the second fact in (2.3.3.3) is

equivalent to tHat the following holds for each (s,t):l; sS ot <a.

2.3.3.0 16,0, 11X 10,1 PIes, 00, 1 1R e, uith 15,0

=I-{(s and t-th elements of I) and él(s):et#sélis,t),l(s)'

Next define Q%a—modules Ea af ﬂa and Ea af Cl(ﬂa_l) as fallows:

Fe =kerd8®™Hh n 2t ®™h, 22 ag ®, and El=60(ED
(2.3.4) =

a

g® =ker(6__,8%), 1¢agm .

VA

-1

Here & _ 82 =composition of 32 and 6 :C1
a-1 ” a-1

2

M hsc?® . Note that

~

2

E]

(2.3.5) E™ =™ and F™ =ker(s3™ 1) .
The lemmas belgw(Lemma 2.2 and 2.3) are used frequently:

Lemma 2.2. We have the following indu;tive relation:

(2.3.6)  E¥7'=6__7HE® and E3=@HTHED 1 afh, with %= .

|

Remark 2.4. Since ¢3(M%) CF® and 6__, (1® 1) cF3, 1K a<h,

a-1 -
cf.(2.3.3,4), we have the following from (2.3.4):

2.3.6)°  E* =5__ (E¥1) and 2 =0%ED), 14 ath .

Proof of Lemma 2.2. The first'Fact follows easily from

(2.2.5), (2.1.6) and (2.3.3). The secand ?oi]aus from (2.2.5) and
(2.3.3,4,5). g.e.d.

FIGURE V
0 n! 2 e M
Ex E' E e’ ™
1 2 S g™
5 & . 6 . & ~
Fl g2 3 Fm
En A I En
2t n% rARIVED) rANIYED) AR VIR
Lemma 2.3. The following exact sequence holds;0 <a m

6

~ g2 i Fa+1

= 0, with I:#1 =a.
Ithan 2 =m, thic meza~ciF =M £, 00 25,

S«
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Proof. For the proof it suffices to checkiker 68 = the first
term;a_ m . By Lemma 2.1.2, this follows from that the first term C
ga. But‘this follows fram (2.3.4) and (2.3.3). q.e.d.

2.4. A remark. In this paper we use the inductive structure

of (DO:EX) as a substitute for a projective resolution of gi. The
projective resolution exists locally. The corresponding fact for the
inductive structure is as follows:

Lemma 2.4. There is an inductive structure of (go,gg) locally,

if and only if the following holds Jlocally.

There is, locally, an Ogy-submgdule, say Df , of 1

xi i i

31 o€d

(2.4)

-1,,1,.0 ’ '
)T aHNe My )

0 i€l
m "1 R
Proocf. The only if part is clear, by setting DR =¢i(ﬂ§ )y, cf.
i i
(2.3.3). Conversely, if (2.4) holds we find (ﬂf ,@i);i eAm,uhere ﬂi
i i

such that gi =(3

L L o 0_ e L
is a locally free gxi module and @i.ﬁxi +ﬂlxisatlsfles.@i(ﬂxi) —ﬂxi.
Then we have the first condition in (2.3.3). For a _2 the kernel of

38271y, with ICA_:#I =a, is an Oy -submodule of C'(M®™ 1) . Thus we
I ,
find a locally free Qi -module ﬁ? and a surjective Qi -morphism:
I I I
Mg -kernel of 53371y . q.e.d.
1

2.5. A property. Let the inductive structure (M,%) of

(ﬂo,gg). Tane an I Cém. For a series 1 =(Ia,...,lo), a =#I, of
subsets of Am satisfying

(2.5.0) 1=1,21,,32 1,,32 21,21y,

we form an Oy —-morphism &;:[Mg %”0_ as follows:
X I1°=X —IXI

I 1

- 1 _
(2.5.1) @I —(sza @I 1 I'X ) .

= ww-1""1
Here we write & My ~=Ng v far pr 4 with the
Iw—llu XI XI IXI lu—l IU
W w-1 W

projection pry el hyo o g s, cf.(2.2.7).

I - I =X I X

w-1 » W 1 I
w-1 (R
Lemma 2.4. The Oy -morphism &7:Mg 9_?2 is indendent of the
' I = I I

series I satisfying (2.5.0).
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This lemma is used in the analysys of sections of gg,cf.Lemmak3.1

and 5.2.

-9 ’ H s
Proof. Take a viv a and a series ;vz(lazlgla~1g"'glv) with

$

Iv =lv. For the proof of the lemma, it sufices to check:
' v+1 _nVvtl. y
(a) (Hu:a@I lX ) —(Hu=a<1>I 1% ) .

W 1 W w-1"w 71
If v =a-1 this is c]ear. Assume that v_ a-2 and (a) holds for v+1.

’

If Iv+1 =I 41 we have (a) from the induction hypothesis. Assume that

1 =1 Ua) with a # @ €I .

We write I =1 W3 and I

v+1 ¢Iv+1 v+1 v+1

We set I ;2 =IUa,a ) take I_,w =v+3,..,u, satisfying the following.

v+é' g Iv+3 g g Ia = 1.

2] i

it " ’
Form two series (Iazl’f”lv+2’lv+1’lv) and \Iazl""lv+2’lv+1’lv)’

(b) I

and form the Og —-morphismiM; -=Mg s from these series in the
=X —X ~X. I¥X
I I IV I

simi]ar‘manner to the ones in (a). Apply (2.3.3.3) to Iv+2’l' Then

we have:(d) ¢ v = ¢ @ ¢’ .
JV‘Jv+ltxl v+1 v+2'x Jv lX JvJv+1 Jv+1 v+2|%
Thus the two Q? -morphisms just above coxnc1des. By the induction
I . :

hpothesis, the former and and the latter of these morphisms coincide
respectively with the former and the latter in (a). Thus we have {(a)
in the case of v. q.e.d.

2.6. Here we prove (*) in Example, § 2.3 in a somehat more
general formilet the pair (MO E ) be as in the beginning of § 2.3.
We assume that there are a locally free Qz—module D’and Qy—morphisms

i
@i;ieam, satisfying the following:

o -1,,1,.0 i
E —(do) (z- ﬂ(&ieaméi(ﬁlxi)), cf.(2.3.3),’aqd
(2.6.1)
?
@iii.. =(Jlx i# ] EAm, as the Qg_‘—morphlsm:ﬂli'. +ﬁi§‘.
iJ ) lJ iJ i 1]
For each I Cém we set,cf.(2.6.0):
’ 1,.,a-1 '® 3 u
Mz =M, -and &.=9 (1d) N 29 L (M7 ") =M TT) e D¢ N9
(2.4.2) lxl 1 IX I I IXI. s=1"1(s)
with ¢ =¢_sa=#1.{(For @ we assume that # I_ 2.)
I(s) "1 =
(In the case of (*) in Example, § 2}3, we set:M =0y and & =
. . ’ 0]
dentity:Qz (=M = Y= N- =My ). H e (2.4.1) halds, cf.Lemma 2.1.1.
identi X (<. X 17XL_ Then (2.4.1) haold f.Lemmna 1.1

26



Lemma 2.6. The pair (M ={ﬂ§1=ﬁlxl}l,é ={¢I=Ga(id);a=#1=2, @i as

in (2.6.1)3,cf.(2.6.1.2),is an inductive structure of (ﬂo,gi).

—

Proof. Take an I CA_ with 2_ a:=#I_ %. By (2.3.3) it suffices

to checkiker (3337 1) =% (Mo ). We write I ={i, ,.,i_3. Take an
I I XI 1 a
a-1 m _Ba
) ;=8 Mg 3 (=M;3 7)) such that
172s0%, 1%, TR,

such that (6@8_1)(¢) =0, By (2.2.9) we have:¢1=n*~ =¢a. Thus we

e @ 1
element ¢=8 __., ¢, .y <C° (N

have:@l(¢l) = ¢, with ¢I=¢.(. =1,+.,8), q.e.d.

77
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§ 3. Inductive structure...2

Letting the pair {go,gi) of a locally free Qg—module~ﬂo and its
Qz—submodule gg be as in § 2.3, we discuss here the local structure
of gi. Also we discuss an analogue of the power series expansion in

(*) at the beginning of § 2. We use freely the notation in § 2. The

_ —a 0 0

~varieties X and X ja -1, are as in (2.0.0 4). (We write X
1

and a¥%

for X and X .) The inductive structure ({ﬂﬁ },{Ql}), Wwith ICAm, of

1

O»E-) are as in (2.3.1603). The Ogza-module ﬂa = My and
X" X J XJ

an—mnrphism §° :QJQJ' with J:#J =a, are as in (2.3.2). Also the

(

1=

1

Oza-modules E¥¢ €M®) and Facet @1y are as in 2.3.1) .

3.1. Parametrization. Take an open set U of X , and we
assume the Fo?]cwing(% =min(m,dim X)j;see § 2):,

_ 8 _ ~
radnu,e® 3 r® o,z sog as Bei

are surjective.
(3.1.0) _ - a - ~
o, e® &5 ra®u,ESsica <
(Since §_:MN° - (M® and @a:ga %Ea'are surjective, cf.Lemma 2.1.2

Z
and 2.2, (3.1.0) holds if U is a Stein manifold.) We fix an

" o Y- . eoatl 1,3y
extension map f(ex) $J;#J:a(ex)J.F(X NU,Z M eJr<ameu,
ﬁﬁl:axj’ - F(U,Dd) =ejF{Uﬂ¥J,E§J), O a_ m-1, satisfying:

{(3.1.1.1) 5a(ex)a = identity .(By (3.1.0) such an (ex)a exists.) -

When a =0 we understand that
O_
[ X
Note that Lemma 2.2 and (2.3.4) imply:

o

3.1.1.2> ey, %10 - ra,n® .

(2.1.2 eV T GNULEY) c R TINLEY T, 1 v R

A

to define a map P® as follows:
0

-
oo
Yot
[
[0
3
jui]
Ly
—
<
i}
<
w

1

_,(ex)v_lév)(¢a) .
v=a

(3.1.3)  PEr(NNULEY) 209 - F(U,Ep) = ¢ =
a

w, and PT is the identity.) Moreover we write:

‘Ff“ :Q')z% o)

(30145 1 M= 8, laxlﬁﬁ y with I:#I=a.(Note that lax

I
27
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Now we form a map P(parametrization map) as fallows:
(3.1.5.0 P:e '~ runx® Ma)9$ 9~ @a%f(U,E—) = ¢ =B 9~ Py
‘ SX a=m =X . a=m

aHere we use the inclusion: (laxa)ﬂa Cga;see (2.3.7)+ The map P gives
a parametfizatian of e]ements of r(u,g§> by means of those of

F(UWXI,I 11 Cﬁm.)

8X l
Thenrem 3.1+ The map P is surjective.

o
Proof. For each a,viO_v_ a_ m we set:

v+1

(3.1.5.1) PV anVilienTleNir ke, 1 or wnRY,EY).

-8 ax
(If v=a, pv.a is the identity.) For the proof of the theorem uwe

prove the following inductively on v.{(lhen v=0, we understand that
gozgi. Then the thearem holds.)

(ay o Y~ PV'%ie (X%w,I M *H - TrYNULEY) is surjetive.
a=m a Sayd -
The key fact for the proof of (a) is as follouws:
(b T (X¥NW,EY =(ex % ¥ nu, e har 30,1 1) s0gagi-1
) X
The check of this is as follows:bLemma 2.2 and 2.3 insure:L.H.5 D

R+.H.S. Next, for an element ¢a€ L.H.S, Lemma 2.2 and (2.3.6.1)
insure:820®) =231 @3y Lith an element 93 ler 3@y, '), By

(2.3.7), ¢3(ex)3 (3] or (3%, 1 S Nou (@) is checked as

TaxX
follows: If v=m-1, (2.3.5) and (b) insure (a). Take a vim-1Z v =1,
v—1,w=(ev—;@v)Pv,u we have the

and assume (a) for _v. Noting that P
following from the induction hypothesis that (a) holds for v

(d) image of @Y 1 PYTLY = (oVTlaVyr RV, EVI 4 (XY TIND, L .

=1 axv—l

By (b), the R.H.S =l (X¥ lnu,e¥™h.. q.e.d.
In connection with (3.1.5.0,1) we add a map as follows:For a JCﬁm we

write the restriction of P2 to ﬂg as PJ;a=#J .
J

8X N_J) > 'y, E—)

Now take an ICA such that UNX —¢ We determine P, 5 . Precisely Tet
‘ I

(3.1.5.2) P P'r i 2 rcuﬁx

the series 1 =(ia=l g 1.4 ; §11 g lO =¢),a=#I,and the
Oz -morphism ¢ ;:Ms +ﬂ0— be as in (2.5.0,1). We write w; for the
Xl 1 XI !XI I

39
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quotient morphism:ﬂo *ml? . Ndie, in thatrcase. Lax ﬁi =ﬂ§ . We make
o .

the following remark on

Lemma 3.1. The two C-morphisms wIPI and @ .F(UWX i
I

T (UNX ,ﬂ0~ ) coincide.
I'=1X;

Proof. For a via>v 20, a=#I, we restrict pY HV+1 ex)¥ 1pY)

to [ (UNX Mg )¢

‘ 1

(a) PY 1T CUNX [,y ) - r«unxY,eV.
= I

Recall that EY aMV =o Ity with Ji#J =v,cf.(2.3.3). We write pr; faor
J Y,

the projéctinn:ﬂv éﬁi . Moreover, let Y11 denote the quotient
I
v

morphismiMy  -=M5 7 (X
XIV XIVIXI I1,

suffices to check the following for each via-1 _v _O.

v+1(@

(I
w=a I )
(b) w—1"w "1

F(Uﬂxl,ﬂ L %
v
This is checked inductively on v. If v=a-1, (b) is clear since

=w1.) Faor the proof of the lemma it

— = V,a . Y —_
) Illvpr Pi1° (as the map.F(UﬁXI,ﬂX ) -

I

) .(See (2.5.1) for the morphism & o)
1 .1
I . Ww—1"w

1 Cex>; ) =identity. Assume v Za-2 and (b) holds for 2v+1. By
a-1 a-1

(3.1.2), (2.3.4) and Lemma 2.2 the image of &V 1pv*lsad ¢

4 r<uﬂax cf.

38)‘: V+1’

(2.2.7), we have‘

Y with Jt#J =v. By the definition of &

PY:1 =X 1 PPy !l d(as the map I (X ﬂU My )

v+1lTv I

& PPy
Ivlv+1 v+1

(c) eF(?Iﬂu,m—

Y. % Y), Wwith the quotient morphism ZI 1}

~X
v Iv+1 v+lTv IV

I

Vv vt

Restrict this to X One checks readily that the L.H.S and R.H.S in

It
{¢) coincide with those in (b). g.e.d.
Mare deteiled structures of P are studied in § 3.2 and § 5.

3.2. Local structure. Here we derive the laocal structure of Eg

fram Theorem 2.1. Faor this we assume that the open set UCX is as

foilows:

£0
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U is isomorphic to a palydisc=U1x XUN Wwith coordinates-
(3.2.0.1) ‘
x=(x1,..,xN).

Here N =dim X and Ui is a disc in C whose center is the origin of C.
For an 1 C&N we assume the following:

(3.2.0.2) ?J.ﬂU#ab if and only if jel, and,in this case, (Ejr|u>=(xj>0.

Clearly gjﬂU #¢;1Cﬁm, if and only if J CI, and we easily have:

(Ejﬂm =U x e« x{OPcr"x{03x- -xUy (i.e.,for each | =J, we

1
(3.2.1.1)
replace UJ by its arigind.

We write g for the natutral projection:

(3.2.1.2) U= Px (U 2x SUTK ) 5 (xyy0,0,0,0, %)

J
(i) Take a JCI and an element ¢ er(uﬂXJ,gi ). We expand ¢ by
J

using the product structure:(UﬂXJ) =(U7XI)X(H161_JU1):

K . vl _ K _
(PIx;_ g with ¢ (¥) EF(UWXI,QXI) and x7_; =

W
+Q
kl ku
Xi 'ooxi . Here Kz(kl,uo,kw),b}:: #I-#J,and il,-t;iwel_lt
1 W
We use this for the definition of the extension map (ex)J,cF.

@ =ZKEZ Cy

(3.2.2)

(3.1.1)tassume that J gl and let F’(UWXJ,Q? > be the Suﬁgraup of
J

F(UWEJ,Q? ) consisting of those elements ¢ whose power series
J

expansion satisfies:cK(¢) =0 if K EZf . Let @y be the quotient
morphlsngijégax

abelian groups:

J(=QEJ/;3XJ)- Then @ induces an isomorphism aof

) = TeX
J

(Actually we have:F(Uﬁfj,Q

(3.2.3) T (UK ,,05

Oy )
J X J GXJ

EJ) =r (UWXJ,Q?J)@ (XI_J)F(ijJ;QXJ).uith

X1—gTie1-0%i" and the kernel of @y is the second term of the R.H.S.)

We set:

\pJ - —li v -—

Y, i; =(ex)J(CJ) is characterized by:

Thus, for a &, EF(UW&XJ,QSX

J
(3.2.4.2) CJPGXJZCJ and CJ does not contain termsvdevided by
(ii) Assume that, for each J:J CI, Df and ﬂo have frames,

J

7
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denoted by Lull and mo over UWXJ and U. We write (ex)J also for the

map:F(Uﬂaxl,ﬁg lax.’ 4F{U7X sMg ), which is defined
R J
°ry
through the identificationtN 2 Q » P gi= rank ﬂi +by means af the
J J J
frame mye We set:(ex)? =$J(ex)J, with Ji#J=a and JCI, and define

maps P2 and P as in (3.1.3,5). The map P is as follows:

P:o® s ¢ uﬁx ) 2@ P (¢

My ) se @, - T(U,Ey 1P

7% X
as in (3.1.5.2).

Vi

J+IJCI J SX J

{3.2.5)

with PJ

For each J C&m:J Cl and v:=#J _1 we write mJZ(mJ.l”"”mJ,rJ)’ Note

that the element X 1] éniel—lx generates lax TR

Theorem 3.2. (1) For a J:JCI and m

€m; we have:?

