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Higher dimensional analogue of the m-truncated KP . hierarchy

Masatoshi NOUMI. ( ®Wi#§ E# )
Sophia University ( E® KX - HT)

§ 0. Introduction

The theory of KP hierarchy of Prof. Mikio Sato can be thought
of as a univérsal framework for the integrable systems of non-
linear differential equations involving a single space variable.

It seems, however, that no theory of such a nature has been brought
out yet so far as "higher dimensional" integrable systems are
concerned. As is already introduced in Dr. Takasaki's article [ 51,
Prof. Sato presented, in his recent lectures at Kyoto University,

a point of view that integrable systems, hopefully including

higher dimensional ones, appear via correspondence of Riemann-
Hilbert type, namely, interrelation between linear differential
equations and their solution spaces. Following his idea, some
young people from Kyoto and Tokyo are now working in search for a
natural framework for higher dimensional systems. The purpose of
this note is to report some topics related to this subject, mainly
on an analogue of the "m-truncated" KP hierarchy. The m-truncated
KP hierarchy is an object, holonomic in some sense, from which the
KP hierarchy can be obtained by a limiting process as m tends to
infinity. Thoﬁgh the present stage of this note is, in nature,

fér from the vision of Prof. Sato, it might be regarded as a
‘miniature of the theory of higher dimensional systems in its.

proper form if it will be brought to light in the near future.
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Before starting my report, I should make it clear that the
basic ideas behind are due to Prof. Sato and most part of its theme
has already been prospected by himself. The contents of this note
are formed out of the discussion or taken from the joint work with
the following five persons : Prof. K. Ueno, Dr. K. Takasaki, Mr. H.

Harada, Mr. N. Suzuki and Mr. Y. Ohyama.

8§ 1. Wronskian determinants and the Grassmann formalism

Qur first object of interest is the Wronskian determinant for

functions in several variables. To fix the ideas, we take a

) of mutually

differential field K with a family g = (&0,...,9r_1

commutative derivations Qk: K - K (0sk<r). We denote by C =

{ ceK; ao(c)=...=2}_1(c)=0 } the field of constants of K, and by

D =KI[ZJd]1 the ring of differential operators in 2 with K-coeffi—

cients. By definition, D 1is a (free) left K-module with basis

o
{ 20 ofGINr }, and its multiplicative structure is characterized

by the commutation rules

(1.1) [ Jd., .1 =0 and [ 2

i . ke 11 =9k(f) for any f€K.

Setting L = N', we wil use freely the notation of multi-indices :

o -
o = 93(0)...9g(r D for each o = (X(0),...,0(r-1))€L =lNr.

Let f = (f f )€K® be an m-tuple of "functions” (i.e.

09..-9
elements of K). Then, for each m-tuple & =.(du,....um_l)€§Lm of

m-1

multi-indices, we definé the Wronskian determinant wrd(i) =

Wrao’..‘,d (fO"“fm—l) of f with indices <« by
m-1
X
: ) o - .
(1.2) wruo,...,am;l(fﬂ"°"fm-l) det( o (fj) ; 021,ij<m )€K

It is well known that, in the case where r = 1, one has only to
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gheck one Wronskian determlngnt 'wru.l....,m~1(fO""’fm-l) to see
if fo,....fm_1 are linearly independent or not. In the case

where r>1, however, the situation becomes‘a 11tt1e complicated.

Let us call a subset S of the lattice L an order ideal if

It satisfies the condition
S (1.3) xeL, B€S and a3 B => AES,

where S 1s the natural partial order of L =IN'. (The above
condition Is equivalent to saying that the complement E = L\S |s

a monoldeal of the monoid L.) By abuse of terminology, we say

is an order ideal of degree

that an m-tuple & = (aj,...,a ) €L"

m 1f the &, 's are mutually distinct and the set {og,...,op ,}

is an order ldeal Qf L.

Theorem 1.1. Let f =(fg ,....f ) be an m-tuple of elements of

are line%ﬁy independent over the fleld of

l{o Theno fu)o-o,fm_l
constants C 1if and only If there exists an order ideal x €L of

degree m such that Wr“(i) does not vanish.

(This thébrem was conJjectured by Prof. K. Ueno, and proved by Mr.

- N. Suzuki{ and the author independently.)

