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On Gevrey Singularities of solutiens of-requations with non symplectic

characteristics

Tsutomu SAKURAT | N I
(Saitama Univ. Urawa 338) (;%;1,7;, )

In this note we shall construct parametrices for a specific class
of differential operators with non symplectic characteristics and
clarify the structure of Gevrey singularities of solutions of the

corresponding equations using constructed parametrices,

0. Notation and preliminaries

It %X 1is an open set of RN and v 2 1, fhe Gevrey class of
order vy; which we denote by GV(X), is the set of all u e c(x)

such that for every compact set K c X there is a constant CK with

Lol +L oy,

K r € K,

Iagu(x)l < C

for all malti—-indices @« € NN.
We use the following definition of the Gevrey wave front set given

by Hormander [14],

Definition 0.1. If X c R and u e 9'(X) we denote by WF (u)
the complement in 7*(X)\O of’the set of (é,é) such that there
exist a neighborhood Uy c X of %, a conic neighborhood v ¢ RN\O
of £ and a bounded sequence uk € ¢'(X) which is equal to gy 1in

U and satisfies
1, ()1 < KL v ienk, Kk =1,2,...

for some-constant ¢ when ¢ € Vv, where ﬁk denotes the Fourier

transform of Up

wfl(u) is also denoted by wFA(u) since this is one of the
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definition of the analytic wave front set-known to be equivalent to
the others; see e.g. Bony [3].

If 5 denotes the canonical projection of T7T*(X)\0 on X then
U € CV(X\n(WFv(u))) and for a differential operator p with

analytic coefficients, we have

WFv(Pu) c wrv(u) ¢ Char p v wrv(Pu).

.

where Char p denotes the: characteristic set of p. We say that p
is ¢Y microhypoelliptic at -(z,€) if there is a conic neighborhood

V c T*(X)\0 of (gz,£) such that

WF (Pu) nv = WF (u) nV.

1. Statement of the results

Let ¥ be the submanifold in T*(RN)\O of codimension 2d+d’

given by

=0},

T = {(CL‘:%)GT*(IRN)\O; m1=“'=$d=0' gl:.”.:id'f'd'

where 0 < ¢ < d+d” < N. With this 3 we set

doon = pdopd’_od" o e
Rthy Rthy,ny” (d+n=N, d’+d"=n)

N
T

R

and denote by &' = (t,n) = (t,n",n") the dual variables of g = (t,y)

= (t,y' ,y") € R%sz:szz. (In this coordinate = = {(t,y,t.,n"»n");

t=t=p’=0, p"=0}.)
For a fixed integer # > 1 we shall consider a differential

operator of order m“ with polynomial coefficients of the form:

- Ny = ¥ B
(1.1) P = p(t,,,D) 5 t"0b S,

a
ol +181<m By
lyi=lal+i8  1+(1+R) 18" I-m

where (a,8,7) = (a,87,8",7) € NN xN® xN¢ and (D,.D,) =
(—iat,—iay). Note that the symbol p(t,t,n) _has the following

quasi—homogeneity:
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(1.2y . ol t/xP, xt,2Pn ,2Pn"y = xP™p(t,tonsn"), a>0

‘with o = 1/(1+h).

Let Po denote the principal symbol given by

(1.3) poltrTon) = a ., tnf®.

oBy

|I+M

For a point (z,€) = (0,¥;0,0,5”) € T (in"| = 0) we suppose:
(H—i) There exists a constant ¢ > 0 such that
oo toton i) 1 2 eClti+in 1+1t)™,  (tton) € REGRIxRY
We also consider the following condition due to Grufin.

(H-2)  For all 5 e 8%, ‘Ker p(t.D,n".i") n y(mf) = (0}.

Here p(t,Dt,n’,ﬁ") is considered as an operator acting on y(R%)

with a parameter p° € R d.

Remark. If h =1, (H-2) is known to be equivalent to (% micro-
hypoellipticity with loss of pn/2 derivatives; see e.g. Boutet de
Monvel-Grigis—Helffer [4], see also Gru¥in [10],({11],[12] and the
other authers (8],[15],[28].

Theorem I. Let P be an operator of the form (1.1) satifying (H-1),
(H=2) for (z,£) € . If v 2 l+h then P is G" micro-

hypoelliptic at (z,£€).
The condition vy » 1+ 1is the best in the sence that

Theorem 1I. Let P be an operator of the form:

1.4 (t,D,»D ,) + ,
( ) p p (? Dt Dy ) q(Dy )

"

Y87 N0
a .. tDPD% s
lol+18" |<n LA T

fyI=tal+(1+R) 18" |—m



sastisfying (H=1) for (0,£) € S, Then one can find a meighborhood
U of the origin in RN and a solution u € C{U) of Pu=0 in U

such that for every v < l+h

(1.5) (0,€) € WFv(u) c WF, lu) c {(x.lg);‘zeU, A>0}.