— ‘ 0
(3.2.6.1) PJ(XI—JmJ,a) —xI_Jfl’a with an fJ,a s (U,M7

{(2) Far _each p EYIﬂU, E? b is generated by the following:

J,a

(3.2.6.2) XI—JFJ,a’ with J:JCI and FJ,a

(Here we admit the case J=¢. In this case mj?me and PJ=identity.)

as_above.

Proof. The proof of (a) is as followstTake a viv a:=#J, and
let the map PY’® be as in (3.1.5.1). We check the following
inductively on v.(When v =0 we have (3.2.6.1))

(a) ) with £¥Y  ercunxV

v,a _ v
Py gy e "*1-171 4 J,a
(Here |J means the rectriction to F&UﬂX ax Y. Writing Fj o =
J J ’

eK{H’ with Ki#K =v, X1 PK =0 if KCJ. In this case, without loss of

ality e C =03 i Yoo i : .
generality, w2 can assume FK Osuwe write FJ,a QKFK with KiKCI)

First assume that v =a-1. Then the L.H.S. of (a) is:

-7

* . ’
et xl_JeKRJ(QK’JLmJ,a))IEK s with Ki:K CJ and #K=a-1 and my oas
' in {3.2.1.2).{The morphisn @K J is as in (2.2.7).)
’

Thics implies (&) for wv=a-1. Next take a viv a and assume that (a)

holds for v. Operate & :QKQK’ # =v, to the R.H.S in (a). Then we
hawve:

: "z"v‘ \ 4 ! 3 = b 1 & i : =V »
) 1 HEMJQHFﬁz ”1—}$HQQL”L V‘FK))’ with L:iLCK and #L =v-1
By 12.2.4) z0d Lemma 2.2 we rewrite the R.H.S as follows:

¢z
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¥ ?
{b-3) XI_J(@LFL), with FL EF(WXL,ﬁgéaXL);L LS

Operate (ex)“'°1=sL<ex>L,cf‘.(3.2.4.1), to this, and we have:

43
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_ v—1l,a_ *
(b-4) P’J —xI_JeL(ex)L(FL) .
Thus we have (a). Next, for the proof of (a), take an element (e
F(UTEJ,QX ). Then we have:

J

*
(3.2.6.3) Pyxp_jbymy o) =xp_ g (& f

This is proven in an entirely parallel manner to (3.2.6.1), by
changing X1-] to xI_JKZ(CJ).(The unique point to be cared is that
.(ex)v—1=@L(ex)L‘operates linearly on nz(CJ),cF.(b—4). But this is
clear fro (3.2.4.2).) Now (3.2.6.2) is clear from (3.2.6.3) and
Theorem 3.1. Actually take a generator e of E?,P’ and take an open
neighbarhood U’0¥ P in which e is defined. Assume that U’ is a
polydisc and we form the parametrization map in U’. We see
immediately that the parametrizatibn maps commute with the
schrinking of the neighborhoods(since the both maps QJ and (ex)J
have such properties.) By Thearem 3.1 each element of e is a linear
~ombination of the elements of the form PJ{xl-JC}mJ,a)' By (3.2.6.3)
the element is a linear combination of XI“JFJ,Q’ cf.(3.2.6.2). Thus
we have (2). Geeovde.

It is an important but a hard ﬁask to determine PJ(XI—JmJ,a)
explicitly. In the remainder of § 3 we didcuss some structues of the

element.

3.3, Explicit farms. The situation here is same as in § 3.2.

The open set U of X and the subset I CAN are as in (3.2.0.1,2). The
frames mJ,JCI,and mo of ﬁg and ﬁo over U3J €I, and the map PJ are
‘ J

as in Theaorem 3.2. We determiene PJ explicitly for J:#J_ 3. By

Theorem 3.2 we write:

{ v —0-"; " 1 3 { -
Pjaxl_JmJ) =m \XI_JHO’J), with a matrix HO’JGH\U,QX) and

(3.3.0.1
*p-a e 1-g%y
We analvze the matrix HO iR For this we write @K=$L®L K:ﬂi -
s i
K
«ct z#ﬁ~i)}u =% Mc 5 , with L:LCK and #L = #K -1,cf.(2.2.7), as
A =T Ay I)’;K

%4
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(3.3.0.2) ¢ with‘hL’K GM(quﬁ,Qgﬁ) .

Lok B "2 E LK

When #K=1 we write the matrix 85'h0 K Our purpose here is to write
* .

HO ] in terms of hL K;KCJ- As an intermediate stage for this we use
’ . ’

the following notation. For a K:K CJ we write PH J for
?

H#K, ] #K, #]

pry (P )]J:FJ:=F(Uﬂ§J, Mg ) %F(UWEK,UE ). Here P is as in

-l‘ ’—_
IRy | K
(3.1.5.1) and |J indicates the restriction to FJ. Moreover PPy

8K

denotes the projection:M Mg , cf.(2.2.7). We write:

Xk

(3.3.0.3) PK’J(QJ) =mHc j with a matrix HK,J GM(UﬂXK)
The analytic projection U ﬁUﬁYJ is as in (3.2.0.2).
(1) Take a JCI with #J =1. Then we obviously have:!

Lemma 3.2.1. The map F’J is as follows:

P {x

- 0 -0 *
J I—JEJ) f(ex)J(m‘xeI_Jho’J)—m {XI—JRJ(hO,J)}’ and
* . : .

{(3.3.1)
HO,J =RJ(h0’J).
In the remainder of § 3.3 we consider the case:#J =2,3. We should
consider elements af F(UTEK,ﬂi } far wvariocus K CJ and their
K
extensions tao larger varieties YL’ and restrictions to smaller
varieties EL' It is desirable to use notation which indicates the

extension and the restriction. But it causes confusions of notation:

We make the following convention.

. For _an element, say ¢ EF(UWQK,QR }, we use the symbol ¢ also
) K

for its restriction wlngE XL, where XL C)(K .

We make clear the situation when we consider an extension of ¢ to

AR

(ii) Case:#J =2. Here we assume that #I_ 2. We take a J CI
with #J=2, and write J as‘{i,J}. Also we write the matrices HO ] and
’

ho.u;uEI; cf.(3.3.0.1,2) as follows:

*

* *
(3.3.2.0) Ho,0 = 7aWMo, 5507 " Mo, 5510 %% MFo, a5
* .
ho,u athg,usa? *Xho,ugyr with (v =I-{u} .

(This is a power series expansion of H0 ] and ho u argund the center
e ’ ’

14}
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“J with the coordinaes X5 and KJ In (3.3.2.0} the symbu! H ‘K’K ay,

indicates that this matrix is in M(UWX Y « Thus H v and
XH 0,J31
hO,u;J€M(UnXJ’QEJ > and Hy g, and hO,u;ueM(Uﬂxu’QEU}')

Lemma 3.2.2. The matrix HO g cf.(3.3.0.1), is as follows:
’

(3'30201) h H ,U el,and H J),U EI .

»
0,1;37P0,us1Mu, 0,130 Do, usath

(Note that the expression of H0 I3 is _independent of ueld, cf.alsso
’ 4

Lemma 3.1.)

1,2 1:2

Proof. Let P be (ex) &, cf.the proof of Theorem 3.1. Then

the restriction of it to XJ is as follows:

1,2 - * * CANT _
(ay P} (xl gy = xl_l(minjihi’J)@mJnJ(hJ’J))(EQUEJF(UWXU,EXU)).
Operate @ to this. Then Wwe have:

11,2 _ 0_ *
(b) ¢ P!J (xI_JmJ) —xI_J{eum’xu(ho’uxJ\h

On the otherhand, we clearly have:

u,J)}' Wwith uyEJ .

* * *
(c) hO,uRJ(hu,J) :{HJ(hO,u;J)+xvh0, }XJ(huyJ)’ with {v3} =1 =-{ul.

By Lemma 2.2 the element in {(b) 1is in F{Uﬁil,ﬂ?gl). Thus we have
the independence assertion for the element HO TR On the other hand
. * ’

"{¢) insures:
k.

(3.3.2.2) (HO,J) )

*
%, ylhg,gpahy, g X
Thus implies the lemma. qeeode

(h Y o, ueld .

th,u;uﬁJ u,Jd

(iii) Case:#J =3. Here we assume that #I_ 3, and take a JC1
with # J=3. Corresponding to (3.3.2.0) we expand the matrix H0 g
) 1

cf.(3.3.0.1), with the center EJ and coordinates xu;u el

* *
= { MES) - )
Ho, 373 Mo, 13 (u,wcd *a-tu,v?®uv o, 150y’
kQ \_)" O) *

| 2 ues *a-cu¥ Mo, a5 X3k ie oK%
{As before, the symbol:sH ,K,KCJ, indicates that the coefficients of

Yo {Far a RCJ, )

the matrix H are in V(UﬂXK, Y. Thus H and H

H
h
are respectively in MUUNX 1205 s maUﬂ%uv,gg ) and M(UﬂXu O3 )
0] uv u

jug ~ + S i .
Far the determination of HO,j’ we write hO,u’ hu,uv and H RE cf

0,45’ Ho, Jsuv 0J3u

L
L%

(

[

.
-
i
-

[
-
w
(g
—

x

* » *

Fi =5z  {} y +{x m (h Y+xw . {h Y: o+
o,y gt ’O,u;l WANTIVARN ¢ BETERULY. ARTINRRA ¢ BEVERIIN

«q
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(3030301) vawho’ugu, Wlth {\f,w} :1_{U}’ and
k.4
= 1 =7 - }
- hu,uv Kl(hu,uv;J) +xuhu,uv;uv’ with {wi=I-{u,v
*
= i : 3= - N
(3.3.3.2) Hu,J HJ(HU,J;J)+XVHU,J;UU+XMHU,J;UV with {v,wd =1 -{u
(In the above the symmol 'K'K CJ, has tK similar meaning to
t]
{(3.3.3.0). Thus hO,u;J’ Hd,J;J EM(UWXJ,QEJ ), hu,uv;uve NaUﬂxuv,Qiui

and h en(uﬁiu,g Y,+s+) First we determine Hu IR

X ,
_ u
Proposition 3.1. (1) For each u €J we have:

O,usu

H = h

u,Jsld ; for each v €J -{u}, and

u,uv;Jhuv,
(30303t3)

*

H = h

u,Jsuv hu,uv;uvHJ{
Proof. Remarking that #J-#{u} =2, this is checked similarly to

UV’J);V el -{u’

Lemma 3.2.2. gq.e.d.

Note that (3.3.3.3) implies:
) * *

Jr . Ch )=h

J 7 uv, J u,uvxj(huv,l)

* .
VTR SRR ALIVIVOPR b

Lemma 3.2.3. The matrix HO 3 is as follows:
. : s

(3030304) H X h ) .
W U, uUviuv

HOJ;J =h0u;JHu,J;J for each usld ,

*
waOJ;uv =h0,aliuvha,uvﬂjihuv,J) _i-!().l,_l’vg—l--t-h {wi =1 -

(3.3.3.5) {u,v) and a=u or viu,v €1,
HOJ;u :hO.u;uHu,J +h0,u;uvHu,J;uw +hO,u;uwHu.J:uv’ for

each u €J, with {v,w} =J -{u} .
. _. 0 : T, .
Prooff Restrict PJ(xI_JmJ)—m XI-JHO,J to XU.UEJ. Then we have:

(3.3.3.6) h

Ho,Jtiuz 0,uu,J

Also restrict this to iuv;u,v €I.Then we havejcf.(3.,3.3.4):

(3.3.3.7) h );B = Uy

. *
o, 51%,, Tho.81% "8, uv I Puy,
The first and second identities in (3.3.3.5) follow from this.
The third follows from (3.3.3.46) by comparing the term divided by
X X+ Qqe.e.d.

Remark 3.1. The matrices H0 and H as above are also

»J3d O,Jsuv

written as follouws:

H

0,131 °h

h h for each increasing sequence
OyusJ u,uvituv,d : s 9

€7
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{u3C {u,v} C J, cf.also Lemma 3.1

h Ix

*
) (x  (h ) +x .
W x,Uvuv

* .
(3.3.3.7) x H ={(nJ(h0,a;J3+xuh0,a;uv J a,uvd

w 0,J3uv
N k.1

xﬂJ{huv,J)}_xJ(HOJ;J) for each {(u,v) CJ, with
{wi=J-{u,v} and &« = u or wv.
The similar expression for HO,J;U;U €], is obtained, but is more
complicated and we omit it. Applications of Lemma 3.2.1 - 3.2.3 are
~given in § 5.
3.4. An example. Here we deal with the parametrizatio map P

for the example in Lemma 2.6.1:Let (NO,ER) be a pair of a locally

free Qg—moduhe NO and its~Q?—submbdu]e E?. We assume the condition

’
in (2.6.1,2):There is a locally free Oi—mdule M and an QE.—murphism
i

@i:mtgiem?zi,i ea_, satisfying:

Eg =0 Tt a®ne, &,y )),cF.(2.3.3), and

(3.4.0) ~ 1% i

Pix, Ty, sled Shg e )

1 1J
: — 1 y DY e M = - = 1 .

For each J C&m ,(ﬁx ,QJ) is as in (2.6.4).ﬁx M!X and QJ ea(ld)‘

J RN

* oL 1 q#d-1 & _ L oiem @ M a ) -

Mz 2Py 2T = IR 1R TPt R ) PPy With 2

#J and J(s) =J -{s-th element of J}. Now let the open set U of X and
the subset I CAm be as in (3.2.0.1,2). The coordinates xi;ieﬁm are
as in § 3.2:Riﬂu =(xi)0. For a J CI and j €3, the map PJ,J:

rzuﬂEJ,; M

) +r<uﬂij,mj> is as in (3.3.0.2). We assume the
existence of a frame m of MIU .

Lemma 3.3.1. For each &, e (UNX,,0; ) we have:
; J J+8x, 0 de have
(CJ)) with x

s 1] *
D N - =m., — =, .
‘J,J(XI—JQJEIXJ) mst‘XI—J“J -0 e 1%
Proaof. It suffices to check the similar fact for each K:K CJ:

(3.4.1)

=y =m -
RS SRR S

But this is obvious since:@L =the direct sum of the identity;JCLCK

see (3.1.5.2))

1]
N

*
(xi_JnJ(CJ}).(For PK,J

* *
oy o v f ¢ bRE=S { - L2 22 Q
dnu.eﬁLng.éle xJ,CJ), cfa(3.1.4.2) q.e.d

?
Assume that ﬁ?“ has a frame, dencted by QO, and we write @U(mli )=
Pl u

-

i}

mTh. b uw =l. The foliowing is obvious.

yy
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Corollary. For each u €l we have!

(3.4.2) Pl(xi'iclmfgj)lgu =m 7U(XI—JCJhO,u

*9



Lemma 3.3.2. For a £ . e[(UNX,,0c ) we have:
J J XJ ——
’ *
{ 3 \ = *
(3.4.3) PJ{XI—JCJ) xI_JRJ(CJ)

Proof. Clear from (3.4.2) once we remark that h01 =1 {=1x1~-

identity matrix), c¢f. § 2.6. g.e.d.

Assume that #I =dim X{and so Xl is zero dimensional.) Then the

parametrization map P, cf.(3.2.6), is as follows:
b1

(3.4.3) ‘$JPJ(XQN—J§J) =Z ] %y g .

N
This coincides with the power series expansion in (*) at the end

§ 20

of



§ 4. Inductive structure ...3

(Case of reflexive sheaf of type (C))

Here we determine the inductive structure of the .eflexive
sheaf of type (C), cf.Definition 1.1 , for codimension 33. The
structure for codimension 24 is a subtle subject. We do not treat it
systematically in this paperjsee, however, Theorem 4.2. We hope to
discuss it in an another place.

Data and assumptions

We work with the reflexive sheaf gi of type (C) in § 1.1;5cf.
(1.1.0.0 8) and Remark 1.1. The arguments here are based on thase
in § 2. We use freely the notations in § 1.1 and § 2. In§ 4.1~8§

4.3 we assume the condition (2.0,0).

Remark 4.0.1. In § 4 we write the divisor Y% and its open part
X%,cf-(l-l:0.0 2), as ii and X;o For an 1 CA_ we set:§1=ﬂiel_i-
For the divisor X',cf.(1.1.0.0) we set:

=0-C %!} © =lo o

4.0. Imbedding of gx. We first imbed gx into L;r, with

LX=LXIX’ For this take an element s‘er(gi> such that (s)o =x1. By

(1.1.0.4,6) the element sli=s(1/f_  .)) el (N ;sLy) is a frame of

1,
LYIN . Correspanding to Proposition 1.1,[Sa-11 we have:
1,i

a(i)

Proposition 4.0. There is an imbedding 95 of gx into L;r.

, « v
Proof. Setting §a=t(0...,§,..,0). «a eAr, we define:

0 er 0 ‘
(4.0.1.1) 8 By 2 e - L2026, eV=(s.,..,8)
sING =XINg XINg ™ sINg 1*°° =2
. er
Moreover, we define 8@ H 3 - L , by:
: sINg ExINg XlNl’i
the a-th component of 6 (e!) =s_, a €d;~(a(i)},and

. 1,1 ,
sifi, a=a(i), with the vector f; whose a(i)-th element

(4.0.1.2)
‘ =1 and a-th element =-fa y€ AP—{a(i)}.

See §'1.1 for the frames go,gl and the elements a(i)EAt.fdfF(N,,Q;).

s/
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By an elementary computation, Qe have:8 !N(eo) = gsiN (gl)H, with
1,1

the matrix H(cf.(1.1.0.4,5)) inﬂoﬂwl (- a-e.d.

-

We set E = GS(EX)' The isomorphism Ss is extended to the ane:
? ’
gi E? where E? and gy are the direct images of EX’EX with respect
to the injection :X X. We write 95 also for its extension. We
give a characterization of gg as the submodule of g%r:Far egach « ear

let Fali denote the meromorphic function over Xi whose restriction
i

to X

e b)Y

i =Fa1x.’°f‘(1'1'0°5)' We assume the exl:tence of a divisor D%
; \ .

of Ei’ which is defined locally by a single function and satisfies

.

the following:

=2 _ < =2 .. =2 s 3
DT =2 b, ) where the divisaor D of X, and the
(4.0.2.1) i U Ti,u1i,u i, i
element b, €7 are as follows:
i,u 4+
B? u run through all divisors that appear as an
s .

irreducible component of the paole divisor af the

for an aear—(a(i)},

‘i4.0.2‘2) meromorphic function Fa ?

cf.(4.0.0) and bi ,=max {order of the

a‘& ~{a (i)}
=2
pale of FaIXi along D1 }
- 72 ; . ‘ - e af § - Tanc
The order of ?alxia]cng Di,u is defined to be the aone of TalXi along

- - — -
DY -X. . . Also note that if X. is smooth then the divisor DY as
i,u "i,sing i i

above always exists.