Let V be a C-subspace of K of dimension m. We defline an

left ldeal J of D by
(1.4) J, = { PeD ; Pf = 0 for all fevV ).

Now, choose a C-basis £ = (fy.....fy ;) of V. For each f =

. mtl
(Pgr+eespy) €L 7, define a differentlal operator Pﬁ by

i 1
(=)' wr ~ £ d 0,
0 Boreefyreefy f

n 3=

(1.5) Pﬁ = El
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which readily belongs to the ideal JV'

Corollary to Theorem 1.1. With the notatidns as above, the ideal
JV of D is generated by the set { P@ ; B is an order ideal of

degree m+1 } and the quotient D-module MV =D/ d is an m-

\ Vv
dimensional vector space over K. Moreover one has

(1.6) V={feK; Pf=20 for all Ped; }.

vV

The latter half of Corollary suggests that there is a one to
one correspondence between the finite dimensional C-vector spaces
and the holonomic systems of linear differential equations
"solvable in K".

We say that a (left) D-module M 1is holonomic if it is finite
dimensional as a vector space over K. (Here, we adopt it as the
definition of holonomicity.) For each D-module M, we denote by
Sol (M) = HomD(M,K) the C-vector space of solutions to M in K.
Using Theorem 1.1, one can show that, for any holonomic D-module M,
the dimension of Sol(M) over C does not exceed the dimension of
M over K. We say‘that a holonomic D-module M is K-solvable if

dimCSOI(M) = dimKM.

Theorem 1.2. The functor Sol gives an anti-equivalence between

the category of K-solvable holonomic D-modules and the category of

finite dimensional vector spaces over C.

(This theorem is more or less tautological indeed, unless one
should give a criterion for a holonomic D-module to be K-solvable.)

Theorem 1.2 give rise to various types of isomorphism between
two "Grassmann manifolds", one consisting of D-modules and the

other consisting of C-vector spaces.
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For a D-module M, we denote by Quoty(msM) (Quoty(m;m)<7501Y)

D

the set of (K-solvable) quotient D-modules M' of M»,with dimKM'

= m. For a C-vector space V, we denote by Subc(m:V) the set of

C—subsbaées 'V’ of V with 'dimCV"= m. With these hotations,

Corollary to Theorem 1.2. (1);Sol> gives an isomorphism

D)K=50lV X oy (miK) for each me IN.

(1.7) Sol : Quot c

D(m;

(2) Let M be a K-solvable holonomic D-module and set V = Sol(M).

Then one has an isomorphism

(m;M) = Sub.(m;V) for each m€N.

(1.8) Sol : QuotD c

As Prof. Sato pointed out, the left hand side of the isomor-
phism (1.7) or (1.8), which’is a kind of Grassmann manifold itself,
can be regarded as represents the space of solutions to a certain
system of non-linear differential equations. Theorem then says
that the totality of its solutions can be parametrized by the
Grassmann manifold on the right hand side. In order to give an
explicit form to this type of "Grassmann formalism", we will
discuss the "canonical forms" of linear differential equations.

In that context, it‘is natural that Wronskian determinants pléy an
essential role in describing the inverse of the isomorphisms of

Theorém 1.2.

§ 2. Grobner representation of a linear differential equation

In this section, we discuss the canonical forms of cyclic D-

modules, with respect to a total order of L. We fix a total order

2 of L = Nr, additive in the following sense :
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(2.1) 1) (L, ) is a well-ordered set.

ii) 0« (xel ) ; «xp, 7eL = a+7 X B+7 .

Note that the condition ii) implies : a =B =3 alkp (d4,8€L ).
A typical example of such a total order is the lexicographic order
of L = Nr. and another is the one composed of the length of multi-
Indices and the lexicographic order.

Using the additive total order <, we define bilateral K-

Submodule Dy, and D4 as follows
(2.2) = 9(3 = >° h o€L
. Diy = ®[3-£aK and Dy, = @p—eak for each o€ L.

For a non-zero differential operator P in D, we define the -
order of P, denoted by ord(P) (€L), as the mininum among all
X €L such that P€Dgy. An operator P of <-order o is said
to be monic if P = 9“ mod D,,. For each subset S of L, we

define a left K-submodule K<S> of D by

[» 4
(2.3) K<S> = @ s K2 ¢ D,

o

which is ga right K-submodule as well if S is an order ideal of L.