If ’1 < v < 1+p we can get a result on propagation of
singularities of solutions for these operators.
Let A be the involutive submanifold of T'(RN)\O containing 3%

given by
A= {(t,y;r,n’,n")eT"(RN)\O; n-=0}.

Then in the canonical way A defines é bicharacteristic foliation in
T as well as in  A; that is, each leaf rO is an integral
submanifold of dimention ¢° of the vector fields generated by

{ayl;~..,ayd’>. (Note that rp(ro) =7,(2) n rp(z)* for all p e

ro-)

Theorem fII. Let Ty be the bicharacteristic leaf passing through
(z,£) € s defined as above and W be an open set containing (i, £)
such that Ty N W is connected. Suppose that P is an operator of
the form (1.1) sqtisfying (H-1) for (z,€) and that 1 < v < l+h.
1f wea (RY) and WF (Pu) nTg AW =8 then either p W

N WFv(u) ¢ or TognNW c«WFv(u);

Remark. If R=1 and v =1 this is a spacial case of Theorem 2
in Grigis—Schapira—-Sjostrand [9]. See also Sjostrand [29]1,[{30] and

Hasegawa {13] in this connexion.
Frzample. Let

N1, d d _
(1.6) P='30 + Sato. +h3eale
. 7 j:l J » ,’/:1 N j:]_ y

where ¢ = (cl,-~~,cd) e ¢t If



(1.7) ‘_Sup ]<011m0>|'.< 1 (o€ Rd) ’0I1='01'+"’+|0d|)v
<og,Rep>=0
l0|1=1
. 1+h . s : . x(olN
then p is (& microhypoelliptic at every point in T*(R")\O.
In fact, noticing that hg"ls  =[a_ ,z"8_ 1 we get by Theorem
i Tz €, Iy

1" of Rothschild-Stein [25]

N-1 2
(1.8) S e, ul” +
| - =1 % i

1zte uil? < crPu )
J.JN

MK
kit

if (1.7) is fulfilled. This implies (H-2) while (H~1) is evident.

2. A study of the Grugin operator .

We shall construct a right parametrix KX for a self-adjoint
operator Q = (P*P)K with 2km » d¢+1. (Note that the quasi-
homogeneity (1.1), (1.2) and the conditions (H-1), (H-2) are
preserved for @ with the order n replaced by ¥ = 2km.) Then
clearly K*(p*p)p* 1is a left parametrix of p and the micro—
hypoellipticity of p follows immediately from that of (.

In the construction of the parametrix we follow closely Métivier
[21] and Okaji [22]. In this section we shall derive the estimates

for the inverse of @ = ?yQ?;l.

2.1, Grufin operator. Let @ = q(t,Dt,Dy) be an operator of the

form (1,1) satisfying (H-1), (H-2) for (z,£) € T. We may assume
(z,8) = (0,e,) = (0;0,...,0,1) without loss of generality;
henceforth we let £ = (0,7) = (0,0,7") = (0,.--,0,1) ¢ RV,

By the fourier traqsform in y, we consider the equation:
(2-1) q(t’Dt;n)I)(t,n) =u(tyﬂ)
in a conic neighborhood UgxV of (03pn) € Rdx(Rn\O) given by

‘ U= {teR%; 1¢1<l),
(2.2) €
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. n . o
= - ’ , ” \O ; N PY , [T < .
v8 {n=(n’,n")eR In”| en, In”"=n nnl snn)

q(t,Dt,n) is essentially the same operator that was studied by
Gru¥in [127; so we call it grudin operator.
Now we shall start with the following lemma due to Grufin (: Lemma

3.4 in [12]).

Lemma 2.1. Let Q = q(t.Dt.Dy) be an operator of order H of the
form (1.1) satisfying (H-1) and (H=2) for £ = (0,0,3"). Then there
ecist a conic neighborhood V" of n" and a comnstant C such that

for all n = (n’>n") € Rd xy"

(2.3) S ft(ln"sp+ln'|+|t|h|n"|)”"B'DBv(t)|2‘dt'
!B 1<M ) t

< C flq(t,Dt,n)v(t)l2 dt

for v € y(Rf), where p = 1/(1+p),

Let us introduce new variables

n’ T = r/ng, n’ = n’/nz, n" = n”/nn, (nn>0)

and set
‘v(t,n,nn) = v(t/nn,n noon /nn).