Take an element gq(i)er<g§i£5;1), whose locus is 5?, and define a
certap - Pom_ 72 R
vector 3; (gi,a)a EAFEF (QXiEDij) as follouws:

- = = v - .-.:' .
(4.0.3) gi,a(i) 99 (i) and gi,a (FalX~)ga(i)’ o Gép {ce (1)

For each irreducible component D?'u’ we easily have:
’
=2

iju
Remark 4.0.2. If each f

(4.0.4) a; £ 0 (BZ, 0.

al X is holomorphic on Ri’ we ‘understand
i

9 = . .
that ; =} and O ED?J=Q§ . We do not consider (4.0.4) in this case.
1

Next define an element ¢i=(@; I oA EFP(Q; [ﬁ%]) as follows:
LoV L = ¢ r A

2



(4.0-5) -g.

i) and §. =g. _, aEAE ~{x (i)3

3. L=
i,a(i) i,x i,z
We set:

(4.0.6) Mo =0 [021 8Ly , cf.(4.0.0).
\ Xi Ki i X, 7
. s oM __f‘:
Note that @i defines an Q?i—morphlsm.ﬁxi 2T LXl ~ti®®i.
1 _ _ 1 _ ol _ el er,_ B .
We set M —eiﬁxi and ¢ —eiéi.ﬁ ~$imxi >C (gx ) wigxi with i EAm,

CFO(Z'ltl):

Theorem 4.0. (1) The pair (ﬁl,él) is an inductive structure

t

s
of <g§“,g;) at the level of codimension one:tNamely it satisfies the

first condition in (2.3.3):

= O Telabnzt a3, with %3 ety and

E X

(4.0.7) X
2, 8r

1,,8ery_ . 2 2 N, >
z ‘LX )= kerenel of 5 .C (L Ty-e (L )= QI#JLX FLcf.(2.1.2).

(2) The morphism @i igs injective.

1 14
Corollary. The direct image E? f EX with respect to the

inclusian:tX X is coherent.

Proof of Theorem 4.0. First (2) is clear from that g.

i a(l)

For the proof of (1) we define an Q? -morphism as follows:
i

. _er s - _ _2 : gr\_l s= (:, _ N
xifEXi £ (5a)aear”9xitnil® Exi 28 =0 ), =A ~{a (i)
(4.0.8) :
where £ =9; ()% a *91,a%%aci)”

Compare zi and @i. Then from (4.0.5) we have:
(4.0.9) @i gives an isomorphism:ﬁg ker zi(cg§9)
i i
Thus, for the proof of the theorem, it suffices to check:

(4.0.10) gg =ni€A llker Y., with the quotlent marphism wy g .
‘ m Xy

Take an element § =(§ a)aE&re£§P° Reca]llngvthe definition of 3, one

sees immediately that ¢ €N wglker t; 1is equivalent to say that
e m

the following holds for each i EAm:(See (4.0.0) far Pali below.)
‘ i

{ - & = & - i .
(a) wikfa) + fa!Xiwicsa(i)) 0, a Ar {ax (i) 3

4

We show that (a) is the defining equation of Eg. Since EY%N =Lg , 1t

><

$3
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sufficies to show it by assuming that § eg%rp, with p eil. Take an
) »

cpen neighborhood U of p, and we assume that § GF(U,£§P). Since
g;,Nl 1s spanned by Sa a#a(i), and gifi,.cf.(d.o.l), we see that
4

*

3 eF(U,gx) is equivalent to the follouwing:

w.{€) is in the gi —-submodule of LE ®r Uhich is spanned
(b) to9 i*9 \ i’
1 ’ .
by w;(s;f.), for each q exiﬂUJ

From the explicit form of f;, we see easily that (a) and (b) are
equivalnet, and.we finish the proof of Theohem 4,0. geesde

Remark 4.0.3. lh the investigations of g% :EE from now on, uwe

use only (4.0.7). It is not necessary to remember the explicit form
of the transition matrix H.

4.1. Inductive structure for codimension 2 and 3. In the

remainder of § 4 we assume the condition (2.0.0) for ?1. Thus, for

an 1 Cﬁm, the subvariety il =N ?i is smooth and of codimesion #1

iel
- and is irreducible(unless #I=dim X) .

4.1.1. Main results, Here we give a theorem which says that the

’
pair (g%r,gg) admits an inductive structure up to codimension three,

which satisifes the followingt (1) It is defined globally on X and
(2) the locally free sheaves in question are of rank 1.

Theorem 4.1. Assume that #I=2 or 3 . Then there is a locally

free Oy -module My of rank 1 and an Oy —-isomorphism &,
—_— —XI Xl —XI I
a

(4.1.0) 8 a-1

:mgl 5 Ker (53 )[ » with

where 'z, & ., .=1,2, and 6&° is the coboundary of &', cf.
_— Ji#d=."J E—
Definition 2.2. Mareover (8%°)

1 =#I .

is the I-part of (§%¢'), cf.€2.2.4).

I

Now Theorem 4.0 and 4.1 insure:

Corollary. The collection {{NR }l,{él}l}, I with #Ig 3, gives
. 1+ o

an_inductive structure of (g%r,g%) for codimension £ 3,

cf.Befinition 2.3, and it satisfies:

(4.1.1) rank Mg

X. = 1(and =1 if #I =1), and @I is injectiwve.
I~ : ‘

¢y
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Remark 4.1.1. The isomorphy of @I in (4.,1.0) insures that

the above inductivre structure nf'(L%r,g%) is essentially unique.

4.1.2. Explicit forms...l. We give an explicit form of

(ﬂill’él)fTheurem 4.1 \_ 4.4 below. In doing it we should consider

an irreducible component ill of YI. We write DEIZ and Qll for the

restriction of My and &, to X;,. Moreover, letting Ma—1'={ﬂ Yyuwith
: XI 1 Iz SY = =J
a =#1 and J:#J =a-1, we write:

(Cl(ﬂanl))ll and (éa—l)llkfor the restriction to yll of

1

(4.1.2.0) the I-parts (¢ @ 1y and @3 Y, ar ¢t @1y ang 8271,

I I

cf.(2.2.4) an (2-208) .
Remark 4.1.2. By (2.0.0), YI is irreducible unless #I =dim X .

Now the explicit form of the Oy -module My is as follouws:
, 12 X12
Theorem 4.2, (1) 1f #I=2, then there are divisors

_3 -
Dll;u’ uel, gj xll such that
(4.1.2.1) Mg =My 3 I3 s U €l.
Y12 XX Prag
(2) 1f #1=3, then, for any pair (u,v) € I satisfying
2
(4.1.3.1) pr  ker (687),,# O,
. - =4 g
there is a divisar Dll;uv of Xll such that
(4010302) ﬁ‘ >~ N" 7 '81—4. .
PR R LT

Here PP v denotes the projectign:(C™ (M ))Il *Ni Iiil’ cf.(4.1.2.0).

Remark 4.1.3. Concerning (4.1.3.1) the following two cases can
happen,cF;Lemma 4.1.2 and 4.1.3,cf.§ 4.1.5.
(4.1.3;3) Exactly two pairs Cl satisfy (4.1.3.1) .
(4.1.3.4) All} pairs C I satisfy (4.1.3.1) .

¢



4.1.3. Explicit forms...2. Here we give wplicit form of

m
o}
(18}
T

he divisors and morphisme in the precceding thearem

—
-

« According as

W

we are concerned with the case of codimension tws or three, we write

015 ,LET

I as {i,j} or {i,Jsk2. In the first case we identify Hom % Ly
u

)
Oy

u
u
: | ~ *n.h &r —- = 41 Fe L
with (Mg ) ®Lg , and regard & =(&  D,a €A , as the 2lemant of
—X =X . u U, r
u u
* er . -
F{Ms )y ®Lg '), ¢f.{(4.0.5);u=l. In the second case, note that, for
A A .
u = -
any (u,v) CI, thes maorphism @uv is of the following form, cf.(2.2.7):
*
(4.1.4.00 % = & e ¢, with & &M 3M 5 ), «Su oor v
UV Uy UV Vo, UV oy UV A A P
(SR U
(i :ir§t we determine the divisors in Thecrem 4.2t
=2
Theorem 4.3.1. Assume that #1 =2. Then the divisgrs U£7.U,u
Ay

21, are determined in the following manner:

2 2
¢ ~ e o -
(%, Yoo+ DY, . = ). +07 for each « =4
i,allX0 Ii;i isalll 0 RN 5!
_ . . o =3 ='3
(4.1.4.1) and is minimal among pairs of divisars (Dli‘l’Dll'j)
- A e Ay

icfving the identity. (Mamely for any such & pair we

u
[l
P
bt
w

fo » D [ B
N A 2 ~-J -
have:DT, .. 0,;.. and DY, .. 0,5.. )
—— 1A 51 LAyl IX s J I1x s J
In the following theorem we asume that # I =3.

Theorem 4.3.2. (1) Assume (4.1.3.3) holds. Then the pair of

- A —_
. & . . X
divisars (0.7 . Y is determined as faollagws:
J I SV I SEN VIR
It satisfies the identity:
) -
s 3 . F23 .
U + (¢ v 2~ =10 + (% v
f2.01.4.7) IX suv “’u,uvlhl{ ¢ I uw u.uwiﬁll ¢
and is minimal. smong pairs of divisors on ®,,
PR
zztisfying the identity.
(2) fssume that (4.1.3.4) holds., Then the triple aof
; = 4 4
divisers (0.7 . .,0,7,.,,0,,..,) is determined s foliows:
- ihy iy LA g1k J_/{;Jr\
It =at: the following identity for ezach u =1:
y +0 =(3 o ) .+D ith {v,u} =I-{u3
ca 1 A o uyuvl X, 0TI oy dyuwl ¥ o0 FIluw? ! d
s L oe e D) EA R I.,'L
and 12 wminimal amona itriples of divizars of ¥, .
L.t
Here minimal shogtld be understood as in Theaorem 4.300. &1sa, in
Uy, u is the unique element of I such that 'y (5 and My .5
KXol K X X
uv w Ix

5é
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{v,ud=1-{u}, satisfy the condition (4.1.2.1).

(11) Next we write explicitly the isomorphiem &,.,,cf.{4.1.0},
and the ones in Theorem 4.2.

Figure

assume that the locally free sheaves in Theorem 4.2 and Lq are
Iz
trivial over U. According as we are concerned with the case of

codimension two or three, we fix a frame m of 4

us IR X% Yjyiv el
es

(resp. Moy IR of (ﬂg ‘% )lU Yi;u,v €1, In the ?irst( p second)

case, taxke an element hH;UEF(U,Q%I),uel(resp.hu:uV EF(U,QEI);U,V
1) such that it generates ;53 . {resp. 15 ) and satisfies the
2
IXsu IZjuv

identity as follows:

PrasiPi R, T P 0% g ix e
(4.1.5.1)
r = 4=
B uvPuv; 127920, uvl T P w1008y, st 1 EYewisis e
(For .the existence af h and h see § 4.2. and § 4.3.)
IZ3u I 3uv

Remark 4.1.4. In the abaove, if (u,v) CIl does not satisfy

(4.1.3. 1), hlliuyzo. The element u must satis?y:pruvﬁgli and
ProJls . #0. o
uw=X o,

Therarem 4.4.1, (1) The frames h

m . sy €1 correspond by
Iyu MiIa’ ponc by

the isomorphism in Figure .

(2) Let miz be the frame of N IU’ which corresponds tao

hll;u®mu;li’CF'Fi9UFe + Then QIlIU is as followsscf.{(2.2.7).

4.1.5.2) ému’ﬂ'xuluaﬂu”“ﬂ‘ 11195" Ili)luahll;imi;ll hr2ii®;e

Theorem 4.4.2. (1) The frames h @m su,v €1,
- —_— suve Buvi Il
corresponds by the isomorphism in Figure .
(2) Let up denote the frame of ﬁ; which corresponds tao

"I

&Y
B
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Il,uv Movs Il,cF.Figure . Then QIRIU is as fo]low;:

(4.1.5:3) @ru@r2? = hraii®igse @ boasind®iks iz @M jk®ik; 1z

We make the following remark on hll;u and hll;uv'

Remark 4.1.5. The minimality condition on the divisors B?i‘u
]

and 5?l;uvlin Theorem 4.3 implies:

and 53

=3
D 123

I1:i in (4.1.4.1)(resp. D
)

IX I sik
(4.1.86) -4
DIA ) have no common irreducible components

. =3 , )
The divisor Dl;u(resp.Dl;uv) may be &. In this case, the ideal of

the divisaors =Q? .
12
4.1.4. Here we give some criterions in arder that rank ﬁg =1

11
gr O. In order to shorten the notation, we use the following

abbreviation:

(*-1> 0y ,My and Ly = 0,,, M,, and L;y, and Mg , Mg =M, M .
XIZ 2 Xli ll Iz =I1Z xu _Xuv u uv
Alsa we use the symbol |IX for the restriction to xli' Thus:
—2) mu‘?l -:mull, and ‘PU,U\I"%I :éu,\/-il’...’

Also we make the following definitiontlet EIX and Qli be locally
free OI’ -modules and Y1z @n Qli—morphism:EIl eglx. For each P efli,
the rank of le’p is defined in an obvious maner, and is independent
of the choice of p. We call this the rank of Ill' ‘

Now let the element ICAm be as in Thearem 4.1 4.4. We use the
similar notation to the one in§ 4.1.1 4.1.3, with the abbreviation
in (*-1,2) as abaove.

(i) Fisrt assume that #I =2. Then, by (4.0.4) we see:éu,? £03

"12
uel. Thus rank(éél) 1. Since rank(Cl(ﬁl)) =2, cf.(4.1.2.0), we

Iz= 12

have:

Proposition 4.1.1. According as rank(d@l)ll =2 or 1, we have:

(4.1.75 ﬂll(:ker (5@1)11): O or is a line bundle ogver ?Il .

A detailed analysis of the second case will be given in § 4.2.
(ii) Next assume that #I =3. Take a pair (u,v) CI such that

Ny Y# 0. Then (4.1.6) and Theaorem 4.4.2 imply that

s



(4.1.8.0) %

& = & .A(\.l*_Q .
:uvlli : U,uv Qv,uv)lll # Osef.( )

From this and the explicit form of 5@2,cf.(2.2.11), we easily have:

. |
Proposition 4.1.2. (1) If rank(C (1%, =0 gr 1, then My, (=

ker (689, =0 « (2) If rank (clr®)) , _2, then M= O, except

the following two cases:

(4.1.8.1) rank of (C1n%))

T

N) —

= {ig% and rank of (é©1>li: {

I
(For the two Ii-part in (4.1.8.1), see (4.1.2.0).)

We make the following remark aon (4.1.8.1):

Proposition 4.1.3. If the first condition in (4.1.8.1) holds,

then we have the fgllowing for a u €1t

M 0, with {v,w) =1 -{ul,

Dovrza 8d Oypppp # 0 but I

Svul 1"

(4.1.8.2)

and & and & =0.

viuvl I W, uwl I

Proof. The first assertion is clear. Assume that the secaond
o
fact ic falce. Then the explicit form of 8&°, cf.(2.2.11), and
(4.1.,8.0) imlply that rank(d@z)ll =2, a contradiction. q.e.d.

Proposition 4.1.4. If the second condition in (4.1.8.1) holds,

then there are elements u,v € I such that

2, a2
(pru$prv)(§® )11‘(8 ] ))Ii - mufil Qvlli
2

. ' = { ( 2
rank two, and ker (8¢ )L,L = ker \Prueprv)(6® )Ii'
1

(Here prup;taenote the projection:(cz(ﬂ ))Ii - ﬁu!li”';CF'(2'1'7)')

8 is of

(4.1.8.3)

floreover, we have:

(4.1.8.4) & and & # 0.

u,uwl I2 v,yvuwl IZ

Proof. The first fact follows from (4.1.8.0) and the explicit
form of déz,cF.(Z.Q.ll). Nexxt, to check (4.1.8.4), assume that

il =0. By (4.1.8.0), & #0 By (4.1.8.3) we have:d

# 0. But this implies that rank (é®2)11=3, Wwhich is a

u,uwl I wyuwl I vevwl I

and d“‘u,uvlll

contradiction to (4.1.8.1).(See also (2.2.11) for the explicit form

of 582, If 3 0, we have the similar contradiction.) q.e.d.

vowuwl 127
‘Assume that the secaond fact in (4.1.8.1) holds and that {(u,v) are as

in Proposition 4.2.3. Remark that (4.1.8.0) implies:

57
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(4.1.8.3) @& and ¢ #0, or only one of them #0.

u,uv] Iz v,uv] It

Proposition 4.1.5. According to whether the first or second

condition in (4.1.8.5) holds, we have (4.1.3.4) or (4,.1.3.3)

Proof. Assume the second fact in (4.1.8.5)tassume that &

=0. Comparing the explicit form of 5@2, cf.(2.2.11), we have!

pr ker(d@z)
Vi

vyuv] Iz

2 =0, and we see that
ker‘(ééz)ll = ker pru(6®2)ll, with the projection pru:
2

(4.1.8.6)

MY s H and ker (682)

27 By 12 Wiz
Thus we have (4.3.3.3). If the first condition holds, then we easily

(C M 8N
—uv —u

see that (4.1.3.4) holds;cf.also § 4.3, q.e.d.



~y
Lemma 4.1.1. Assume that M,, (z=ker (5F%) is of rank one.

1z 1’

(1) One of the following three cases happens.

(4.1.9.1) rank ('), = 2¢and (4.1.2.3) holds).

12
(4.1.9.2) rank <c1(ﬁ2>>ll = 3, and (4.1.3.3) holds.
(4.1.9.3) rank <c1(g2>>ll =3, and (4.1.3.4) holds.

(2) The following is equivalent:

(4.1.9.3)(resp.(4.1.9.2))&> the first(resp.second)
(4.1.9.4) ‘
condition in (4.1.8.5) holds.