Lemma 2.1. (Division Lemma.) Let A be a finite subset of L and

define an order ideal S of L by S =L\ cheA(o” L). Let
pa)o(eA be a family of differential operators in D such that

Px 1s monic of g-order o for each «€A. If P is an operator

in D-é(z (FGL)' there exist operators Qa (a€A ) and R in D

such that

(2.4) -
P=2 eaQPx *R

satisfying the condition
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(2.5)  + REKS> and ( Qg # 0 == ord,(Q,) +o« B .

As“a matter 'df fact, we need this type of Division Lemma to prove'
Theorem 1.1. Note that one'cannot always expect the unicity vo,f the
residue R. (We will return to this point later.)

Let M

D/ J be a cyclic D-module with generator u = 1 mod
J. (We do not assume M to be holonomic.) Then we assobiate a

subset S(M) of L defined by
(2.6) SIM) = { Q€L 3 Myy/ Meyq #0 3,

where Mgg= Dgqu and Mg, = D, u. For each subset S of L, we

denote by SS ¢ KKS> - M the K-homomorphism P ~ Pu.

Proposition 2.2. The set S(M) 1is an order ideal of L. Moreover

£ gives a K-isomorphism K<S(M)> = M.

SM)

One can also show that S(M) 1is the maximum among all subset SCL
such that 85 ¢ KK8> - M is injective, under a natural total
order of the bower set ?(L) induced by <. " In this sense, we

call S(M) the canonical order ideal of the cyclic D-module (M,u)

with respect to the total order <.
Consider the case where M =D / JV is the D-module coming

from an m-dimensional C-subspace V of K with basis f =

(fO,...,fm_l). If one expresses the canonical order ideal S(M)
as {ao,...,am_l}, where af0<a1-< "‘*“m—l’ then the m-tuple & =
(@y,...,& ;) is characterized as the minimum among all g€L"

such that wr@(p#o, under the lexicographic order of L™  induced
by the total order 3 of L.
When S is an order ideal of L, we denote by A(S) the set

of all minimal elements, ‘under the natural partial order of L = [Nr,
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of the complement L \S ; the set A(S) is necessarily finite, and

one has S = L\V (aa+ L). If (M,u) 1is a cyclic D-module

AEA(S) _
with canonical order ideal S, then by Proposition 2.2 one can find

a unique family ( wa) A = A(S), such that

XeA’

x
(2.7) . W, € 0 + KKS> and Wy u=0 for each x€ A.

o

Proposition 2.3. With the notations as above, one has ord_(W,) =

& for each «a €A. Moreover, ( Walyen 9ives a generator system

of the ideal J of M.

We call the above ( w“)“éA the canonical generator system of J

or the Grobner representation of the system M, with respect to the

total order <.

In the case where M =D / JV comes erm an m-dimensional C-
subspace V of K, the generator system ( wu)deA can be explicitly
expressed by Wronskian determinants. Let f = (f0’°"’fm—1) be a
C-basis of V. 1If one writes the canonical order ideal S=S5(M) as

{or

L R with‘ dyp< & <. <oy 4 then one has for each o€ A=A§S)
X -1 X
(2.8) Wy = @ + Zy_g W, ;9 » where
wr - fo,...f 1)
y e Ogrees@ioees 15,0 70 m-1
o, i
’ wWr (fp...,f )
aos...gam_l O m 1

Note that the property ordg(wd) = & 1is equivalent to saying that

wty,i = 0 for aikot.

Suppose that a generator system of an ideal J 1is given.

Then how can one know what subset of :L -is the canonical order

[N

ideal of M =D / J or what is the canonical generator system of

Jd ? The answer can be given in an algorithm by using the



characterization theorem of the canonical order ideal.

Theorem 2.4. Let A be a finite subset of L and define an order

ideal S by ‘S = L.\\ﬁxeA(an+ L). Let ( F’O()a(eA be g family “
of monic operators in D with ordg(F&) =& , Denote by J the
left ideal of D generated by ( Pd)aeA and set M =D / J. Then

one has SDS(M). Moreover, the following three conditions are
equivalent :
a) S ‘is the canonical order ideai S(M) of M.
b) (Unicity of the residue in Division Lemma.) K<(S>NdJ = 0.
c) (Compatibility condition.) For any couprle (azp) GA?,

there exist operators QF;‘F’ ( 7€A) such that

a' _ ﬂ' _ (ot ,f3)
(2.9) 2%k, - 3R, = 2, 0 £e,,

where o’ ='otV/3 —p’ and /3' = o(V/!—cx . o(Vﬂ= sup{a,ﬁ} under

the natural partial order of L, and that, for each Y€ A,
(o, 3) (o, 3) v
(2.10) Q7(3 £ 0 = ord3(97§)+’)’—<d/3.