Then in view of (1.2) we have

-L“ i -, n)v —’_) = PR ’ ’ ’ ’
(2.4) q(t,Dt,n)v(t n nn) n, q(t Dy n)v(t,n)
and the conic neighborhood Uexv8 blows up into fove, where VS =
n
R <7 e 1nr-nni<e).
n
By multiplying n;p(ﬂud),r(Z.B) becomes
(2.5) 3 f|<1+r5'|+t2|h|5"l)”"'B'D%D(Z,nn)lz di

I81<M

- - - 2
< C f!q(t,Dz.n)v(t,nn)l di.
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Moreover, we have

Proposition 2.2. Let

Ve = {EI(E',H")GGd,XQd”; iIm - i<egtl+IRe n° 1), I1n"-n"1<g).

M S

- —~(
lf €& is chosen sufficiently small then for all n €V

m &

we have

(2.3) with another constant C and there ecists a left inverse K(n)
vE.

of q(f,Dz,ﬁ) depending holomorphically on n € e

2.2 Commutator estimates. We consider the operators

TJzazJ and T_J=Lt‘1 (J‘=l72v"'vd)-
For a sequence [ = (jy,--+,j,) € (£1,+--,+d)X we denote by T, the
operator
T, =T

17 Ty T,

and <J> = 1)+ (1/m)y1i_y = #(jL>O) + #{jL<O).

We define the space

gh(ny = tuer?(xYs Vi, <is < ky Tou e LARY))

/
for k € N/h equipped with the norm:
lut, - = Max  (1+i7°- D)7 ul
on < psajsk 17712 (r)

depending on p € Vg. Note that lulg n is the usual L2 norm

independent of p; hence denoted by luly. We also define B_k(ﬁ)
the dual space of Bk(ﬁ).

If © is an operator acting from 9(Rd) into y‘(Rd) we set
ad 7. = - =7T.L - . = 21,
(ac TJ)(L) [TJ L] TJL LT‘7 (4§ = ¢ td)

and because the adffj's commuite, we denote for a multi—-index ¢ =

(a o) = (al,-~~,ad;a_l,--~,a_d) € Nded

o .
(ad T)% = 1 (ad rj) I,

J
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If the operator [ from y(Rd) into y’(Rd) can be extended as
a bounded operator in Lz(Rd) we denocte by "L"O the norm of this
extension, otherwise we agree with "LHO = 4o, o k k
At last, we introduce the norm:

Ly, -= - Max - (l+ip-DY0T,LT 0
kyn <[>+<I>+jgk 177470

tor k e€ N/h, then “L“k n < +» only means that [ is bounded from
B P(n) to BPYK(R) for all p = 0,1/h,2/hs- - k.

Now let Q = Q(n) = q(Z,DZ,E). Then we can write

| - N
(2.6) CAam =3 by, gn'T

<I>¥IBIsH !

and (2.35) by:

=R
M
<

(2.7) Iul”,ﬁ < 0015u10 for

We obtain as in Okaji [22]

Lemma 2.3. If Q is a self-adjoint operator satisfying (2.7) then
there eczists a constant Cl such that

. = = = =C

(2.8) “L“M,E < Cl(HQLHO + HLQNO) for n € Ve.

Let p be an integer. For real R > 1, zg(vg)‘,denotes the
space of operators [ for which there is a constant (¢ such that
for all o =(a,,a_) € NN and 7 € Ve

o leed
H(ad T) (L)">a<+p,5 < Clal!R ’
where > >g< = (1/h)la+l + lee_l. Then zg(vg) becones a Banach space

in an obvious way.

Lemma 2.4, Let 5 be as in Lemma 2.3. Then there are constants RO

and C, depending only on C{ and Max Ib; gl such that if both

QL and LQ are in fg(Vg) then L is in Z%(Vg), moreover
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(2.9) New o < CoUNQLE o o + ULQN o _p ).
2yt 2 L e zg(vs)

R g R e)
Proof is parallel to that of Métivier [21] Proposition 2.3 and
Okaji [22] Lemuwa 7.2 and will be found in [27].  The following

proposition is just a consequence of this lemma.

Proposition 2.5. Let Q be a self-adjoint operator satisfying (2.7)
and let K ‘be the inverse of Q such that KQ = QK = Id. Then, if
R is large enough, K is in zg(vg).

2.3. Kernel of the inverse., -For an operator K from Q(Rd) to

y'(Rd), we denote by K(t,s) its distribution kernel.