(68%) ;) satisfies <4.1.9.1) ar (4.1.9.2),

Lemma 4.1.2. If (M
then (632)

2’

12 is degenerate.(Namely, for a permutatiogn (u,v,w) of

I=C(i,j,k), we have:

: 52y . 52 _ _
ker (8% )Ii—ker(pru(éi ) m eﬁx )Ill

s
I LI S R
uv uw

=g
Iz U, uv U,u

’
y Where £,60 =1 or -1 are defined from (2.2.11).

Proogf. The both lemmas are clear from Prpasition 4.1.1 4.1.4.

S 4.2. Proof of the theorems in § 4.1, In § 4.2.1 and § 4.2.2

we prove, respectively, the theorems in § 4.1 which are given far--
codimension two and three. We use freely the notation in the

theorems with the abbreviatiaon in (*-1,2) at the beginning of §

4.1.4, Sihce there is nothing to be proven if M., (=NM3 =ker (68°) )=
0, we agsume that ﬁll is of rank one.

§ 4.2.1. Case of codimension two. Here we assume that # 1 =
First we write expliitly the diviaars‘ﬁll;u;u €] of Yll’ Wwhich
satisfies the conditions in Theorem 4.2 and Theorem 4.3.1:tLet 9U=

e as in (4.0.5).

o

*
(@u’a)aear=F(ﬁu®Lu);u €l and £U=LEU,

Proposition 4.2.1. (1) For an «a € Ar’ we have the equivalence:

2.1, . . > .
(4.2.1.0 &y, o0 @ 0 #0 (= the both # 0

(2) For an a= &_ satisfying (4.2.1.1), define divisors (Di'i’ﬁi-')
b4 L

f X. as follaws:

N 3 = (¢ - -~ {
(4.2.1.2) Dli;u'(ﬁv,alli)o (common part of (éll,aili)o and

(Qj,aﬁll)o) with (u,v) ={i,j) or (J,1i) .

¢/
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= 3

Then Dll;u: Dli;u is independent of « and satisfies the condition in

Theclr\em 4-3.1;CF;(4'1.1.4.1)~

{Here the common part means the maximal divisor satisfving:

@, ,al1t’0 iyallt’o *?

Proof. First, if only one of the L.H.S # 0, we see easily that

and - (@

the rank of (é@l) , = 2,cf.(2.2.11), which is a contradictiaon. Next

Iz
the independence Df'(ﬁli'l 51{, > from the element o« follows from that
the rank (é@l) =1, It is clear that these divisors satisfy

IX
(4.1.4.1),. g.e.d.

Take an o satisfying the candition in (4.2.1.1). We set:

=3 _ = 3 . _

(4.2.1.3). DII a =(& ,alli 0 Dli Gy el,

< T (M ® = ~ . is insures
Since @u,a FgﬁUSLU) we have.ID?i‘a o *IialD?{,u This insure

the desired icomorphism in Theorem 4.2:

(&.2-1.4) .’j :=£_3 @L ®I 3 )’ V] EI.
I Dl;a =12 ul I2 I u

By Propasition 4‘2.1 and (4.2.1.4), the remaining task in.§ 4.2.1 is
to prove the following fact cf. Thaorem 4,1 and 4.4.1:

. : 1
o . - ” (A c
To faorm an iscomorphism éli‘ﬁll ker (6¢ )Il’ and to see
")
that it satisfies the condition in Theorem 4.4.1.

Far this let the open set U of X,, and the frame m , af M over
: 1 =u;li 1z

U, M =M , be as in Thegrem 4.4.1. Alsao take a frame 1
*

.= h

. m
u,al IR Iisu,a upli —

i , = [ {U,0. d t
Q]IE’ with h 1iu,a T ’Qli) an he
1

dual m of n f.(4.0. . The a-camponent of &% °) A -1
dua s 1A o1 nu;ll’ cf.{4.0.5) The « 1P t iy

explicitly as follows, cf.(2.2.11):
Dirna® Dy 131512 201 Frau

Tt msie™ it e M Vith T

t

> 7 DT

0 suel,
Ijur~+

(R

4 4
(Note that since rank(é@l)ll:l, ue have:ker(d@*)lllu = kernel of the
morphism in (4.1.2.2). Now, the key fact for (*) is to see the

existence of elements hli;u EF(U’QIR) which generate l[ 1.wlU’u€I’
. »

and satisfy:
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1y - . . = . . { ( LI 19§ N
MM asie - Pt (hoasi™1 %% el 12

=
N
R
R

{

Py ™y al’ |
But this follows immediately from Proposition 4.2.1. Also one sees
easily that the e]ement‘hli;imigli@hll;JmJ!Ii forms a frame of
)Il'U . The secand key fact for (*) is to see that

the following O —isomorphisms are the restriction to U

**) ' "IilU

of global Oy, -morphisms in (4.2.1.4) and (*).
. ® 1= > . ®h . ' - : 7® ) "i -
(4.2.2.3) i lD?I‘u i1z %Il;l Sl TR LAyt =1
V2.2, 13

. . =2 . 1 »
oty 2oy wRker @& a3 b il 2®h1a5 012

(Here the frame my corresponds to m 13U =l,cf (4.2.1.4).) The.

ujl

.

check of ("*) is as follows:Remark that the two iscmorphisms depend

wsin +1x 39 Py

’ ’ , , R .
mu;ll’lli and hli;u' By a simple computation, we see that the all

gn the frames m Replace them by another frames

frames in (4.,2.2.3) are multipltied by the same unit, say g [ (UJ,0,).
) : P

a

Thus we have (**) and (*), and we-also finish the proof of the

thearems in § 4.1 far the case of codimension two.

4

§ 4.2.2. Proof of the results in § 4.1...2. Here we prove the

theorems in § 4.1 which are given for codimension three. Note that,
by «(4.1.8.1), rank ETl =1. By Lemma 4.1.1 the case:rank My, =1 is

divided into three cases:(4.1.9.1,2,3), In the first two cases:

- v .
(4.1.9.1,2), ker (8% degenerates, cf.(4.1.9.4). In these cases

2y .
I,Z
gne can treat ﬂl{ simitarly to § 4.2. We omit the the discussion in

this case. In the rést of § 4.3 we assume the third case, (4.1.9.3).

By (4.1.8.1) rank (¢1(1?)); =3 and rank (529, =2. Take a suitable

Pair (U,V) CI, CF!(401'8~3)- Then Wwe have:

| 2y cctady .y o | ,
(pru@prV)Kéé ) $(CT (M) 5,0 = (Dgaﬂv)lli is of rank tuwo,

12 IZ

(4.2.3.1)
2, 2
and ker(&¥® )Ii = ker(prueprv)(éé )Ii .
1

M
i

~
In the above pr denaotecs the prUJectiUn:(C‘(m ))IEQL.IIX’ CIU, VY,

63
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and (& B3 )., =b . . By (4.1.8.4) and (4.1.9.4) we have:
U, uv vouv’ I uvl] I
Lo ] F . = ) £
(4.2.3.2) :u,uwlli’ Qv,vwlli and éu,uvlli’ @v,uv!li 20,
FIGURE T
uv U Vi
u e, & e~d 0 (Here &, =
17u,uv 27U, uu
. 1 or —-1.)
v 5ty oy 0 LN
-~
Note that, by (4.2.3.1), an element ¢ = ¢  e(clu®y),, =
U,v U,v — LA

~
® cf.(2.2.7), is ker(é@"f)LjL if and anly if:

M
u,v —uviIi’

Y

I s 3) (P o & =t @@
LS e v O & P
' uv T u,uvl I uw o u,uwl I

i

=)
and qu o
4
I

= 23
vyuvl I v T wv,vuwl I

(w]]

A

w

before we first find the divisors DI = u,v €I, which

AUV

Auv’
d

are required in Theorem 4.2 and 4.4.1. For tkic define divisaors

- _ ) -9

and D

>

IZsuv,u’ Dli U, U Il;uv,v’DIl;vu,u of Iz by:

) Dll:ua,uz(yu,ﬂuiII)O—CGmmDn part of (&, vi1’o’ (@u,uulll)o)

’

(a

— s - ‘ iy
Dll;va,v (’V,Bvill) common part. of ((iv,uvlli)O’ ‘iv,vwili)O)

Here (a,B)=(v,w) or (w,v), aor =(u,w) or (w,u), according as we are
concerned with the first or second identity. Moreover, common part

should be understood as in (4.2.1.2). Now we define:

4

. -
D =the minimal divisor satisfying: D D
I suv © ' v ying IAsuv,u’ “Iliuv,v '

—_ P - Y

. =D +(D -D ) and D =

IR uw IXjuw,u Ii;uv "Iiljuv,u IA 3vuw
_- ’

+(D -0, ,

IR v, v IXjuv AUV, V

We see immediately:

*— D D D 1sf1 . oﬂ-t Il sy oo hﬁ.
-1 (Dll;uv’Dli;uw’Dli;vu) satisfies (4.1 3), Theorem 4.3.2

*
Since ¢ el(M oM Dyrees,cf i (4.1.5.0), the identity in
U,uv —uv —ulu

’ v

(4.1.5.2) insures:
*

*
o (muvaﬁu)!ll®lﬁl.uv = (muu@mu)lllglﬁl‘ X and
* * "
el el = M0 el
Liuv Iivu

Thus we have:

{ >, .2 . 3 T — . ' - A . S — N + ; 1.
(4.2.4.2) EIJIIIQLDI.i}ElklIKQ—DT.ikanU ﬂlk’li@lll‘jvare isomcraonlc

>
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We take:

Bll far the Qll—invertibTe sheaf which is isomoric to the one
(*-3) ‘

in (4.2.4.2)3cf.Theorem 4.2.

By (*-1,3) the remaining task for § 4.2.2 is to check the similar

fact to (**) in § 4.2.1. For this let the open set U of X and the

12
_ . 5. 3
frame muv;li of muvlli"" be as in Theorem A.Q.- Also take a frame

mys1z of ﬁulll' We write:

*

@ &, vt Thu,uvs 12 Povs 12220 12

T i i b = LR ) = )
Then writing ¢ &M 11q as ¥ vlovi 12

Yyee with hu [ (U,D

,uviIR ST REREE
With & €0 ,+ vou,

uv XIZ
(4.2.3.3) is written as follows:

~

(4.2.5.1) &thu’uv:ll =¢

~

and & h

uuhu,uu;ll’ uv'v,uv;l,{:(’pvuk

v, vws I3
We find elements huv;li Er(U,QR);U,V €I, which gener;te lﬁlx'uv and
satisfy (4.2.5). Also we see easily that

Frai= by ™

(5@2)

®h ®h

(4.2.5.9) 19312 TNk I2Miks I keI ik 2PANS

121U
Now we take a frame My of Dll over U, which correspands to

- . * _ . . . c
haB;llgmaB;li’ a,B8 €l;cf.(*-2), and define an isomarphism QlllU as
follows:

i} 3 ’ 2 Y ‘

(4:.3.5:3) &1l y 2Ry 7 ker @2 1y 00,801 Nap ;12808 12
Similarly to § 4.2.1 one can check that the isomorphisms in
(4.3.5.1,3) are the restriction to U of tHe global ones over Xll’

which are required in Theorem 4.1 and 4.2. Thus we finish the proof

of the thecrems in § 4.1, which are given for codimension three.

£5
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§ 4.3. Here we make two remarks on the results in § 4.1.

4.3.1+ First, it is, in general, difficult to detemine the

inductive structure for codimensicn 4. But there is a case where

it is determiend easily. This is the case discussed in § 2.6. Namely
. 14

we assume the exixtence of an invertible Qg—module ﬂg such that

ﬁg ycf. (4.0.6), is written as follows:

i
(4.3.1.1) m:i{_]ri(::_rjyiii) for each i eﬁm.
Also we assume:
(4.3.1.2) ¢, 5 =% . for each (i,]j) GA
i, nEN m
1J 14 :
’
- . - =M - 3 -~ oA = P M
Far each I eam we set.ﬁxl BXIXI and if #I_ z‘ue set.fl eaxlo)l.gxla
1 a1 . .

p. >(C (N Y. =8 Mg g (=8 Mg ) =9 _ @, with a=#I1 and ¢, ,_.

1 1 s xl(s)lxl aX; s "I(s) 1)

:%I’ where I(s) =1 —{s-th element of 1} . By Lemma 2.6.2 we have:

4.2, C i ,— ; » =% (i ya= ”’
Thegorem 4 The collection {{ﬂxl ICAm} {él 9a(1d)l a=#1_2
@i;iea 33, Wwhere @i is as in (4.0.5), is an inductive structure for

Note that the above inductive structure coincides with the one in

o

Theorem 4.1 4.4 for codimension _3.

4.3.2. A remark. Here we give a criterion which insures that

(4.3.2,0). rank My =1, for the case:#l = 3.
‘12

More precisely let Xli be as in (2), Theorem 4.2.

Lemma 4.2, Assume the following:

M; is of rank agne{ #0) for each ¥ Tl with #K =

N}
b}
o}
i

(4,3.2.1) K
there is a u €] such that ¢ ¢ # O,
ul)«L1
Then the rank of Mg = 1.
' 12
Proof. Take an e €A  such that & 5 #0.(Here & . is the
R r u,uihli U,x

a—th campanetnt of @U.) Clearly @u,aiguv#o for each velI-{u} . By

By (4.4.1) and Froposition 4.2.1 we have @v #0 . Define the

><|

ya

uv
o =3
divisaor an'v by Theorem 4.3.1. Then we have:
S VAR
=3 _.3 —
{ (3 - . (-
{(3) Duv:v Iu,alX“V)O and Duv;v X112
RS

L€



We write & M =M eM ), as & 8p . Then Theorem 4.3.1
uv Uy e Y lhuv U,,UV Vv, uv
and (a)llnsures: v o v
p _ 2 . eT—1¢ ¢
(b) @v,ulelﬁ? 03 v el-{ul u @u,uv bu,uu 0
A
We divide the case into the Y & (#0) O &
V, UV Vi, VUW
followingsjcf.Lemma 4.1.1. W 6] & (#0) &
Wy UL Wy VW
) 3, - . - v . - v .
{(b) both &v,a and éu,a #0, 0 on Kpp» or one of them =0 on Xll
: a 4.3 ines & = ¥
In the second case, Theorem 4.3.1 insures @u,uv and ® 0, G on xli
2

and (b) implies rank (&& )Il =2, cf. the diagram soon abaove. Assume

- K | N ~ ) v 45 R N 3 = v
the third case. By Proposition 4.2.1, Qv,a and éu,a #0 on Xvu

Assume that & =0 but & #0 an X,,. Then Thearem 4.4 insures:
VX Wyt Iz

’

—_ 2
3 =0 ¢ ank < =2 ] .
@u,uv and v CQ o %Il’ and rank (6¢ )Ii 23;see the diagram

®

1 N o 1 "1 1rc 1 1 ¢t & s = &
Finally we consider the first case. The 1dentlt>.ia®§a’aﬁ @B gB,aB

an XaB’ a,B €1, cf.Theorem 4.1, insures:

& 2P ) =0 on X

{c) (I ® o (d 3 8@ -3 @ SN
VeV Wy UW U, UW  V,Uuv W, VU Iz

B
a1l o U, uv
The assumption implies that the first term #0 and the second term

. ) ,
=0. This insures that rank (6@‘)1l =2; see the diagram. q.e.d

{7

4

7
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§ 5. Inductive structure{examples) ...4

{Cace of the reflexive sheaves in § 1.3.)

After some preparations in § S.1 we write down, in § 5.2,
the inductive structure of the reflexive sheaves in § 1.3 and prave

the ]ocal_freeness, which are asserted for those sheaves.

§ 5.1. Preparations

The purpose here is to give some criterions for the local
freeness of reflexive sheaves, by using the arguments in § 3 and

¢

§ 4. The data in § 5.1 are as followus:the complex manifald ¥ and its

—

divisar §1=Ui€a X im_ 2, are as in § 1.1. The following subvarieties
m

[

and open sets of X are also as in § 1.1:

_ - —_ —_ —_ e - —_ —
open parts X= %-%2, x1=%1-%? and xi=xi—<‘ of X, X' and X1,
ok 4 72 71~z - . 4 y = !
(") with ¥ —di#J(,iﬂXJ), and an open neighbarhood Nl_ ieﬁle,l
1 _ 1. . -7 _ vl .
of X° = ieamxi in X and No =X X5 .