(This theroem was proved by Mr. Y. Ohyama and the author.)
By using Theorem 2.4, one can express the "Grassmann manifold"

Quot.(m;D) as a disjoint union of solution spaces of certain non-

D
linear equations. Note first that QuotD(m;D) is decomposed into

a disjoint union

(m;D) = Lls QuotD(S:D),

’\(2.11) QuotD

where S ranges over the set of all order ideals with #S = m, and
Quot,(S;D) stands for the set of all quotient D-modules of D
whose canonical order ideal equals S. Now, take an order ideal S

of L with #S = m and set A = A(S). Consider a family

21
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«Cw_) of differential operators in the form

o Jaea
> ’
(2.12) g = 9+ 2 pes pew Vup?

for each «€A. Regarding w, £ as "symbols", one can find, for

each couple (d,P)eEAZ, a differential operator R(d’ﬂ) such that

. o £ - (o,3) (ot,3)
(2.13) 2%y - Py = = B w, + RV,

7€A

for some differential operators B(;’ﬁ) satisfying (2.10). (Use
Division Lemma 2.1 for a suitable differential field.) Here, the

operator R(d”ﬂ) should have the form

Y
(2.14) RUL) - 3 r%j#g’B )

7€S

Note that the coefficients r(;"/") ( d,peA,?’E S) are determined

sp

component QuotD(S;D) of (2.11)’can be identified with the

as differential polynomials in w ( aeA,péS,p-fa). Then the

totality of families ( W of operators in D = K[21 in

o Jaea
the form (2.12), satisfying the system of non-linear equations

RO = 0 (o penr.

§ 3. The m-truncated KP hierarchy in higher dimensions

Now, we apply the arguments of the preceding sections to
formulating the m-truncated KP hierarchy in higher dimensions.

Let R = CLI[x1] be the ring of formal power series in r
variables x = (XO""’Xr—l) and K the field of total fractions
of R. Endowed with the family o_. = (d_ ,...,2 ) of mutually

X ‘ XD Xr—l
commutative derivations, K is:regarded as a differential field.
As before, D = KI BXJ denotes the ring of differential operators

with coefficients in K.
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We say that a cyclic holonomic D-module M =D /. J is R=
solvable 1f'it js Kfsolvable and Sol(M)CR, where Sol(M) is
identified’WIth a C-sﬁbspace Qf’ K.k The toﬁality of R-solvable
quotients WM of D with dimKM = m} will be denoted by .

R‘SOIV. In the sequel, we denote by VWV the nnderlying

QuotDlm:D)
C-vector space of R = CLIxJ]J and by GM(m;W¥) = Subc(m:R) the
1nf1nite dimensional Grassmann manifold consisting of all m-

dimensional €-subspaces of V. Then by Theorem 1.2 we have

Proposition 3.1. There is a natural Isomdrphlsm

(3.1) Sol : QuotD(m:D)R"SOIV 5 GMmW).

To make things clear, we confine our discussion to the
"generic part" of the isomorphism (3.1). Fix a total order =« of
L, additive in the sensg of §2. Let S = {ggo.eoopn 1}y popy<e . X
Fm-1° be the set of m smallest elements of L under the total
order <, which we consider as a generic order ideal. Then we

define the generic cell GM(m:\I')¢ of GM(m;V¥) to be the set of all

C-subspaces V of W having a C-basis £ = (fy,....f _,) such

that . Wr (f o f J(0)# 0. (This condition is

Foreeooppeg 0077 o . |
equivalent to saying that the corresponding Plucker’coordlnate

does not vanish.) Then one can show that the inverse

£
For b
image of the generic cell GM(m:V)ﬂ by the isomorphism (3.1), say

QuotD(m;D)R‘SOIV’?‘. can be identified with the totality of families

( WF yiEA‘ A = A(S), of differgntial operators
’ M ~m-1 Hy :
(3.2) Wy = o, ¥ Zi-0 “’/.i 2 .4wlhere w/u,ieR = CLIx11,

satisfying the following compatibility condition : For any fhl’e A,

..'11 -
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] ! Y
3.3 7 ep (kem, N, =M wu=x Q@

(This combatibllity”condltion is equivalent to the Frobenius
condition of integrability when the system W, u = 0 (M€A) s

. v F i
rewritten into a system of order 1 for the vector ( 9x u %)éi-<m

of unknown functions.)