Lemma 2.6. If K is in ﬂg(vg) with M 2 d+l then K(t,s) is in
L2(Rded). moreover there erist constants C and R such that for

all o« = (o o) € N

I - PR - — -
(2.10)  1(E=5) (83+33) "K(L,5)1 4 < CIKI RN, 1P )®,
s L € +

Mo
£R(V8)

where p = 1/(1+h),

Proof. Note that if K and. K* arelbounded from ‘LZ(Rd) into
Bd+1(ﬁ) then K 1is a Hilbert-Schuidt operator with the continuous

kernel such that

IK(E, 91 o

< CIKI -,
L2(R%xR%) d+l.n
To prove (2.10) we consider
o o a1tk
(2.11) ((-5) Ttagraz) 1) k(T
BZ B" BI BT o ho,
= 3(£)T 75 a7 07 (1-8) (agpra) TK(1,85),

where the sum consists of 2R1%_ 11l terms of the coefficients 1

or -1 with the multi-indeces §°, 8", 8]

o By such that g +g" =

ho_, Bi+B} = o
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Now

BC B" BL BT o hoay
(2.12) i s az+8§+(t—s) (a5+92) *K(1.5)

is the distribution kernel of

8- B™ ey B BY
r_r,(ad 1) (ad T)) (KT_T_;

which is bounded from L2(R%) into BY(7) together with its adjoint.

Since M > d+1 we know (2.12) is a continuous function with L2

norm bounded by

CIKI Rla-*hle i 1+mia, Y.

L i
£R(Ve)

Adding up these estimates we have

- - % %4 1+h,, - -
(2.13) - p(E=s) (egtay) Ty Thk(E.en ,

L4(RYxR%)

< CIKI o RY Cra_i+h1og)!

£R(V8)

provided that R > (2R)h. Also we have

(2.14) KT o

| < CIKH
L(RAxRY)

.

M
zR(vs)
Then a simple ‘interpolation argument yields (2.10) in view of the

Stirling formila. o

2.4. Symbol of the inverse. We write the operator K of kernel

K(t,s) with a symbol ¥ = o(K) in the way that

(2.15) K(E.5) = (207 [ T T k(E,Tyax.
That is, k 1is the distribution on de given by

, - i<u,z > '

(2.16) k(zt,27) = f etttz K(z+,z++ u)du.

Here and below we use the notation z = (z+,z~)‘=
o . .
(Zly""zd;z_ly""z_d)Gle-

Since (2.15), (2.16) have a sence as the partial Fourier transform

- 10 -~
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the mapping o 1is clearly an isomorphism betWeen"Lz(foRf) ~and
t s

2(1)

L (Q .vAlso- by the definition of : ¢ we have .

o((ad”Tj)(Kf) ='ezjo(k>.

hence Lemma 2.6 is restated as

Lemma 2.7. Let k = k(n) = ol(K(n)): the symbol of K(n) € zg(Vg)
with M 2 d+l.. Then there erist constants 'C, R such that for all «

_ d_nd = =C
—(a+,a~) € N'xN™ and n € V8

- I i—
(2.17) 13%k () | < CIKI R (e 1) TP(a_)?
z L2(r%dy T £(7S)

where p = 1/(1+h).

Now suppose that K(n) € zg(Vg) (4 2 d+1) depends holomorphically

on 5. Then we have

Proposition 2.8, Let K(n) be as above and let k(z,n) = o(K(n))(z).

2d ;€
8

with O < g < g and for all (a,B) = (o rx_,87,8") € N xNExNE XN

Then there exists a constant C such that for (z,n) € R
' 'dn

(2.18) |a§afk(z,ﬁ)|
n

lai+181+1, 1 1B} 1P 1y Pay —, =187
<c (5:57) (o, 1) (o )Pl (1+1n"1) )

where p = 1/(1+h)-
Proof. Recall that

?g = (E=(E’,E")e€d’x€d"; ITm p”1<g(1+iRe n" 1), In"-n"I<e).
Then we use the Cauchy inequality to obtain

188k

n

(BB g1y )BT,

< Kl
(C)SS

£RVE)
Appiying Lamma 2.7 to afx(ﬁ) we get (2.18) by means of the Sobolev
n

lemma. o



170

3. Parametrix; proof of Theorem I
In Section 2 we have showed that there is the inverse ~;(ﬁ) of
Qln) = q(f:Dz:ﬁ) = (P*P)k(t,Dz,n) (2km > d+1) for noe Vg such that

q(t,D7,n)K(L,s,n)ds =16(Z~§)d§’
with the kernel
(5.0 = (207 | S TEORE 5
where k satisfies (2.18) in R%fox(VC,nR?‘) for 0 < g’ < g.

t < n

Now we return to the original variables:

[ " =

t=t/nb, x =l 0 = amab 0 = ava, (n>0)
and set
R(t,s,n) = (2n)7¢ f e T VRt v n)dr,
where
(3.1) Bt ton) = n;2pk“ k(T
= n;ZPkm E(tnz.t/ng,n‘/ng.n"/nn).