From a matrix H EGLF(NdWNl,Oy), r_ 2, satisfying (1.1.0.5,8) we

farm a reflexive sheaf gy of type (C) in the manner in § 1.1. e fix
1

an element ssT (030X ° 1) such that X =(s),. We imbed Ey into

_ e . .
Q;CXIJ T,or » by means of s, cf.Propositon 4.0. We write the

Il
5
W
D
FS

Im

: . . . ) ’ sl-8r

imbedding as &_ and its image 6 _ (Eg) as Egf X3 ). Qur
s = =X =X

e si-®r

! el A Eg

= T=x-" P=Y,

arguments will be done for the pair ( ). A5 before,

. ~ _ v o 71
for an IuAm, we set Xlﬁniea Xi.

m

N

5.1.1. Local freeness...l. Take a point p <X . We write Ap, XP

é for the germas of X ,%X and Xl at p. As the criterion for the

Oy p—Freeness of Eg o we take the following (well known) gne:

- Ly
Es Pis Q; p—Free, if and only if there is an element f=
A vy

P \ p _ & , . . -
(S.1.0) (f )y _, =E3 , Such that the determinantal divisor af f:
[24 cr'=up —A, P -

{2
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r
AL (=A Foo, 0 o=d.
},”« Q C‘Eﬁsn vS}'\ = P
= I P B
Propasition S.1. For an element f =Eg p‘ we have:
AN,
. ‘r/ —_— 4 \__4'1 ,.‘F‘ . . -1 - i~ 1 P R |
(5.1.1) N8 (F);\, Y =ir=1)X% +{A )(‘ ; see alsg 8 1,053-11.
s = 1A 70 p =X

. . . z1.8r r zl-@r
(The element in the L.H.S is in OQEX 1 (=A (00X 1 D)
I8
Proaf. Take an open neighborhood U of p and zscume that f ic
: N - i .. .
defirned in U. Let the frames e, 1=0C,1, of E”‘F e as in 3 1.{Note
e AN,
, 7ol Cone G o 1 v \ -
that NOZA—A and M, is an open neighbarnaod cf X in X.) W2 write! 7
i
1, y \ \ P _ P _ L1y
= k. oin (UNM. ) with h.eMOUTMN. ,0z031 =0,1. e havetd (£3=8 (e ih..
- 1 1 1 A s - s - i
Mo T 2 v g N W, 1
Mow (3.3.1) follows from this andid g N6 _(e” ), =
.1 s h B
(r=1Y4%", c¢?.Proposition 4.0. g.e.d.
From (5.1.2,1) we have:
' *
Lemma S.1. Es is By _~free if and only if there ic zn f €
={,p =X, p -
! sr re’ 1
Ec (Clg ') such that A f Yy = (e=10%7
=X,p X, p’ ————=— "' = ¥ "0 e
Our criterion for the local freeness of Ej is based on this
i
Temma and will be given by doing the following:
' .
Find a generator of Eg o and, bty farming an r-vector, f, whose

{*) componaents are in the generator, we check the condition in Lemna

5.1

we take an I Cam and an gpen set U of ¥, which satisfy (3.2.0.1,27).
i
The coordinates xu;uél of U are as in § 3.2. Thus X, =¢ if znd

anly if JCI and UNX, =N._.(x.).. We assume that there is an
J jeJ "j’0
’
inductive structure {(NX ,@J);JCI} of (M =(Lg >3U ,E;iu), cf.
Befinition 2.2, such that rank Mg _ 1.(By Theorem 4.1 this
A
assumptiaon is harmless for applications to the reflexive shaves in §

' o
and Mg 3 I, have frames, m  and my, over U.
kA

By (3.1.5) we have a parametrization map Py TN, 1, My 0
- o A
A BN
.
SCOLESY. By Theorem 2.2 o=, s 3znerated b he following:
3 , O




M
a =

with XI—JZHiEI—JXi

. C . ,
In this case m,=m . Thus (*)
, M=

$JCI and m,

oy

sharpensad follows:

as

To form r—-vectors from the elements in (5.1.2),

(#*)

the condition in Lema 5.1 for the r-vectiors

check

§ 5.1.2. Locz)l freeness...2. First we give the

Lemma. 5.2

.

sg that the «—th component of

Y

i

2-th e of f

Irm

component of the frame c

8
{0,0090,5,09'0',0)0

1
. v '
I

Propaosition 4.0 5’,(e9}=t Clearly we h
= .l./

(e

PN R :
(3> AE YA A8 (e

YA

[y

L1
T

=1

£

{ésie }ﬁPi(FI)Aﬁé(e

hwn

The lemma follows from Lemma S5.1. Note that

Ssie );ﬂéﬁr—{a}, and PI(fl) form a frame o

¢
(5.1.3)

neighborhood of p. q.e.d.

freeness..2. Here we discuss the leoca

two and three, by using the argume

we Wwrite the paprametrizaticn map

2

-
D L

cfo.Thearem

— O(‘; |'_‘| 0
J)~m \AI_J”O’J) with HO,J

- y o~
i J,C

= PN
= “1_1,!:}-‘—,

s

i

-~

o
Lot}

t H is rxl-matrix since rank Mg
0,.} -‘:{J

=2 Mg g
K%, 1%

P Mg with

"J

V]

1

I

-morphism & =%

:
J Ky d

K

as faollows:

.
]

=1

h with h EN(UTﬁJ,Q;
Al

bEs

Jlmy) IR

K, J KyJd

=Y

,‘Er "lU' AJ )

-

-

wie

P

iJ ith }'IO 1

’

70

K
:

»

]

o3
i

S

and to

R

4

ave:

{(r-1

in an

1
nts

=

.Jas

)
(@3]

fol

.

_14) Similarly to

3
.

write

J

following:

4

wd

EAY
=

af §

[£1g]

]
bt

HCJ and

freeness

[y

)

w

~—r
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oo

<plicit comput

(1]
Q
-+
o
~
e

2r e

in terms of the matrices HO,J

L
atl

Lemma 5.3.1. Eg _ 15 Oy

—

owing hold

Lemma S.1: (e write 8 _{e

=4

L

-~ .
Syl e TDe L

x2-submatrix

1!
=

Y’H H

3.2.3 for the expression of

on

w

=)

Fo,J

L b
by hy,,
158

,J

local f

(452
[fa}
e
-
[{s}

we

ane can

we write I={1i,]

CI, cf.(5.1.4

HE SR I

r2en

iy
ur

form

-

t pl eC ) .

e if and oniy

—
F

in

3

G,i7 0,
(5:1.2) Ex

y 4

rid

8

a

0
)oK

=]

~

i

I, as in (3.32.3):
* ! .
:Hl(hm )

h
C SINTER 1

Oy

~J

[an—y

cp .,
r

lemma holds if and only 1f the ex
ing r—vectors satisfies

/{l
“Ar’ far

condil

Remark that & _(e

= (24

the conditionses 1In

{8 (= . in 5.1.4
s To” Tagd

— ;,1:

YoP . Gwm, 3, P (s
- J

tiocns in (5.1.5.1)

(5.10601)0 FOP t:"‘:

€
®
¢

3

-

[

&

ar

.o

-
e

e

COrresponds

e<pand

ih
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analytic projection:U =UMX ., cf,(3.2.1.2).

Lemma 5.3.2. The conditions (1) - (4) in (5.1.7) areg,

respectively, equivalent to the following:

(hO u'lhu‘l)(p) #0 for each u €I,

L (p),h (pYl is of rank two,

ﬁo’ ,I

(5.1.8) 0,i31

(p),h (p)] is of rank twosivi=I-{ul,

O,usl
i(P),h

EhO v;v!?rhv,l

[H (p) OJ;J(p)J is af rank three

OI:1 !hOi;

Proof. The first is obvious once we remark HO,I:hO,u'Ihu,I’ cf.

Lemma 3.1, while the secand is clear. We check the last two facts as
follows:Take a 2x2-submatrix 32 of the matrix in (3), Lemma 5.3.1.
Using the expansion of H , cf. (3.3.2.2), and h ,ef (5:1.7), we
0,1 O,u
easily have: !
det AQ =xu{the determinant of the corresponding 2x2-submatrix
(a) * * * * *

of [ﬂv(h )rl h ,l » (}0 u l O u,I)+X 7, (h

Thus we have the third fact. We make a similar observation to (47,

Y3

O,v;v Q,uju

Lemma 3.3.1. Then for a 3x3-submatrix A3 of [HO,I’HO,i’HO,JJ we
have:
det A, = the deteminant of the correspaonding submatrix of
(b) w %
X, En OI,J ,n (ho 1) n (h0 J)] HOI;J Zﬁj\hOJ )Rl(hg,*}‘

(See (3.0.2.2) .) Note that if rank [h =2, then h,

0i:1°Mo, 17 i,1

=0, cf.Proposition 4.2.1, and H =0. Thus (4) in Lemma 5.3.1 does

0l;:i

not hold. We assume that the rank 2. Using the expansion af

hO u;uEl, cf.{5.1.7), we can replace the matrix in (b) by:
* * *

X, x En. OJ, )nI J,l)’ L (h

i O iji

xix\j[u‘j(hO,J’;‘j O, , ) rI(HO,I

and we have the fourt fact in (5.1.8).

*
)’RI(hO,J;I)J =
)’7{ (h ):I,

2.1.3.2. Here we discuss the local freeness of Eg for
codimension three. We assume that # I =3 and write I ={i,j,k}.
Theoretically it is not difficult to give a corresponding fact tao

| [ =S}

Lemza 5.3.1 in the ;rece)t case. But it requires many Jlines., e give

72;
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some sufficient conditions for the freeness. The conditions are alsao

the necessary ones if rank g% 3. In the lemma soon below the

matrices H s++ are as in (5.1.3,4). We use ¢ for a unit €0z _, and
O'I _X’p

A2(resp.33) for a 2x2(resp.3x3)-submatrix of a matrix in question.

73
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Lemma 5.4.1. (1) Assumevthat ohe af thg following haolds.

(5.1.10.1) H (p) # 0,

0’1
1) rankCHO,Vw(p),Ho’

(2) For a 62 of EHO,I’Ho;u]’U €l, det 62 =X, (3) For a

U(p)] =2 with u €l and {v,wl=I1-{u},

(5.1.10.2)

AQ of EHO,UV’HO,UU

(4) For a3 A, of [H

3, uel and {v,w? =1 -{ul}, det 62=xue,

o O,I’Ho;uv]’ u,vel, det ﬁz =RUXE

i(p),HO"J(p),HO,k(p)] is of rank three, (2) for

,H

(1 EHO,

a Aa of [H 1, u,vyw €1 and a=u or v, det A,

o,u’Mo,v' Mo, au
=xuxvs,(3) for a &3 of EHO,U’HO,V’HO,IJ’ det q3=xnga,

(4)faor a Aa of [HO,U’HO,aB’HO,aT

(5.1.10.3) x%/xvxuxaxe, with Cv,u) =I-{u},(5) for a by of

J’ U,Q,B,T EI, det agz

CHy yHo g tHo, 1100 BE T, det Ba=xi/x x x. with (v,u} =

I-{uY and (73=I-{a,B3,(6) for a Ay of [Hy ;iWHy iy Mg, ]

1, det A, =

»H 3

det A3 =X
2

xl/xvxw, with u,v,w €1,

e,(7) for a A3 of [H

O,uv O,uu’HO,I

(2) If rank ER =2(resp.=3). and Ei,p is Oy p—Free, then

Ny

(5'1~1001,2)(PeSPc(5'1~10~1,2;3)) halds.

Proof. By Theorem 3.2 Eg is generated by the following:s

XypP
HOH 00k Ha ), u,vel and {wi=I-{u,vl}, ml(x x H. O
‘0,1’ Wwo,uv’ ! Y viw O,u’’
(a) t . o
uel and {v,wi=I1-{u?}, and éa;aeér , With 5a=(0,.,0,s,Q,..,O)

In the above we list all the cases where an r-vector f, formed from
elements in (a}, satisfies:(ﬂrilx )O =(r~1)X;, cf.Lemma 5.1, and f
P

contains k(=1,2,0r 3)-elements which are different from S." For
example, in (5.1.10.1), the corresponding r-vector f is:

' @
(5.1.11.01) {Pl(ml)’ (gl,..,ga,..,gr)} Wwith an o EAP-

In (5.1.10.2) the r-vectors f are respectively as follows:

{P (x xm)J),P (xm )3,
U TvTu—u VW T UV

and (é 50095 49+ 05S y 0045 )
(P (x xm),P.(m )3 S r
U Tviw—u 171

with «,8 Eér

{Puv(xwmuv)’Puu\kvmuu)

7¢



{P v(x ),P ) 3

u 1y

We omit the correspondihg fact for (5.1.11.3). The second fact (22

m
w—uv

of the lemma is clear since (5.1.10.1,2,3) exaust, respetively, the
cases where the above fact holds in the case:k=1,2 and 3. q.e.d.
It is also possible to rewrite Lemmé 5.4.1 in terms of hK,J;K cJ <l
But this is very troublesome . We rewrite only the condition (2) in
(3.1.10.2) which is the first non trivial case(in rewriting) and is

used in the proof of Theorem 1.2.25cf. § 5.3. Take u €1 and we

set:{v,w} =I-{ul. For an &« = u or v we write;cf.(3.3:3.1):
. N -
h s =x.(h Lrotx h . Wwith h ,1eM(UeX,,0% ) and
(5.1.12.1) O,alxvu 10,31 u'0,x;uv O,q,l I %I
X vt i . Q . . v
hO,a;I\er(UeXuv’QX ) with the open set U,cf.§ 5.1.1

uv ,
Lemma 5.4.2. The r-vector (P, (m;),P (x x m },(S,50¢,5 ,
I1'=1 U Tviwu 1 =t

"'EB"."EP) forms a frame at p if and only if:

(5.§\12) rank[ho u(p),(h h P = 23 a =v,u.
, .

h
Oyasvw a,vuw;l vw,l

(The matrix itself is not independent of a= u,v. But its rank is

independent of ajcf.(3.3.3.7).)
Progof. By Lemma 5.4.1, it suffices to check that (5.2.12) is

equivalent to (2) in (5.1.10.2). UWe Urlte:HO,I:HO,ll?:XUHO,I;U Wwith

Ho I,U,er<u,o§”) with the open set U of X, cf.§ S.1.1. By (3.3.3.8)
9 s .

_ . . . .9). Thu . , o
HO,JIXI hO,uHu,I with Hu,I as in (3.3.3.2) Thus the matrix in (2)

of (5.1.10.2) is replaced by: xu[H ho U];the condition (2) in

0,I;u’
(5.1.10.2) is written as:

(a) rankEHO,l;u(p),ho’u(p)J = 2.
. . - v N ;—, .
To determine HO,I;u(p) we restrict HO,I to Xvu’ By (3.3.3.8) we see:
(b) HO,I;UlﬁvquO,liivu_HO.I;I: {hO,a:Iha,vu;vu+h0,a;vuha,vw;I
+xuh03a;vuha,vu;vw}xhvu,I; @ =V, u.

Since ho (p) =h0

L1 (p) we get (5.,1.12) fram (a) and (b). gq.e.d.
y U susl - :
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™3

o [ = DT s - - A = 3 [y o
5 3.2, Reflewive sheaves In 5 1.3

N}

@

e notation in § 1. be the e in § 1.

w
I
[to]
T
—+
[l
po)
[Ts)
1=
< |

Hzre wWe discuss the inductive structure of the reflexiv

2
o

Engrs
U] N .
It is not L but LT that corresponds to the line bundle
2.0 st A
(S 7
§ 4.
. s - O L sm Bl
e apply the recsults in § 5.1 to the pair (M7=(L, D LE3), r=rank Eg,
I A —A
s
with the imbedding Eg =6 _(Eg),cf.Proposition 4.0,
—A s -

[ TA 2, = - ~ s - | P Woa
S.2. . Inductive structure .01, Here we determine the 1
)
- jng —— " - -~ - H 1] v -~ o~ 'r\
structure of Eg(z=Eg) in Theorem 1.2.1 i+2.2. for codimensi
=y 'k
Comm 4 determinati o T3 o~qt
s Qi Lhe elerminall SwpP i 1C1T
o e e e e I T SR 4 i
mercmarehic fonctic AL, uwith

7 which appears in one of Thearem 1.2.1 ﬁg, 1.3.2. We use freely
h

’

Ly 1

We

as .
t. s,3 Theorem 1.2.1,
S -
, ~ .
3. ,/ 9. - with g =1 . 5., and 9, o =l __. 5., 3
i,17°i,2 77 i,1 a=&r 1+m+e i,2 ash Tite’
[ i
Thegrem 1.2.2.(Here m =4n+1.)
(S5.2.1.12
b
}ﬂ\ P .
oS8 dystyi=m, wWhere g
[ S IR ftd
i
woraem 1.3.2{Here r=m.
For the abow 2.1 and 1.2.2, r =2
and we have anly one meromorphic function. Mow, by (1.3.2.1),
- - =2
{1.3.5.12 and (2.0.0), the pole divisores DT af the abave functions
4
are the loci of the denominators of them. Thus we have:
, 8 {l-m) . -~ ;
=Lz ", fgor Theorem 1.2.1 and 1.3.1, 1.3.2,
(S.2.1.10 I=Z i
.
i
-2
=Ls 7, for Theorem [.2.2.0Here Ly =Lgy5 »)
T . A —’/\x A
i 1 1
i e 4 ] ) , . q ) ~ - AL
Thus the O - medilo M7 :L;(- @52 , ek (4.0.9), s as followss
X A A
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_ LY for the first three theorems,
(5.2.1.2) M? = i
i

®(2n+1)

L iTheorem 1.2.2

><|

i
: *
The Oy -morphism @i el ( (Mg L , ¢f.(4.0.5) is as follows:
i i
):_Theorem 1.2.1,

% . =(giy1, —gi’z);Theorem 1.2.2,

t A . .
2 = _ —1 . e The .3,
(5.2.1.3) 41 (Ul""ur—l’ si)lxl ,1EA sTheorem 1.3.1,
t, _, . olm=1) A e(m-1) _ ®(m-1), _ .
é.—(sl R P L S T )'Xi y 1#m,
t _..@0m-1) ®(m-1) _ A, _. ., A
@m —(51 per oSy ’ sm)lxé,,Theorem 1.3.2.
By Theorem 4.0 we have the following for Theorem 1.2.1 1:3.2:

Xi m
r

Lemma 5.5. The collection {{My ), (2,03, , » where My and %,
i

are as just above, is an inductive structure fo

codimension ane, cf.Definition 2.3.

In th rest of § 5.2 we determine the inductive structure for
codimension _2.

5.2.2. Inductive structure...2. (i) First we determine the

“inductive structure of g%(:gi) in Theorem 1.3.1 and 1.3.2. In this

et d = = —_ . - . , .
case uwe ha»e.&iix.‘ QJIX.. “Actually we easily see
14 1]
— = . - .y =1 P T . l .". ,
Qulxi. (tl""tr—l’O)SX..’u i,js;Theorem 1.3.1
(5.2.2.1) J

¢

t

=sif$ 12a¢1,J. and =0,a=i,j(u=i,j);Theorem 1.3.2

1y
Thus we can apply Theorem 4.5 tg the present case:For each I CAm:#I:
(identity):my ~octa®™ Tl

I

><)

u,oel X

2 we define:ﬁil:=gil and &;=8,,

cf.(2.2.7). By Theorem 4.5 we have:

L;_T,

#I1=4

Lemma 5.6.1. The collection ({Ly (id) ) s#l_ 2, is an

X 3, {®

1
,E%) for the codimension=‘2(in the

#1

inductive structure for ((L®m er

both cases:Theorem 1.3+1 and 1.3.23c¢cf. Definition 2.3.

(11) Next we determine the inductive structure of gg~in

Theorem 1.2.1 for codimension two and three. For this take an IC&m

77
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X

with #I=2 or 3, and define an Og-module Mg and an Og —morphism &
X1 1 TRy I

* -
er iz ectn®Th ) as folious:
1
My =L @ IMPHIUI-MIdwr 25 3(Note that Ms is also defineg
O, 75x, 3.
by this formula.): '
(5.2.2.2) |
@o=(t 8t )5 My oy ety )5 5 ¥ 1 =2,
R T A A b
Pl=Ct et Bt ) geily oy oMy eMy ) ; 4 1 =3
1 WV IXI XI xuv qu_ xvuzlxl

(Here according as #I =2 gr 3, we write I={u,v} or I={u,v,uw}.)