We denote by A = (1\0,....1\r_1) the family of C-endomor-

phisms /\k of VW corresponding to the derivation ax . Then,
, ) K
x
the powers A ( cxeL*, L* = L\{0} ) induce commuting global
vector fields on the Grassmann manifold GM(m;V). By exponent-

fating these, we obtain a family of commuting dynamical flows

7 (L, \) - x
(3.4) e » where 7 (t,A\) zdeL* ta N,

parametrized by a countable set t = (tvt)ueL* of time variables.

Via the isomorphism (3.1), the above dynamical system on

GM(m; V) induces another on QuotD(m;D)R-SOIV. On the generic part

QuotD(m;D)R'SOIV'ﬁ, this gives rise to a time evolution of a family

('WIA)/JGA of differential operators (3.2) satisfying (3.3). The

equation for this time evolution, called the Sato equation, then

can be written down as follows : For each cxeL* and f{éA. there

exist some differential operators Bd;f Y (Ye A) satisfying
W x .
Il -
(3.5) >t Wy Z eA Ba;/u’, Wy .

This condition can be read as a system of non-linear equations,
just as before, by using the properties of the Grobner representa-
tion. Conslderlng this equation (3.5) together with (3.3) as a
system of non-linear equations for a famiiy ( wﬂ)ﬂeA of differen-

tial operators with coefficients in the ring RI[t]] of formal



power series, we have

Theorem 3.2. The totality of the formal solutions ( W) to

popEh
the Sato equation (3.5), together with the compatibility comdition

(3.3), is parametrized by the generic cell GM(m;V/)¢ of the

infinite dimensional: Grassmann manifold GM(m;V).

29

Note that this parametrization cén be explicitly given as in (2.8)

by using Wronskian determinants.

8§ 4. Some results on the ¥ functions

In the final section, we report some results on the 7
functions of the higher dimensional m-truncated KP hierarchy,
obtained by the cqllaboration with Prof. K. Ueno and Mr. H.
Harada. 1n contrast fo the one dimensional case, a single 7
function is not sufficient to describe the time evolution of the
Plucker coordinates. We 'introduce here a “"family of T functions"
which satisfies a system of bilinear equations of Hirota.

Here we fix a €-basis ( = )dGL of VWV as follows

o

(4.1) v =11 ael.cea » where e, = —; for each pel.

Let V be a m-dimensional C-subspace of WV =R, and f = (fO”"’

f,-1) @& C-basis of V. To the C-basis £, we associate a frame

= ( fa,J )a{eL,0§j<m € Mat(L,m;C), expanding fJ. in the form

&
f for each 0= j<nm.

' = X __
(4.2) fj(X) = Eael. %1 fa,j

Then the Plucker coordinates (& _ ) . m -of B is defined by

(11
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(4.3) & = £ (8) = det( f, .5 051i,j<m) for each aeL",
- 1

which equals the value of the Wronskian determinant Wr (£)(0).
(& x are anti~-symmetric under the permutation of indices.) Recall

that, for each point V of GM(m;W), the Plucker coordinates

(gg_)geLm are determined up to a constant multiple, and satisfy
the following Plucker relations : For any « = (oro,...,otm_z)esLm—1
and A = (ﬁo,...,pm)eLm”, one has
N PRIV Y RS SUSRPRE 3
0 m-2°ri 0 i m

Now, consider the time evolution (3.4) of our m-truncated KP

hierarchy. First note that the time evolution of a frame & can

e”(t'A)E.

be given by E (t) = Taking the m-minors of the LXL

matrix e” (t’A), we define the relative Schur polynomials
xd,&(t) as follows : For each couple (g,ﬁ) of elements of L™,
(4.5) L) = det( p (t) s 0si,ji<m,
Xg.@ : ﬁj'ai

where po{(t) (del) are the polynomials determined by the

generating function

e?] (t,u)’

o
(4.6) 2 pa(t) u = u= (ud),...,ul(r-1)).

a€EL

In terms of these relative Schur plynomials, we can express the

time evolution (Eg(t”gr_eLm of the Plucker coordinates (Eg)geLm'
Noting that Su(t) = sa(E (t)), we have
(4.7) Eg(t) = EﬁeLm x_d_;ﬁ(t) sé,

where 2 ' represents the sum restricted so that, for any subset

S of L, only one m-tuple ‘é = (ﬁo""’/;m—l) with S = {/30,...,
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p..,} should appear in the summation.