Then in view of (2.4)

q(t,Dt,n)k(t,s,n)ds = §(t—s)ds

— ’ . n . - w2
for n € Ve = {(n"»n")eR™O0;5 In"I<en,» Ia"—n"n_lI<en ).
Let us introduce a cut off function given by Métivier:
Lemma 3.1. For given two cones Vi cc vV, c RN\O and 0 < p <1
)

there ecxist g € C (R and C such that

g(g) =0 for £ €V, or I&l <1
(3.2) . .

- 12 -
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g(g) =1 for & € V) and I£1 2 2

and

' ' olal
3.0 o \lal+l(lgi
(3.3) sagg(g>| <C tgi)

for all o, & such that lol < 1&l. (Lemma 3.1 in [21].)

With p = 1/(1+r) and & e v, cc v, = (£=(t,n)eR%R™; I<i<e’,
nev _.), we take g(g) = g(r,£) as above and set kg(t,r,n) =
&

R(t.t,n)glt,n). Then

Proposition 3.2, There ecists a constant CO such that

o Oy fal+181+1 I8 1-p., . p, %
9. 8y kglt,Tin)l < €y (+1e1) "7 e 17 T1EST)

(3.4) 18 ¢

B
n

la_lyplo_l . RN ¥ R R 18" 1
) (gt ()

for la_l+1B1 < 1E1, where £ = (t-n) = (t,n"sn") € RY, («,8) =

(g8 87) € NONSNEHAT, o = 1/(1+h) and x, is the

characteristic function of the support of Vn,g.

Now let Kg = kg(t,D ’Dy) = Op(kg); that is, the operator with the

t
kernel :

- - i <t— >+ i <y— >
(3-3) Kg(t1y$3aw) = (Zn) NI et tms,T*i yTuw.n kg(tn'l'vn)dtdn'
Then we have

(3.6) ng = K;Q = g(Dt,Dy) = Op(g)

and the following
Proposition 3.3.

(3‘7) WFA(KQ) C {(t;y,trw;‘c.n,—‘c"n)GT'(RzN)\O: ynzlJ"y (T,R)GV2},

- 13 -
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o

(3.8) WF1+h(Kg) c {(t,y,t,y;t,h,—t,’n)eT‘(R2N)\0; (T-n)GVZ).

Proof. By Lemma 3.3 and Remark 3.4 in Métivier [21] we obtain (3.7).
Henice to prove (3.8) it suffices to show that K is in Gl+h for

y' = 0, Using, the vector field_ (1/|y'|2)<y',Dn,> -for integrating»
by parts we can pro?e this.aé in the case 2 in‘the proof'of Lemma 3.3

in [21]. o

For any set vy we write diag(Vv) = {((p,p)eVxV}. We have
therefore proved the following; from which Theorem I follows

immediately.

Theorem 3.4, Let P be an operator of the form (1.1) satisfying
(H-1), (H-2) for (%,£) € T and tet Q = (P*P)K with 2km 2 d+1.
Then there are a conic meighborhood V c RN\O of E and an operator

K: &’(RN)/CS(RN) ———>:9’(RN)/CN(RN) such that for every u € 6’(RN)

(3.9) WF 4(QKu = u) n (R¥xv) =4,
(3.10) » W (K*Qu = u) o (RVxv) = ¢
and that

(3.11) ' | WFi p(K) € diagir*(k”)&O),

where WFi’f'h(K) = {((L’rﬁ;ir%); (m:?i;%;”g)GWFl+h(K))-

4, Proof of Theorem II

Let £ = (0,0,p”) with p3” = 0. We consider the operator

p'(t,D,,n"); which is precisely the same one that was studied by

t
Gru¥in [10].

From the result of Grufin [10] we can take ¢ € € and 0 = p €

g(’")  such that

(4.1) (DA ule) = —eala”),

- 14 -
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where 7° € R%" is fixed with |77 = 1. Then
u (t,y) = exp(iafecy ,n > +ix<y 7" u(taP),  p = 1/(1+n)

is a solution of py = 0 for every i1 > 0. Hence
+o _lp
u(try) :J‘ u (t)y)e dx
0 by
is a ¢ solution in U = ((t,y vy )eR?; 1Tnel 1y 1<l).

By Lemma 3.7 in Okaji [22], p satisfies the estimate

lal+l ;)l_p.

laiu(t)l <C («

Hence we have

(4.2) WFA(u) c ((t,y;O,O,xﬁ")eT*(RN)\O; x> 0}

in the same way as (3.7).