3, #1 =2,3 , is an

Lemnna 5.6.2. The col}ectiaa Mg @
' 1

, .
Ei) for codimensign twg and three,

I

inductive structure of ((L®m 82

’
where gi :Ey is as in Theorem 1.2.1.

Remark 5.1. For each I'#I: 4 we set:

- n _ _, ®{m+all-m)2 = =
(5:2:2.9) iy =Ly’ 1%ie1tilX,

It seems that the above data give an inductive structure of

®(m—1).92a,

;a=#1, and ¢ tF((L Y T

&m .’ - . .
(gy ,gi) for any codimension.

Proof of Lemma 5.6.2. First take an I ={u,v) CAm- Then an

element Tu,I@Tv,I E(Ei $D? ),? is in uv uw v
u v uv
in ker (831) if and only ificf.(2.2.7): vty tw 0
v -t 0 i
u W
'\a"l) TU,A..‘-tUIEI :T\f,lgt\flszl . W 0 —tU tV

On the otherhand (5.2.2.2) clearly insures:

(a-2) @u’lgtuli :QV,IgtUIR .
I I°
Apply Theorem 4.1 4.3 to (a-1,2): By (1.3.2.1) we see that @l:ﬁg =
I
(MK @1§ ) gives an isomarphism:ﬁi e(Cl(ﬂl))I. Next assume that # 1
v I
=3 , and we write I ={u,v,w}. An element (T ) €

BT .87
uv,l “uuw,l “vu,l

~r
(@a BDS )1 , a,P €1, is in ker(ﬁ@‘)l if and anly if the following

“af X I
holds for each a €1
- : = = i > = I- L(2.2.7).
(b-1) Taﬁ,ltﬁlxl a? I TIYI with {8,732 I-{a} , cf.( 7)

See aleo the table coon above. As in the case aof #I =2, we see that

77



(b-2y CI>r:rB.I®tB!?I :@a'r,lgtﬂﬁl )

APPlying Theorem 4.1 4.4 to (b-1,2), we see that & :Mg ecltﬁz>l
’ 1

gives an ;somorphism:ﬁi %ker(é@z)l. G.eode

I
5.2.3. Inductive structure...3. Here we determine the

’ .
inductive structure of gg in Thearem 1.2.2. The structure is more
subtle than the ones in Lemma 5.6.1 and 5.8.2 and is combinatorial
in nature. We begin this subsection by a preparation as fgollows:

' Preparatioq-'Fbﬁ i#j €A we urite:

(5.2.2.0) i~j or iA_j, according as bi-jl_ n or_ n+l.

By (5.2.1.3) we have the following according aghi J or i j:

9,1 gj,z] °c 0
[¢.,$.1,c = s or = S

:"70”' ’ . .
(5.2.3.1) 172571, 0 o JIxX; 95,2 95,0 1%,

and does not vanish on XI'

Take an I ={i,j,k} CA_. Ue have the following

i+1 i-1
~ Poey .
easily from the abaove:First the following _i+n 194 jen
‘ i+n+1 7 i-n-—
: i, 1 -
i+2n i-2n

four cases can happen concerning the relation:
and among the elements aof I:
(1) us~v for any u,v €1, (2) u~\v for any u,v =1,
(5.2.3.2) ) ]
(3) i~j,k but jAk, (4) i tj,k, but j~k .

In the last two cases the indices i,j,k are chosen suitably.

Next we have:

(a) In the first(resp.second) case, gu 1(resp.gU 2) does
’ ’

not vanish on XI for each usl, (b) In the third(resp.
K )
(5~2000\J)
fourth) cases, g. ,{(resp.g. ) does not vanish an X; but
i1 i,2 1
¢J=@k=0 on XI’

We make the following convention.
Conventian. Take a K cam and a subwvariety Y of ¥. We set:

Y with s, =l S

:r{.. Iy K ces i T ex

iy
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For example we have,cf.(5.2.1.3):

(5.2.3.5) lg., ,| ={i+n+a} and lg. | ={i+a} with 5 €4
i,1 - - i,2

.

(i) Here we determine the inductive structure of Ey for

>

codimension two. For this take an I ={i,j}. According as i~ j or i
J one can write:j =i+a or j=i+n+a without lass of generality. Define

an O? -module as follows:

I
) - ' - 3
(5.2.3.6) My =£§(Ln+1 a . M =L%(n af21
1 1 I 71 . :
By (5.2.1.2) we have the followsing, according as i~ j or ifj:
- v _ .
(5.2.3.7) Mo oMy =L52 or L2 (ML 0y oy
=X. =X =X =X
. I u I I
" .
Define an element @I =®i}le®J,I EF(Dile(ﬂgieﬂ?J)lgl) as follows:
ty o ‘ _
P17 Maerion, j=n-11 %’ Tastitn+1,j+n3% 1%, O
(5.2.3.8)
t, _ _
Y17 Maerien+1, j+n1-03% Mastizn, j-n-11-013%" 1%
Note that
= ‘ - = bz With ; =,
!@u,ll !gv,lf 'gu,ll or lgv'2| lgu,zl , with (u,w)

(1,J) or (j,i1), cf.(5.2.3.4).

FIGURE V-1

i i
i+1 Ny oi-1 . i+1 y i-1
Jj=ita =— z J-n—-1 J—n-1 J,l
1, -Nn
Cne

i+n i i+n i-n
& i
aJ'l

i+n+1 1 i+tn+1 i-n—1

J+n - J=i+n+a Jj+n
i+2n i-2n i+2n i-2n

FIGURE V-2

$. ' 3.

i,1 & 'y .l
J 1
*
Lemma 5.7.1. The pair (ﬁil,él), with @IEF(EEI®(Qgi@EX‘)i§I)

as above, is an inductive structure for codimensicn two.

Proof. By (5.2.3.1), an element T

U,I V,I EQ(DS{ Qﬂ}‘\,v)gg‘l is 1n

Ker (5@1)1 if and only ifjcf.(2.2.7):

K - 97 . = . - RT i N = e D ~ i
(2 91,alxl tl,l gJ,aIXI TJ,I’ with ¢ ! ar 2, according as

i joor 1
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Apply Theérem 4.1 4,3 to this. Using the combinatorial fact

(5.2.3.9) we get the lemma without dificulity. q.e.d.

We add the following remark which is clear from (5.2.3.8,9):
(5.2.3.10) l® FNI =3 v =i,j.
u,I

»/
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,
(ii1) Now we discuss gi for codimension three. For this take

' ) _ o ij ik Jk
an I with # I =3 and write I ={i,j,k>. By i —éi,ij @i,ik 0
(5.2.3.2) there are four types for such J —Qj,ij 0 Qj,jk
an I. In the last two cases in (5.2.3.2), k 0 _ék,ik @k,jk

i,jsk must satisfy the condition in that place. The following
combinatorial fact is derived easily from (5.2.3.8,9,10) and is

useful in the arguments here:

1) s .
(5.4.4.O)I®J’ijl,l¢ | and }@ !’lék,jkl do not contain 1,Jfk5

k,ik Jadk , _
Let alu,v)ju,v €I, be an element of Z defined as follows:

(5.2.4.1)  py =SV e s5.2.3.0),

uv uv
and define a subset I(j,k) aof Am and a{l), afui3l),u=j,k, €7 by:

I¢i,k) = U (f@u

uzj,k I -l2,

Jk’)’ cf.(5.2.3.4), and

iu
(5.2.4.2)

all) =#I(j,k) +al{j,k) and a{l) =afuiil) +afu,i).

*
Now define an Og -module Mg and an Oy —-morphism & . el(MgeMs )
X1 gt *1 AL ST

= 230uviDDy U eI, where a(jk3I)=#I(j,k), as follous:

Y

—X

I
8 (2n+1-a(l))
My =Lg , and &, =1 . s 1w and
(5.2.4.3) X1 X1 C Uk, I eI,k a!nl
Pui,1 TG00, K0 R s xR
Lemma 5.7.2. The collection {DE’@I}’ With ICam;#l =3, 1is an

I
. : , O_, 8m®2 -’ : ; PR
inductive structure of (M —(Lg ) ,ggJ for codimension three.
I

Procof. By (5.2.3.3) @i does not wvanish aon XI' Thus, by Thearem

4.5(or by a direct computation), an element @ T «C (N )I=

@y, Mg O, v e s dn ker 6%) | if and only if:
a -~ = — . — f (0.0, '
(5.2.4.4) éu,iu!xlariu,l Qu,Jklxlngk,l’ with u =j,k,cf.(2.2.11)
oy 1 1 ) 3 3 00. —_ 9 -
Compare this with the last identity in (S.L.4.g).®u,iu‘x1@@iu,l
ke We apply Theorem 4.1 4.4 to (5.2.4.4). Then,

% ¢

u, JkIX ¥ gk, 17 =ds
using the remrk just above we have the lemma . gq.e.d.
The following is clear from (5.2.4.0,3) and is uced later:

{(5.2.4.5) Iéuv,llﬂl =p for any u,v €I.

»2



§ 5.3. Local structure of the reflexive sheaves in § 1.3

'Here we prove the assertions on the local structure of the

5 .
sheaves §X<zg§> in Theorem 1.2.1 ~1.3.2.

s .
5.3.1. As in § 5.2 we first discuss E? in Theorem 1.3.1 and

1.3.2 . According as we are concerned with the first or secand we

define an element u GF((L@<m D ep) as follows:

£ _ A Coem-1). A _em-1), A
(5.3.1.1y LTIl TRyep By 00T SAF RTINS B S

-—(smm+s“>>, cf.(5.2.1.3).

The following determines completely the local structure of EX:

Lemma 5.8.1. (1) Let U be an open set of X and 1 a frame of

®m &r

L Then E%(C(L>< ) is spanned over U by the following:

Xy’

(5.3.1.2) el and S ;%
== 2o

Ea, =(0,..,0, s( =M p 50100 v s 0)iash

=A

(2) Acording,és Eg is in Theorem 1. 3 1 or 1.3.2 we have:

= ¢i %2 r-1 ‘
(5.3.1.3) S(Eg) (= singular locus of Eg)=X ﬂ(rh=1_(ua)0,red) or
_gm
ﬂieAm(si)O(—X

(3) Take a point p €X- S(E§)~ Then one can take (u®l1) an

) .

-~ ~ N ’
1""Sa""’sa)’ with a « EAP’ as a frame of gx at p.

Preof. The key paoint of the proof is the fallowing fact, which

is immediate from (5.3.1.1) and (5.2.1.3):

(a) EI-X-i = ‘;‘1; i eAm’ CFO(5¢2~1~3) .

Take an I CAm, such that XIﬂU #¢, and a p e(xlﬂU). By Lemma 5.6.1,
ﬂng EEJ for each J Cl,cf. We set:?_I:PJ(xl_leJ
(3.4.2), cf.Corollary to Lemma 3.3.1, we have:

>. By (a) and

(b) 1= =x1 (1IX1)®® X1 J(1®u)|x1 sfor each iel.

JIX
(Here PJ is the parametrlzat1an map at p,cf.the end of § 5.1.1, and

X, satlsfles‘(XUﬂU)~(g )

y 0.) Remark that (X nU):(SIU O=(H

ie1%i’0"

33



. _z1 o
Remark that (5)0—% and so (5)0 _niEIxi

linear combination of u®] and 5, Gar..This insures (1). Next (2)

in U. Then, by (b), FJ is a

and (3) are checked easily by applying, to the elements in
(5.3.1.2), Lemma 5.2 and (**) at the end of § 5.1.1. q.e.d.

§ S5.1.1. g.e.d. ‘

Note that, in the case of Theorem 1.3.2, the locus of the r-vector

A+ ®(m—lga

. @m
in Lemma 5.8.1 =Sa 5

EAm and s . Thus S(EX) is the locus of
a linear combiation of these elements, and we have (1.3.4.5).

5.3.2. Here we invesigate the behavior of g% in Theorem 1.2.1
for codimensjon two and three:Take an 1 Cﬁm with # I =2 or 3:

Lemma 5.8.2.1. According as # I =2 or 3 we have:

(5.3.2.1) Xlﬂg(gi)leﬂ(nuel(t or cxlﬁ<nu t

u)O,red)’ - €] u)O,red

(The result for #1 =3 is a partial one.)

Lemma 5.8.2.2.(1) Assume that #I =2. For a point p‘eXI—S(gq)

the following forms a frame of gg at p:

t0,s); if p <X

G

Pymy) an I TMhe1ty’o,red

. 3 ¥ - T
Pu(xvmu), if p €X1 (tu)O,red (u e

(2) Assume that # I=3., For a point peX - (N
t

(3.3.2.2)

Q.

Pl(m ) an

ot

uEItu)O,red we have:

(0,s) form & frame of EE at p.

(5.3.2.3) Pl(ml) and

Here m,3J Cl,is a frame of My and P

— =J XJ

p,cf.(3.1.5), which is attached to ﬂy . The coordinate xu;uEI,
Al J . N

J is the parametrization map at

satisfies: (X NUI=(x )..
—_—= u "0
Proof. The key facts (5.3.2.2,3) are praoved by using Lemma

5.3.2. For the application of the latter, recall that;cf.Lemma 3.1:

’ - = - s e . = = =& - - M TSR =3)
(a) PIIXI éulxléu,l’u It# I =2) and yuIXI@u,uleliuv,I’u’V I(#1=3)
By Lemma 5.6.2 we have: ' '
—_ -—t — ‘ . =
»(b) PIIXI = Cnuéltu’OJIXI for the both cases:# I =2 and 3.

By Lemma 5.3.2, this insures the assertions in the lemmas for
cadimension three and the first fact in (5.3.2.2). In order to prove

the second fact in (5.3.2.2), let h and h ~be the matrix
R A D e,



representation of @a and @a’l,..:@a(ma)z and Qa,l(ml)

O,
(m+#J(1-m))
J

mviilhv.l"" By Lemma 5.6.2 one can take ll , Wwith a

frame 1 of Lg at p, as a frame of Mg at p. By Lemma 5.5 and 5.6.2

"J
one can write them as follouws:
{b) hO,vz(tvlil’O) +xu(tv,5v) and hv,l =tu!§l
(Here ta’ta and e, are in F(U,Qz);a =i,j. The element ta satisfies:
t =1%"" DY 4nd ¢ does not vanish on X;.) By the third fact in
& o v I
Lemma 5.3.2, P, (m,), P (x m ) farm a frame at p if and only if:
I'-1 U vy
Yoo T o 42
(c) det( a: tu » U ) —svtu # 0.

This insures the second fact in (5.3.2.2). Finally, by Lemma 5.3.1,
gi’p is free only if one of the Z-vectors in (5.3.2.2) forms 3 frame
at p, cf.Lemma at p, cf.Lemma 3.2. By (b) and (c), this is
equivalent to Hutu and tU does not vanish at p. THis insures the

first fact in (5.3.2.1), and we have the lemmas. gq.e.d.

5.3.3. Here we determine the behavior of E} in Theorem 1.2.2

for codimension two and three. As in § 5.2 the arguments are more

subtle than the ones in Lemma 5.8.1 and 5.8.2. Take an I C&m with #

w

1 =2 o0r 3. We write I ={i,j2 or {i,j,k}. When # I =3, 1,j,k must
satisfy the condition in (5.2.3.2).

Lemmma 5.8.3. (1) In the both cases # I =2 and 3, for esch

’

pexi, g%’P<:g§’P> is Qg P—Free.

’
(2) Assume that # I =2. According as ie~j aor i~Nj , the

following forms a frame of ER at p:

(5.3.3.1) (P y, Y¢0,s)) or (P y,tes,00).

I(ml I(ml

(3) Assume that # I =3, In the first or secaond case in

(5.2.3.2) we have:

(5.3.3.2) (Pl(ml),t(O,SY) or (Pl(ml),t(s,O)) forms a frame at p.

In the third and fourth cases in (5.2.3.2) wWwe have:

.3.’3 - . SRy . = .
(5.3 3 (PI(mI),Pl(xekml)) forms a frame at p

Here the frames m; and the parametrization map P,;J CIl have the

-

&
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similar meaning to Lemma 5.8.2.

Proof. As in the praof of Lemma 5.8.2 we write PI!V using
‘I
Lemma 3.1% Ascuma that $ I =2. By (5.2.3.1,8) we have

with Kzlgi;BIUng’Bl,

,0), 5 or (O, s )35
() ‘XI - aceK o IXI

£ being 1 or 2 acarding as i~j or iAVJ .

By (5.2.3.1,10) K= i,j, and P, does not wvanish on X;+ By Lenma 5.2

I
“we have (5.3.3.1). When # I =3 we takes(u,v) =(j,k).By (5.2.4.0,5)

éu,uvliléuv,l does not yanish on XI' From (J-2.3-3) we see that in

the first or second case in (5.2.3.2) Pl{? is written as [e,0] or
1 :

T .
[0,63 with ¢ <MLz D)), b(I) €2, uhich does not vanish on Xj. By
I v
Lemma 5.2 we have (5.3.3.2). Also remark that, by (3.2.2.3), PII? =0
I

in the last two cases in (5.2.3.2). Ih the cases we prove (3.3.3.3)

by using Lemma 5.4.2. Let h be the matrix representation of

J,K

H = A 1 1 i ‘ kvs ’ . a3 . 02,
H’J.@K’J(QJ) EH!XJhﬁ,J with frames My of EXKﬁ By Lemma 5.4
(5.3.3.3) is equivalent to:

¢

detlHy (P, Chg ooopho by (YT # 0, with ho’alyjk:
(a) ’

*
(h ) +x.h

1 O,al?‘:I i"0,a3 ik
By (5.2.0.4,5) ha and h

, cf.(5.2.12); a =j or K.
o ig . "}

ik ik, 1 do not vanish an Xl Recall the

definition aof @a, cf.(5.2.1.3), Then according as we are concerned

with the third or fourth case in (5.2.3.2), wWe have:

{b) ho’a=xi(0.s)+xB(F ,0) ar =xi(a,0)+xB{O,F Yy la,By=0(i,k) ar {(k,Jj>

’

Here €, f are holomorphic functions and € is a unit. Thus h DL
. O,a3 ik
= t(O,a) or t(5,0). Thus the second term in the matrix in (a) is:

*
Y0,¢) or Y(c,0) with ¢ <C . On the otherhand, by (5.2.1.3) and

t

? b H] *
(5.2.3.3), we have:ho i(p) =L¢c ,01 ar =t[O,c J with ¢ =C . Thus we
H

have:!