Proposition 4.1. With the notations in § 3, the solutions ( w/u),ueA

to the Sato equation (3.5) can be represented by the Plucker

coordinates (£ _(t)) m with £ | " #0. The coeffi-
g_ QLEL /aOg.ooQ/‘m_l

. . < i .

cients w/w’l(ﬂ._ i<m) of w/l are given by

3 Y (x+t)
(4,8) w0t = ()" +o Hi Fn-1"H .
’ 3 (x+t)

Fore- o pumi

where (x+t), = x, + t if a« 1is the unit vector &, = (& . ).
a k Ek k J!kJ

for 0=2k<r and (x+t)d = ty otherwise.

Note that, in the case where r=1, any Plucker coordinate
£ a(t) is expressed by a linear combination of the derivatives of

the v function 1 (t) = SO 1 (t). In the case where r=2,

. gm—l

m

however, we need to take a subset ,X of L and to consider a

family of Plucker coordinates (& a(t) )ae)g in order to obtain an
object with similar properties. Here we take the subset ,3 of L

defined by
= = m ., .
(4.9) = {a=(ap....a PeEL’ i la;I<m for all i ).

(One might guess that the set of all order ideals of degree m
would suffice as in §1. But it is known that this set is too
small to our purpose. Theoretically, one can minimize the set
indeed, but it is not clear if it carries nice properties.)

With the set 4 of (4.9), we define, tentatively, the family

(Tg(t))éé,? of T functions by setting‘ rg(t) = Sa(t) for

—

each aeJ .

Before going further, we heed to refer to an analogue of the
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Cauchy Lemma. Let u = (ug,...,u ) be an m-tuple of r-vectors

m-1
ui = (ui(O),...,ui(r—l)) of indeterminates. Then, for each m-tuple

LI CONRIN L of multi-indices, we define

. ’ &,
(4.10) A W = detl ujl s 0si,i<m).

Let v = (VO,...,vm_l) be another m-tuple of r-vectors v, =

(vi(O),...,vi(r—l)) of indeterminates. Then we have

(4.11) det ( y I, J.( 1 - <ui’vj> )

A (1) Ah(!)'

jo

- m-1 .
where <ui,vj> = E:k=0 ui(k)vj(k). In the equality (4.11), the
coefficients Ca;b are integers satisfying C23§= Cé3h' Using

these coefficients, we set

(4.12) X

for each aed and oel™

Proposition 4.2. For each geLm, one has

o AR I ¢ I ~
0 """ "m-1 _ ' *
(4.13) “N'“ﬁmly sgun- 226} x@g(ag réu),
o (1xi- 1)1
where at = _*_7;7_—'9t )aeLf .

Recall that the Pliicker coordinates (Eﬁ(t))ueLm satisfy the
Plucker relations (4.4). Hence, by Proposition 4.2, we see that
our family of 7 functipns satisfies a system of bilinear differen-
‘tial equations.” These bilinear equations can be rewritten into the

Hirota form.
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Given a differential operator. P(at), and a couple (f(t),g(t))

of functions in t, with Prof. Hirota, we write

(4.14) P(D,) f(t) » g(t) = P(as) f(t+s) g(t—S)

t s=0"°

Wwith this notation, we have

of v functions of the

Theorem 4.3. The family (Tg(t))g_e,y
higher dimensional KP hierarchy satisfy the following system of
Hirota's bilinear equations : For any « = (ao,...,am_2)e Lm'1
- m+1
and B = (By.....p)ELT
. 1 ~
(4.15) =° (s M yly*, (= D,)-
_a_ohelg 1-‘0 ésdoy'-o, m_20pl 2 t
. 1 ~
X -~ (-=D,) }» v (t)Yye v (t) =0
Bifgre-ofyrceofy 206 0 T2 b
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