On the other hand, since y 1is analytic, a%v(O) #= 0 for some ¢

; Rl

e N Therefore,

+co
f l5"|2klp|al+k

0

P
(4.3) »<n",oy">ka§u<o,0>| 1850(0) 1™ da

i

Clim 1 2Kr((k+1)/p + 1al), (C > 0).

This coubined with (4.2) implies (O;0,0,ﬁ") € WFv(u) for every

v < 1+h, and proof is now complete. o

5. Second microlocalization in Gevrey class

Following Sjostrand [29] we introduce the Fourier-Bros—Ilagolnitzer

transform (F.B.I. tr.):
(1) ~x(z=2)°/2 N
(5.1) 'Yz = f oMz 2 e e, (5 e 9 (RY )

associated to k: T*(RN)\O 3 (g, Eh—> x-ik € CZ'

T(l)f is defined on @ZXRI,:holomorphic with respect to 2z and

AIIszZ/Z

bounded by (e (A+|y|)k for some (, k real.

In terms of the F.B.I. tr. we can characterize the Gevrey wave

- 15 —
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front set as follows: For f € 9‘(RN),“(Q;£) € WFv(f) if and only if
there are constants ¢, ¢ > 0 such that

%Ilmzlzﬁcx

(5.2) ,T(l)f(Z{l)l < Ce er‘ lz—(z—i€)1 < c.

Let A be the involutive submanifold of 7*(®%):

=0} (l<d”<N),

A= ((oe)er (R g=o =g =

and 1y, be the bicharacteristic leaf pathing through (z,£) € A.

Then A and rg can be identified with «k(A) = (ZGCN; Imz’=0) and

k(ly) = {zeCV; Twz’=0, 2"=(3"-i8")) respectively, where z = (z’,z")
€ Gd xEN_d’.
We set @A(z) = {Imz” |/2; which is the pluri-subharmonic function

canonically associated to A. If Q 1is a neighborhood of Z € «k(A),

v,loc(Q)

we denote by HA thé space of holomorphic functions ! u(z,a)

in Q@ with a parameter ) > 0 ‘such that for all K cc § and g >

0 there exists CK e with the estimate:

‘ A@A*éxllv e
{5.3) lulz,2) 1 < Cy e@ , for z e K, x 2 1.
For ,% ¢ A we also use the ndtation: u € HX 5 if there is a

neighborhood\ 0y of 2z such that u € HX(@E).

- v,loc
It u e HA

by:

(@) we denote by SX(“) the subset in @ defined

(5.4) z & SX(“) if and only if there exist a neighborhood @
of . z and constants (¢, ¢ > O such that
1/v

,UPA—C).

lu{z,2)l < Ce for z € wsr A 2 1,

By applying the maximum principle to gz'+——> ‘
;—1/V(log|u(z,g)|—xllmz"]) it can be seen easily the following two

lemmas.

Lemma 5.1, Let 'Fc be a bicharacteristic leaf in A and w be a

v

connecied open set in FO containing (é,é). If u GIHA 2

for all

- 16 -



z € klo) and «x(z,8) = z—ié & SX(u) then x(e) N SX(u) = ¢.

Lemma 5.2. Let (z,£) €A fe e (RM).  1F (%.8) & wrv(f) and

) (1)

reny o o then i—if § SNrtVp).

A9fE_LE_,

Let us introduce the F.B.I. tr. of second kind along A following
Lebeay [19]:

! Fr——} 2 — P 2
(5.5) ¥ plu,u0) = je“*‘“ 2")7/2 =l =2t/ 2 e (regr(RY)).

(2)
A

with the bound:

N

Then T flu,pra) is a thomorphic function with respect to y e ¢

(2) 31T 1%+ 3 Tny” 1
A f(l.),u,,l)l < Ce

% (x+1uh k.

It was shown in [20] and [2] that the relation between 7(1)f

and T(2)f is
a4’
= A 2

: fe N2

(5.6) T(Z)f(bh.u;l) = (m) Ie aplu’~z") /27(1)f(:c’,u".,\)’d:1:‘.
d’

R

where p = u /(1l-y ) with the inversion formula:

5.7 "Mz
171 %’ 2 (2) g
= —XRIE" |/ _.fg°,v"> ._. RE " Rd&”
‘ z(m) id? (1 LW)T f(z Llli'l’z auvl)R_._IE.l)
g ;

where o = |8 1/(R+1E°1).

Now we define the second wave front set adapted to the Gevrey

class. (See also Esser [7].)