$
(p), (h h h Y(p)l=cc #0.

(d) det Ch 0,0k, ki, 1

0,1
By Lemma 5.4.2 we have (5.3.3.3) and so the Lemma . 9q.e.d.

By Lemma 5.8.1 - 5.8.3 and the remark scon below Lemma 5.8.1

&6
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we have proved all the results on the local structure of the

reflexive sheaves in Thearem 1.2.1 ™~1.3.2.
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Appendix. Structure of End EX

Here we investigate structures of endomarphisms of vector

bundles, by analyzing the adjdint of the transition matrix of frames

of the bundlesjsee (1.0.1) and Lemma 1.0 for the explicit form of
the adjoint. The structures are given in Lemma 1.1”~Vv1.4;c5ee alcso the
diagrams‘in Figure I IV we give some criterions Far‘the simpleness
of the bundles. The result here is applied to each algebraic bundle
on a normal qyasi projective variety. This appendix is a refinement

of Part B,S 4,[Sz-11. A1l ideas here are found in that place.

A.Q0. Preparatiagns

A.0.1. Underlying data. In this appendix .we work with more

general data than in the main body of the present paper:

X = a normal camplex space of dimensian‘§2,

Yl =U1EA 2%, m 21, is a reduced divisgor 0?\?, where the
m
(O.i.O) irreducible components Qi of ?1 are normal.
?2 = a reduced camplex subspace of X of codimension tuc

. . ol 452
satisfying: X~ DX

When m _2 we assume that FTJ:: Xiﬂﬁi is of caodimension two for each
. e 1 - 72 =1 _':2 . . I . .
i#] Am and that X Li¢J>ij As in § 1.1 we set
— -0 — ] —_ —
0.1.1)  x% =% -%?, x! =%1-%% ang x§=“1i—><2;i Y
, 1 1 .

[ tak - = = {
Also .take an open neighbaorhood N1 Lieale,i of X ieamxi in X
c . . . - . c . . e . _ }2
,atlsfylng.Nl’iﬂNl’J ¢, if i#j. We take a‘matrlx H MP\Nl,OX), r22,
whose restriction to N1 i is as follows, cf.{(1.1.0.6).

{s,t)-companent of HINI i= 6st JI12a(i), and = FS, t=xx (i),

(C.1.2
with f_ EF(MI,QX)'(Here a{i) is an element af Ar.)

We assuma the following for each i EAm;cF-S 1.1,
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—XI in N, ., and Falxl is the restriction of &

Fatirlo ™8 1,1

(0.1.3.1)

: . . Sl . =1 ~s2
{unigque) meromorphic function on Xi with the po]e_xiﬂx‘.

We write the meromorphic function as Falql. As in § 4.0 we assume
v 1 .

2

the existence of a divisor ﬁi of ?1, which is locally defined by one

cequation and satisfies the following:

=2 _ . _ o
(Di)red—UaEAr(pO]e divisar of FalX§)red’ and , for each

— =7
irreducible camponent 02 . of (D7) , Wwe hawve
(0.1.2.72) 1,4 i’red

with respect to ﬁf,i = max, that of

multiplicity of D%

2
i
{pole divisor of Fali%)
See § 4.0 for the multiplicity.

-— ]
Now we form a bundle E, over X from th Xé,Nl,H} in the manner
as in § 1.1. Thus EXIN has a frame, denoted by gl,i =0,1, satisfying
i .

0

e” =e'H in NN with N=R-X.

=%-%

0 As a frame of End gXlNif we take

ui: ui & 1 1 » : *
4@ {HQB},a,B 6 with u g €End Ey )\ » as follows:

8
7
(Here ég =1 or 0, according as B = ar # 7.)

i

N
i iy _ i 1 _ i
(0.1.4) ﬁaB(eT) = (6 )ea , Where e =x—th compaonent of &7,..

- FIGURE 0
o <\,N/ ~\ — X1 af{i)
7 1,1 7 s i
1y 1
H = 1 .
~ = 1\ - INy 5 Fa (i) (i)
STy Ayl Ly
T S
As in the main body of the paper, for an I CA&, we write EI and XI
g1 , VR VS BN
far M1, (X and M, X (Thus we can write:X; =X; an X =X;.

A 1. Imbedding of End Ey

In 81 § 3 we write Ly for Qg[%ll. For a locally closed

X
reduced complex subspace Y of X we write Ly for Ly »

A.1.0. First we mafe an algebraic preparation:Letting x=04p) -
71



a,BEAP, be variables, we define linear forms Taﬁ(x)vin x Wwith

coerficients in F(Nl,gx) as follows:

9
TaB(X)INl i=Fa(i) xaﬁ_Fa (118 b ear—{a<l)}
0D Tatham Wy (T Eran T Yacnr
Taac (i) P Ing Fren Facd YarTfa Xaciy) e afhpmlat, =
zFa(i)(ZTEAPFT *ar) "o Ta(i)a(i)(x>lN1 .
(Here i is an element af Am' In the R.H.S we write FT;T €4 ?{a(i)}
' ) e (i)
c r ; . i : . : s ’
also for itserestriction to Nl,i The diagram 5 ! 4
. . . . . R T i o
indicates the order by which TaB is determined 7 ! 3 e ()
5 = i . i C i } IP'\ :
when a(i).) Denoting by T the collection {TaB a,Beér Wwe make

2
Convention. For an element A =[aaBJEE?P s, 8 €A, where F is a

coherent sheaf over Nl’ we write TaB(A) for the element of F, which

ic obtained by substituting & to %_,, and define an elemenf of
@B aB ‘
- :

Br°
E

as follows:
(1.0.2) TCY = LT ,(CY1, «,B =4 .
aB r

The matrix T represents the .adjoint of H:Take an element ¥=End.E

=X,p’
=N o clogel 1 e, i 0,1 and o %A h that
P ‘-fo “l, an "Ll.aB ‘_X’P, 1= Uy an Xy = r’ sSuchH a
. - . i1 . i e T
(1.0.3) & 2af Copag’ with the frame Lo of End EXiMl {Lfo(O-ln%J
) PP SO A0 S A0 -1 Lo p -
Mote that ¢(e”) =e¢°C”, i =0,1, and we have:C’'=H "C'H. The following

is a basis for the arguments from now ont

CO 1.1

Lemma 1.0. The relation:C =H "C'H is equivalent to the

following:
O

p _ i
(1.0.4) Fa(i)c = T(C™) .

Proof. This is checked by a tedious{but essentially easy)

camputations. We omit the detail. q.2.d.
2
. : 3 . . .
A.1.1. Now we imbed EX into gyr ¢tFirst define an QN -marphism
' 1
using the matrix T

70
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2 2
c . )gr N )_@r { .
(1.0-_)) T'E\){INl 3 B :X!NI 2 T\B)
We write the image of T as EN . From the explicit form of T we see
I _

er . 1 —
XINI_Xl,deflne an QX

easily that T is injective and ENllNl—Xl =L

—submodule ﬁy of gﬁr as follows:

(Note that N, =X =N, NG )

(1.0.6) 1

=Ky

erc
K =L, and K
xmo AlMO xml 1

2
Lemma 1.1. End EX is isomorphic to EX(C gir).
Proof. Take an element s of F(LX) satisfying (s)o =§1,
and define an elemen 51 € F(Nl,gg) by:s%Nl iZS/Fa(i) . This forms a
b
g or?
frame of ng”l' Define an Qx—morphsm [ nd EX - LX by
0.0 arz 0
Toin, tERd Eypy 2 4707 2 Ly ®osC
(1.1.1) =0 : 0 0
2
- 1.1 or 110, . .
LSIN End _E_XIN EN7A C - '___X‘N > T(S C )y 1 -Am

1 1

where C! =fct.] a,B €A , is an element af Oer. We urite:ﬂlC1=
ab r —-Ni
i 1 . 1
Za,BcasﬂaB,...wlth the frames ﬂaB,Cf. (0.1.4). By Lemma Q.l,

TsiNO:TslNl in NdW Nl' It is easy to check the injectivetiy o7 T, by

using the ekp?icit form of T, cf.¢(1.0.1). Moreover, comparing

(1.1.1) with (1.0.4) we see immediately T _(End E

-\
143

¢ ) =Kye q.e.d.

Remark 1. (1) T.Hosoh pointed out that the imbedding Ts is

defined more conceptually:By Propositon 4.0 we have the injection:
&

. ..*,C, .= &r 1 O :t $) Oy
9S.gx Ey ¢ QS{EX) ng characterized by Gstea) (0,4.,0,5,0,..,0);
fed EAr’ Wwith e§=a—th companent of go. Also we have the injection

2
i:gi’ *Ey by means of goc One checks easily that the following

Ox-morphism coincides with rS:
¢ - or ®r > ®1
(1.1.2) End EX 2 = Homgx(_o_X ’EX ) @ st i
Theoretically this is a suiable definition of TS. The matrix T is

useful for explicit computationé on End gx.

(2) It is easy to check that the relation between the

7/
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, nd E, Bﬂltl
= KNy TE TeIN
{(1.1.3) :
5[ \\\\59 1.1
| 1.1 Byjn, 270700
A.1.2, (i) Let w be the quotient morphiémtgy =Lgl. We Set:ﬁxl=
2 .

wa(Vy)( CxL 1) Ty, In thg rest of A.1 we analyze the exact sesquence

as follouws:

N

1.2.0) 0 5 KT 5 Ky ¥ Kol = 0, with 0, =1,10]
oL s__\/:’_)‘: \)‘: __\X B '] Ul i __' -"_ 'E}:.

Our analysis is summarized in the following diagrami

FIGURE I
End E _
0, X kifr 1)
J 2 TS&L ' XL ¢
0 -K,N0," - Ky g Kyl = 0
QSPQ -1 o @ j\
0= 0O, S oy Ky D 4 Ky =0
S‘L 2 Q W 0- B 2
0~ 0" - Ly % (Ly1 " =0

The key point in the diagram is:(1) to form the isomorphism ¥ and

the injection j, and (2) to characterize EX and le 1) as the

' o
Qw—submodule of LX {ii) For (1),(2) soon above we make some

algebraic preparations. Namely we derive some linear farms from TaB’

cf.(1.0.1), First restrict TaB to X :let v :(YT)TEAF—{a(i)} be

varibles. The following linear forms are obtained from the
i ion T T , ¢ Ct g1 C 1 :
restriction ‘aBiXi of I tao Xl, by changing PR o v g

- . . = —{axiid:
S (Y) - 'Fal){I}B 101,:8 (:\:P \a\l)

< Fe -
Si,acigY)Tygs

O&,mi)mn(y) =2

iiabB

ren ~taci¥rin, Yy
(1.2:0.1)

Sivaa 8  falx, Fren_~tacinyfrix Yyt @b lad,
_FalXiDi,a(i)a(i)(y)
We write pr, for the projection:

2

(1.2.0.2) L7 2815 " Tathe (i) ,8)-camponents of BiB=a ~{alid).

A

Denote by Si the matrix [S. The ?0?¥auin§ is clear from

(1.2.0-1-

,aﬂja B A

9L
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Proposition 1.2.1. Far a B GL?TN we have:!
L,
(1.2.0.3 @iN (T(BY) = Si(w!N '(pri(B)))
19i lgi

Here the R.H.S. has a similar meaning to (1.0.2).

Moreover, we define linear forms in z :(Zaﬁ)’ a,pB GAr’ with

coefficients in F'(N;,03) as follows:

Ta(i)B(Z)iNl i= 0;8 EQP —{a(i)3

o ‘7 - . ) A r F Y
TC(B(E)IN]. ; LCX.B + ‘Fa Za(l).e’ ayﬂ L\l" {a (i1)3
(1.2.0.5) ,
Ta(i)a(i)(Z)lNl TFadaci) T 2y GAP—{a(i)}FT 2o (idT
’ _ .
Taa(i>(2’!N1 T Faati +Fa\zrear—{a<i)}FT 20 ivy?

73
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We set T =[Taﬁja g E& + The relation beteeen TaB and the farmer

linear forms is as Fo]l N

Proposition 1.1.2. For an A ELXIN , i eam, we hawve:!
i = levE
’

T (A = w (A S.(w pr. (&) .
’ INl’i {Ni,i i lNI,i i
Here T (A) has the similar meaning to (1.0.2).

(1.2.0.4)

?
- Proof. Clear also from the comparison of T and Sj ¢ qeeed.
, .
(2) Using the matrices Si and T we give a characterization aof

-1
Exl and w (ﬁxl).

Lemma 1.2. (1) Define an Qy'~m0rphism tg as follows:

i i
~ ®(r- ® .
(1.2.1.1) 2o ik, T sa = 5 137 s 5 @)
S, =X, =1 =K. =1
i i i
. . L . er-1
Then g is an Dxl—lsomorpnlsm.kx. - EX Kvl,x
i i i i
(2) The ON -module mIé (ﬁyl) coincides with the kernel af
, 1 I
the following O, -morphism:
1
2 2
4 B 2] s
(1.2.1.2) @y T :EQTN = A oD ToswT (A .
Nl 1
Remark 2. The Qxl—morphlsm T in Figure I =2 A Zsi.
Proof. First (1) is clear from Proposition 1.1.1 and the
R &r? ®(r-1)
surjectivity of w, pr: Ly =Ly Next, to prove (27, we
IN, D =XIN =X.
1,1 1,1 15
write w alsc for wy, +Take an A elo, o with an i €4 . If oT (&) =0
i N =AiN, . m
1 1,1
then Proposition 1.1.2 and (1.2.1.1) insureiw(A) sK,1. Canversely,
, . B (r-1)
if wlM =Ky s we haveiw(A) =Si(§i) with an giégx_(r 1J;CF~(102~1'1)~

‘ i i
By (1.2.0.1) w2 see wpr,(A)=a,, and w(& =% (wpr,{(A)), By Proposition

[y

-

1.1.2 we haveiwT (A) =0. qg.e.d.

2
"A.1.3. Here we characterize the OV—Jubmoduue K, of Eir. Writing

4
Ey far wIY { 1) nate that d\ “”X’ue characterize Ky as the submodule
% g

b4 2]

of Ky:For this take an 1 A  and define linear forms T Lz
X m cex (1)

o €Ap—(a(i)}, as follows

"

Lo (2) =z FRE 3 S-S e P -

(1.2.0) e (1) ac (1) o falida (i) Tres —{alid Y 7alidr
L v o) ) r

<

-z Lo LFoz

7 EAF—{axl)} 7 ar

7%
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e ge{:TNl’ =T (i) 2 Eér—{a(i)}’ and let ‘2 denote the quotient
morphism:gg *(Lg/(lgl)zkj)'
Lemma 1.3.1. An element A EE;SNI A in Ky if eng enly if
- it dis in the kernel of the ;allowing mérphism: '
(1.3.1) wfﬁi,i:T&1,i:£§TN1,i e(g%‘"‘1>,<igl)2g§(r—1>)lNl;i.

2
3 - ) s - 1 —_ - B _ . R .
Froof. By (1.1.0) an element A —[aaﬁj tLXP’ a, B =4, is in Ky

' 2
if and Clrl]y if A =T(B) with a B =[baBJ €Lir,cc,;9 €A . One chceks
r

that this relation is equivalent to the following:

boing = 3acirgl B4, ~latidy
’

(a) fa(i)Pag = Taa A a0l €8 eI Ix{A ~{a (i) Ma (i) Ix (ali))

(f )2b T (A a Ear —{a(i){

ali)’ Paali)” ae (i) 3

The first two relations are easily checked. The third is checked ac

follows:
2 _ , .
a1 Paa (i) Paat e Talaiia) Ty ea —tacids
r
f . i - ) } = . + r i _ L
) o i bar TP ()7 T a (1) Fa‘aa(l)a(i) 2o iy iy’
. . 1)

Frea ~tatidyfriar
By Lemma 1.2.1, that A'Eﬁx

3

implies the first and secand equations

. 3 (2) " : .

in (a) are salved. Next that wlNl iTNl ;A) =0 is equivalent to that
14 ’

the third equation in (&) is solwved. q.e.d.

Remark 3. The above lemma insures that En

(;Xl)@2 while gy concerns with anly Lyl. In this sense

of End E, is more subtle than tha

A

, & . o
The kernel of w, in (1.2.0) =(Q, ﬂﬁx) is given as follguws:

2
Y B o \
Lemma 1.3.2. (1) (KT )y i coincides with the kernel of
s
the morphism as fol]ous:/
2

3] . D - "
(1.3.3) 2 e T e T (o).

X =X IN, N,

1,1 1,1

(2) There is an inigction:F(Qx) 4 F(Qirhﬁﬁw).

78
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Proof. The first fact is obtained
-

it

by restricitng Lemma 1.3.1

®
to (er MKy« Next we rewrite T .., as follows:

A bt o (1)

' z)=z . z . Lz )=f (Z . -
oy ea ) P e Patha () TFaa’ TTaFres ~taidifriacig?
Zria,a(i) TrZar
, 2 n
Define an injection j:0, 24 *Oer 3gl . Claerly T (gl ) =0, and we
=X =X r N1 T
’

have (2). Qoeod.