Definition 5.3. If 1 <y <+ and f e 97 (RY),

the second wave
front set along A of f; denoted by Wszl(f), is the subset in

TA(T*(RN)\O) defined by the following condition:

(2)
Asv

° o

(5.8) | (2,0,87367) & wF 2 (5)

- 17 -
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if and only if there exist ¢, ¢ >0, 0 < uo < 1 and a decreasing

0 such that

function o(x) with iiEQO(A)

%Ilmw"lz+%ullmw‘12—cxu

(59) ITXZ)f(ZJ;H’)s)l < Ce
for
(5.10) O < u < ugs Ap > o(A)xl/v, lw =(X"—ig' ) 1+lw"—(X"—i" )| < c.

Using (5.6) and (5.7) we can show the following:

(1) v
r Ari—ib

(f) = ¢, where nA:TA(T*(RN)\O)——-> A

Lemma 5.4. Let (%,€) € A and f € 9 (RY). Then

(2)
Asv

f el
if and only if nxl(é,é) N WF

is the canonical projectlion.

At last, we introduce the space of the partially holomorphic
Gevrey functions Gvdz, as follows: f(g) € Gvdx,(Q) if and only if

for every comapct set K cc Q@ there is a constant (¢ such that
o PN . foei+1 ) wyy v .
(5.11) law,aznf(x)l < C a’ o’ !) for z € K.

We have

(1)

Lemma 5.5. [If f € 9’(RN)nGvd$,(Q) and 1 < v’ <v then T f €

HX'Z for every z € e HQ)n)

6. Proof of Theorem [I11

e

As in Section 2 we suppose that ¢ =0, £ = (0,0,3”) = (0,--.,0,1)
€ RN\O and set @ = (P*P)k with 2km 2 ¢+1. Here we also introduce
the pseudo—differential oprator:

.{2L(1+h)/n2l

(6.1) Op(r) = Op(n2km/(1+h) ~ln 2 ),

where | is a positive integer to be determined. Then r has the
same quasi-homogeneity in its symbol as @ has.
Consider the operator @Q + Op(r). Then it satisfies (H-2) since

Q 1is non negative self-adjoint operator at E. We also note that
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though not being polynomial, ¢ is holomorphic with the uniform bound
O(lg]zkm/(1+h)) in a smwall quasi-homogeneous neighborhood of £ of

the form:

vg = ((n",n")ec® xc?"; |Imn'a<é(tnnll/‘1+”’+|Ren‘|>, In"/n ~h"1<€}.

Now all the resulﬁs in Section 2 are remain valid for @ + Op(r)

and we‘get the symbol .kg(t’r,n) satisfying (3.4) such that
(6.2) Op(kg)*(Q+0p(r)) = Op(g).

Here . g 1is an arbitrary cut off function satisfying (3.3) for p =

1/(1+h) with its support in»

—_ - N . , . " )
(6.3) V80 = {(t,n)eT*(R")\O; bti<egn.» In"l<ggn » In /nn n"l<gylt.

2

If (z,8) = (0;0,0,54) € T then the bicharacteristic leaf is o

= {(0,y",0;0,0,p5"); y* eR%"}. For any compact set F c n(rynw)

there exist a neighborhood U cc OR

conic neighborhood vy of é such that

= (meRN; lecI<R}Y of F and a

(6.4) WF (Pu) 0 Ux(V\O) = ¢,

where U, V denote the closures of Uy, V respectively.
After replacing y by ¢u with a suitable ¢ € CS(OR) we can
suppose y € 5’(OR) with no influence on (6.4).

‘We fix a conic neighborhood Vo of £ with Vy cc VnV8 . If we
ST ‘ : ; 0

choose another conic neighborhood V1 of € sufficiently small then
the cut off function g in Lemma 3.1 can be taken in the form: g(g)
= g'(n"wn)e"(x,n") so that supp v .g c {(t,n",n")3 In*1>8181) for
some § > O,

‘kAs in Propoéitibn 3.3 one can see the following:

Proposition 6.1, If kg satisfies (3.4) with xg(&) =0 for
In“1 < slgl (8 > 0), then

(6.5) Kty e ¢ L (RYRYNdiagRY)),
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‘where Kg denotes the distribution kernel. of kg.

Now we let g be taken as above and write for 1y € 5'(0R)

(6.6) Op(g)u OP(kg)*Qu + Op(kg)*Op(r)u

Op(kg)*Qu + OP(r)OP(kg)*u.

We shall apply the theory of second microlocalization along the

involutive submanifold:-
A= ((tyit,n ,nm)e T<(RY)N0; p7=0).