A.1.4. Here we extend the diagram in Figure I to ¥. As before

-1 $ ’
we write w,%(ﬁgl) as Ky. Let Ky and Ky be the direct images of K,
. ’ . - -
and 5X Wwith respect to the inclusion 1:X X. Define an le—module
as faollows:
(9]
2 ’ or<
(1.4.0.1) Kol t=w(Kg ) (C (Lgly ).
=X =X =X ’
The structure of ﬁy is simpier than that af ﬁy. We chiefly discuss
14 ’
that of 59 . Our analyesis of ﬁg and ﬁg are summarized in the
following diagram:
Figure II1
—_—a = === &(r-1)
-1 C = oL
£31 S4dp oLy
E,) M| C
E—(:l*End 1= _
* X Gyl o, (1= HL 2D
ﬂ =X 1 —Dl A
- .
2 R )
0~ 03" - Ky & Kol = O
X —=X —X
WM o2 Ny N 2
@ “~ ¢ .
0 - 03 - Ler 4 Lz = 0
A A ‘
— _ — “
(Here i is in Am. The d1v1sor'Di=D; af Xi is as in (0.1.2).) The key
point in the diagram is to define the Ogl-modules le and E§1~ Far

. , . ’ ®(r-}
this we first define Q? —submodules gg and Eg of Lo ¢ 12 i €4 , by
i i i i
the fallowing holomorphy conditiaon on Xg s cf. (1.2.0).(In (1.4.1)
i
-— e -
below, peX,, and a. and b, are elements of Lg tr 12)
1 =i -1 —xi,p
. . - v . A @rz. .
a;is in QQ , if and only if 8'(§'IX ) (el p) is the
| . : ARCEE
(1.4.1.1) ! 1P !
‘ 2
1 i V : A _ 9[’"‘
restriction of a (unique) Ay <Ly o
'
g .':‘ ‘.l, ,_ 1§ .( -‘ 9 i . 3 : >)EL ; i
Ql s in EX.,p ifrand only 1if Sl,a(l)a(1)r—1 ( Ly ,P) is
(1.4.1.2) 1
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the restriction of a {unique) 3. Eg
: i

>\

From the explicit forms of S.,cf.¢1.2.0.1) and of the divisar D.,ct.

(0.1.3), we see easily the following:

ginlﬁigazr 121&& . Moreover, 2 Lgs\r—l)is in lﬁigzirﬁl)
(1.4.1.3) if and only if S ﬁ(a ) satisfies the holamorphy
9
condition in (1.4.1.1) except (a,B) e{la,alidd . .y,

We define an extencion of ZS te ?i as follows:

_ 2
(1.4.1.48) Yo :Gg 93.%L2P =A., where A, satisfies:h, =g (3. )
: S, =X, S =X, i i ilx;*s, "=ilx,
v i i i i i i
Moreover, take an element u,el(Qg [D.1) such that (u,) D,. We
i L 1’0 i
. ‘ r—1 ®lr—-1>
write uy also for the isomorphlsm:lﬁ ®£§e( D ?Q4+(l5 Ly r =
, i i : i 7
u;®b, . Now, the Qg—madules QYI and E?l are as follows:
s1=¢ ’ — v¥ (a3 =% T e e ~ @ir-1)
Ggl=(® ey 2;%905 s¥gla)=aglap) on Xy 31,058, 0 C & Ly
) i R R i
(1.4.2) Fyl =(e, ., b, €8 1z 8Fgike (u, (21 by *Is (ueid) (b)) an
i i 71
S . ~ ooy eir-D)
Xijitsd B’ Le1-I-Di®£’><i
Lemma 1.4. The fellowing three Oxl modules are isomorphic.
2 — NN - ~— —
(1.4.3) Exl — _G_xl S ﬁxl . R
. : : ®r<
Proof. First define an Qg —submodule 52 of Ly T as follows:
i i “i
, 63P’Z
(1.4.4.1) Kg = {A, =Lg A, K, J,cf.Lemma 1.2.
—X. 1 A l[)\-“‘/\- :
i i i 7
2 -2
o o A r ol s
Let (res)i denote the restriction morphlsm:giﬁ *Lg « Then we have
i B

the izomorphism:

x| >

i 'ed { [ L¢ ~ Et:" = —"‘.‘ s e N ".
(1.4.4.2) wieﬁm \res)i.L 1 = {eiEAmAi in’Ai Aj on >1J, i =am1

On the otherhand, the holpmorphy conditiaon (1.4.1.1) insures:

- 4
Te gives an isomorphisngg = Kg
T & i i

From the definition oF'Qq ycfe(1.4.2), we see that the following
4 i .

(a)

>’|
.

three Qil—moduls are isomorphic:

(b) "‘I\_l = R-H-Sc iﬂ (lo4.ﬂ.2) '*E

_X ;_\;1 .
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Next we have:

b — B —
(c) u;®Cid) gives an isomorphism:ls E— 1= o2 yug. (2D
i i i i i
~ X - . , & (r—-1)
Actually, by 4.1.3) §§ is the Og—submodule of ;5 gg . Take a
i i ‘ i 7

& (r=1) . )

frame 9; of ID and an element 3 eLX . By (1.4.1.3) 9;3; 1is in

Q? if and Dnly if the (a,a(id))- components, ata (i), of IS (g EN ) s

i
in Lg o Fraom the explicit Form of

COﬂdltlUn is equ1va]ent to:

S cf.(1.2.0.1), we see that the

(d) 1 a(l)a(l)(a ) ELQ.'
From this ué getvreadily {(c). By (c¢) we have the isomorphism:
(1040502) E_;:‘l _@gl . q-evd
Figure 111
’ ’ @r.z
Kl C 8 . Kg C Lo
—X i—X, =X. -
i i (®.7% )
Sn q\ q\ {(r—1) 1 Si
) ®(r-
Ggl © ;85  C e;Upy
" ! 174
s NI T eisy, @gu@Gd)
—_ — — - — el
Fgl © eylgefg  © e,lfely

A.2. Structure of T(End E.)

Here we discuss the structure of T (End

the simpleness af gx<i.e.r(gx> =C)

X

Ey

« The discussions will

), by focussing on

be‘done by

analyzing the following diagrém;cF.Figure Il and II1:

Figure IV

o‘l/
MKy

0er”

A

~ K-

Ex — _\.X

Now, by (1.2.0) we have:

(2.1.0) 0 Ar'oerzﬂx ) = T iK)
S o U ] g \_X "X B _X

0

&

2

I
Il

i
><|

SRE SN

S

ol (K,) =0
A
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We analyze the first and third terms. Cancerning the first, Lemma -
2 :

1.3.2 insureszr(gy) :JF(QX) cr(gjr ﬂﬁx), with the diagonal imbedding
on

2
x 9% -

Lemma 2.1. (1) I'(K

Jj:0 The faollowing is obvious:

X) =JF(QX)(2F(QX)) if and only if

‘ 2
. . @ r _
(2.1.1) JF(QX) —F(QX ﬂﬁx) and wr(ﬁx) =0

(2) Assume that X is compact. Then we have:

2 .
F(End E,) *C(=T'(Q,)),if and only if 1“()4,9‘?{r MKy )=l (0, )=C

(2.1.2)
and wr(ﬁy) =0 .

Our criterion for the simpleness of gx is based aon {(2.1.2). First

concerning the first condition in (2.1.1,2) we have:

2 2
Lemma 2.2.1. An element C GF(Qir ) is in F(Qir ﬂﬁx), if and

gnly if

(2.2.1) T| ., (C) =0 on X% for each i €A  and o« €& —-{a(i)?
ax (i) -— "] — m — r

For the explcit form of T , see (1.3.0).

Proof. Immediate from Lemma 1.3.2. g.e.d.’

When X is compact, r<gx) 2HP(C), and (2.2.1) is reduced to a problem

of linear algebra:

(2.2.2) T (C) =0ja €AP—{a(i)}, with C EMP(C) .

aa(l)lxi

7
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(2.2.2) T (C) =03 GAP;{a(i)}, with C GHP(C) .

aa(i)lxi .
Writing C as [CaBJ’ a,B éAr, this relation is as FU]]Ous;cf. Lemma
1.3.2:

Zrta,aidarfy
:0 .

(2.2.3) Cac(id * (Ca(i)a(i)—caa)FaIRi
Fa®ren ~tainacdrfrix’
Thus we have:

Lemma 2.2.2+ Assume that, for an i GAm, the following holds:

F7|§i. (FaFT)IEi;TGAr_{a(I)}’ and 1(=the constant functian

(2.2.4) With the Qa]ue 1) are lineraly independent over C, for

each « GAP —{a (i)}

2
Then [ (K,N07" > €M _(C)) is isomorpic to C.
Next we analyze the term:wf(ﬁx) = 0, by using the folowing
diagramjcf.Fiqure 1IV.
Figure V
( ’ » 14 @r2 C ’
wrxgx) - wF(ﬁx) —wF(ﬁi)(—F(ﬁil)ﬂwF(gy ) F(ﬁxl)

2 .
_ RN er _
F(Qxl)ﬁ(QizSi) (wF(LX Yy C F(QXI)
The following is useful in later arguments:

Lemma 2.3+ The C-module wF(ﬁX) =~ 0, if

2
N er
2 . putl - ~
(2.3.1) r(gxl)n<eizsi> Wl (Ly" 1) or M'(Bg1) = 0
Note that if w:r(gg)ér(g§1> is surjective, the two conditions in
(2.3.1) are equivalent. By (1.4.1.3), Gz Cls Lg® " 2. Thus we have:
i i i ,
(2.3.3> 1If F(;Bi®g§i) =0 for each i EAm, then wr<5§> ~ 0.

See A.3 and A.4 below for the applications of Lemma 2.2 and 2.3,

See alsoc Part B,§ 4,0(Sa-1] for them.

A 3. Case of rank two

Here we assume that rank EX =2 and a(i) =2 for each i'eAm.
1 fy
0 F2

Thus the matrix H is aof the form: +(The role of Fz is Just:



(FZ)O-XI, while fl determines the structure of 5;1,CF.(1.3.0).) The

divisor ﬁi =5? is the pole divisor of fll?’CF'(O'l'3)° We fix an

(w]]
-

element uy eF(Qgi[ﬁi]) satisFying:(ui)o =
’
A.3:1. First the Oy -modules Gy and Fy ,cf.¢1.4.1), are as

xi i

..

follouws:

2 .
Lemma 3.1. (1) il 15 ) L§1 and Exl
(2) The following three O? —modu]es are isomorp h1c cf.Lemma 1.4:

®2 , W% id 2 s,
(3.1.1) ‘I‘—D_ ®£~i 215 F% ) i (_I_ﬁ‘) _l;g 1 ﬁi ’
i M i i i i
uhere‘fs is as follows:
-f 52
(3.1.2) g § b - 52 > b 1 1 _
i ' i 1 'fl fx

Proof. First (3.1.2) is clear from the deflnltlon of S scfo

(1.2.0.1). Next the defining equation of EX isscf.(1.4.1.2):
B .
(a) IIX )b eLxl, for an element b egyi-
Thus we have.F— :Iﬁ ®L§ . The other parts in the lemma are immediate
i
from Lemma 1.4. q e.d.

The following is also clear from Lemma 1.4:

Corollary. (1) 5%1(=wﬁ%) is isomorphic to:

(8., by =) Ly i¥g (uS%e(id))(b))= *s 2®(1d))(b ) an
(3.2.1) m 1 L
Xijiisd <A

(2) We have:

(3.2.2)  Tg = 0, if T((I5 2%%Ly ) =0 for each i <A .
, i "1 '
Take an element A =[aijj EﬁX(C 334), i,j =1,2. Then Lemma 1.3.1 is

written as follows:

A is in Kx(—lend gx> if and only if:
(3.2.3)

_ 2 - 2
(a22 a21)F +(312 21F1 =0 ((lxl) )
Moreover, an element C'=[ciJ] EQX b1, =1,2, is in 5XﬂQ§4 if and
only if:

- _ 2, _ 1
(3.2.4) (c22 c21)f'1+(c12 czlfll =0 on X

ro/

507
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Assume that X is compact. Then F(LU—Q§4) is the C-subspace of M,(O)

:r<g§4> consisting of those elemnents C’=[ca33;a,3 =1,2, satisfying
2 _

(3.2.2) ‘C22_C11)fllk1 +Cqo —cz]Fllxl = 0.

Thus we have:

Lemma 3.3. r<gidﬁﬁx> ~C(=I'(Q,)) if and anly if:

(3.3.1) 1,

>
¢ £ . ; PR - \ N
Fllxl and \Fllxl) are linearly independent aver C
The following criterion For the simplicity of gx is useful.

Lemma 3.4. I'{K,) (="' (End E )) = C, if (3.3.1) holds and

AN
y2L 5 C o
{s, a, «I'¢ (; 73 Z (a )=t a Yoon XK. .3i, €4 3
(3.3.2) a1 k i S; 12 o
iij,zo; i, éam Y = 0.

We make some remarks on this lemma. First, if m=1(i.e., if 21 is

irreducile), (3.3.2) is equivalent tao:

2

(3.3.3) F((;a) Lgl) = 0, where D is the pole divisor of Fllﬁl .

kgl

Assume tha m 2. Also assume the following for each 1#] cam.

(3.3.4.1) uy vanishes on each irreducible combonent X?J 2 of E%J .
’ o] -3

By Lemma 3.1, each a4 er\(lﬁ)ékg > is written as b ®u? » with b,

’ : - i i

2 L. < i
er((;Di> ®£Xi). Writing F1Ixi as vi/ui Wwith vy erigxi), we see that
~
the (1,2)-component of ZS bl®u?‘) ='bi®vi2 while the other (a,8)-
_ i
-caomponent =0 .on XiJ' Thus the condition in (3.3.2) is rewritten as:
(3.3.4.2) b.ovee =b .0v®% gn ¥
- B 771 J i]

& 4. Bundles in § 1.3

Here we prove the following

" Theorem. The bundles E>< in Theorem 1.2.1 1.3.2 are simple.
The proof is given by using the criterions in Lemma 2.1 2.3. UWe use
freely the notations in this appendix and in §1.3. We should
ditinguish them. When we quote a result in § 1.3, we write it as

(1.

(53]

10,8 1.3, When we write simply (1.3.1), it is a result in this

[~ |

appendix. As in § S.2 we make a remark as fol louws:

VA
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It is not the line bundle gg in § 1.3 but L%m, that

)
carresponds to the bundle ER nitherto in this appendix.
As previously, we write Ei far ?i. Also we write L?l for gglg .
i i

A.4.0. First the pole divisor ﬁ? of the meromarphic
functions on Ei,cf.(0,1.3.2), is the lacus of the following elements
scf.§ 1.3,

SQ;FUP Theorem 1.2.1 and 1.3.1, 9y Q;For Theorem 1.2.2,

(4.0.0.1)
and g. ;for Thearem 1.3.2
i,m .

Thus we have:

= ké(l_m); for Theorem 1.2,1 and 1.3.1,1.3.2
i
=£§(_2n); for Theorem 1.2.2.{(Here m =4n +1.)

A.4.1. Here we determine Qi—modules QY ,cf o (1.4.1). First, we
i i

have:

Lemma &4.1.1. Accarding as we are concerned with Thegrem 1.2.1

or 1‘2-2,(:{' g 1'3, we have:

Proof. By Lemma 3.1, this is clear once we recall that rank E

=2 for Theorem 1.2.1 and 1.2.2. q.e.d.

The rank of the bundle E, in Theorem 1.3.1 and 1.3.2 _3, and Gy 1is
. , : i

not so simple. We determine gg as followsidefine an Q? -submodule

" 8(r-1) 2 .
Fo of Lg by the following holomorphy conditanicf.also
: ,

-

T
(1.4.1.2

..

_ e{r-1) ._ . v .
An element Ei—(bi,T)TEAr_,—Xi is in Exi if and only if:
(4.1.3) '

i,rr Ry kg

By (1.2.0.1) and the exp[icit form of the meromorphic functions Fa

in ‘Fol1ows:

. .}.r‘—l o - . ) k . ‘ ' N
(4.1.2) - UT!Xi®bi,T = 0O{mod.s !Xi, i Am’ for Theaorem 1.3.1,
Tye s for Theaorem 1.3.2

1 -
-4 9. 7 9b = Oimod.g3; )
’b”-i L,?‘XL i.)-a/ i_,I'
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Accaording as we are concerned with Theorem 1.3.1 or 1.3.2,'the

multiplication by sq and s®(m 1), sﬁ define an Q? —morphism:gz -
i i
(Lf »®™, For each i EAm we have:
i
Lemma 4.1.2. In the both theorems:Thegrem 1.3.1 and 1.3.2

the abave QE -marphism gives an isomarphism:
i ’

i 1 i 1
Proof. By Lemma 1.4, §yi fi5i®£§i, where the Qii—submodule Eyi

of (L;"™® 71 is defined by the similar manner to (4.1.3);cf.

(1.4. } ). We have easily (4.1.5) from this. qg.e.d.

A.4.2. Here we check the simpleness of the bundle EX in§ 1.3.
For this it suffices to check the following;cf.Lemma 2.1
(4.2.0) r<5xﬂgir2> = C and el (Ky) =0 .

The first fact in (4.2.0) is clear, once we compare the
conditions on the linearly independence of the meromorphic functions
in Thearem 1.2.1 1.3.25¢F.¢(1.3,1.2),(1.3.2.2Y,(1.3.3.2),(1.3.4.4),
cf.§ 1.3 with tgose in Lemma 2.2.2 and Lemma 3.3.1.

Next we show the secand fact by checking that:F(Gzl) =0:cf.

®(2- m}

Lemma 2.2:For the bundle gx in Theorem 1.2.1, G L 401010,

Thus if m_ 2 we have:F(gz ) '=0. If m =2, Q; :gg and the isomorphism
i ‘1 i
is given by the multiplication by (SA) 2, cf.Lemma 1.4. Thus an

sA> 2 Lith ¢, =C. By (3.3.4.2)

{(7— c e ) < .~ !\®2 P\ 2 . .
Fkﬁxl) consists of those e]ements‘ul(sl) 2 2 satisfying

c.t?2=c.t§2
11 JJ

havezr(gXl) =0. Next, for the bundle in Theorem 1.2.2, we have:Gy
. ) 1] i

element of F\QE) is written as Cy {
i

. But (1.3.1.3), § 1.3.1 implies that c1=c2=0, and we

2L§ scf.lLemma 4.1.1, and the identification is given by the
i

mu1t1p11cat10n by gl 2 anl » By a similar argument to the above
’
, . ) ®2 . .
F(§X1) consists of those elements eiEAmCigi,Q with <y eF(gxi>
. . . 92 _ ®2 . = N .
E.a’(1s.f‘y1hg.cigi’1 —cJ i1 on X i with 91,1 _na=1sijnja' Consider the

/0¥
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®2 B 82
i+n+1 ~Ci+1%i+3n+1"
the condition (1.3.2.2),8 1.3.1, uwe have:ci =0 'and F(le) =0.

case J case j =i+l. Then the relation istc.s By -

Finally, for the bundles EX in Theorem 1.3.1 and 1.3.2, compare

(4.1.4) with (1.3, . ) and (1.3. . >,8 1.3. Then we have:I'(Gy )=0;

X,
i
i eam. Thus we finish the proof of Theorem.
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