Hereafter, we also denote the cordinate in T*(RN) by

I3

cz' = y'yzt = (t,y) and & =p°, " = (t,n")

and use the notation in Section 4 without mentioning it.

First we study Op(r)Op(kg)*u, where

,|2L(1+h)/n2t

ka/(1+h)e—ln n

n

r(&) = n
was given in (6.1). Now we choose | so that (1+r)-1/2F > v. Then

L 201(1+p) , 21 , , -g 1/v
(6.7) tn” 1 /n" = An7) for int) 2 N,y ng > 0,

where ¢ = (1/v). = (21/(21(1+h)-1)) > 0. We can see easily the

following:

Lemma 6.2. If r=0e "1y, >0 for In'l 2 n;Eni/”, n, >0

then for every U € 9’(RN)
6.8) wF\ 2D op(ru) ot (rg) = 9.

Since Op(kg)(yX c ¥: equivalently Op(kg)x(yr) c v, (6.8) holds
for Op(r)op(kg)*u. Therefore we have
(1) , ’ * v
(6.9) T (OT(r)OP(kg) u) € Hy o, for all z e «k(rgp)

in view of Lemma 5.4,
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Next wefstudy Op(kg)*Qu. Let g be another cut off function

given by Lemma 3.1 with two cones Vl; VZ such that
Vyce ¥y ce ¥y, = v .

Noticing that va(Qu) c va(pu); we then get by (6.4)
(6.10) WF_(Op(5)qu) < WF (Pudn(RMvy) € n (o)

' N N.; -1 N o
(6.11) WFV(OP(l—g)Qu) c WFv(Pu)\(R le) cn (OR)\(R xV;).

Hence we can write

(6.12) Qu Op(g)Qu + x,

X (1-x. )OP(§)Qu + x.. Op(1-§)Qu
Fe R Fe OR
(: Ul+‘ 02 + Ua)f

where denotes the characteristic function of each set B and

o
Fe = {(z ,2")e RY; (z°,0)eF, {z"| <g)

with g > 0 so small that F8 c U.

In the following we assume farther that

(6.13) F is convex with an analytic boundary in n(ro),

By (6.10) we see that
WFv(vl) c {(m,i);(m’,i’)eTSF(n(FO)),tx"l<8) V] nﬁl({z;pm"lze)).
Hence by (3.7)
. . v
(6.14) Op(kg) v, € G (Int(Fe)),

where Int(Fe) denotes the interior of Fe.

Since supp(vz) c GR\FS, it follows by Proposition 6.1
(6.15) Op(k )*v, € G Thg  (Int(F_))
. L g 2 T’ e .

Thus by Lemma 5.5 we héve
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(6.16) r‘l’<ép(kg)*v2) € uy , forall zex(x (Int(F)nn).

In view of (6.11) we have
WF (v2) c.0x(RMV.) v rx (M)
v 737 TYR 71 SOR» .

Again by (3.7) this yields
v
(6.17) v OP(kg)*VB”G,& (Int(Fs))f

Consequently, by (6.9) and (6.14)—-(6,17), we have

(618) ‘ . Op(g)u = ul + uzy
where
- * VT
up = Op(kg) (v1+ vy) € G (Int(Fe))
and 7
uy = Op(kg)*v2 + Op(r)OP(kg)*u
with

r'uy) e #Y . forall z e el H(Int(F))arg).

Now we apply Lemma 5.1, 5.2 and obtain

°

- ° -1 1 . ‘ ° & ‘
(6.18) If (&,8) e x (Int(F)) nry and (&,8) ¢ WF (up)
then x_ (Int(F)) n Iy n WF (up) = ¢.

2

Because g = 1 in the neighborhood vy of &,
-1 _ -1
WF (up) oo “(Int(F ) n Ty = WF (1) o (Int(F )) n Ty,

Therefore (6.18) implies Theorem III for ¥ = n—l(Int(Fe).
Since any compact set in o N W can be covered by a finite

number of such §'s we have actually proved Theorem III. 0o

7. Remarks

The problem to determine the Gevrey class in which certain %

hypoelliptic operators still remain hypoelliptic, has its origin in
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the celebrated examle given by’Baouendi-Goulaocuic [1]:

2 2.2

= 52 ,
Py = 8% + 8L + tay;

which has a solution y of Plu = 0 in a neighborhood of the origin
only belongiﬁg to C2.

Deridj-Zuily [5] and Durand {6] have studied Gevrey hypo-
ellipticity for second order operators and proved, for example,
Gl+h+0 and Gl+h hypoellipticity of the operators in Example 1
respectively,

However, as was showed by Parenti-Rodino [24], hypoellipticity
does not always imply microlocal one. In this respect, Iwasaki [17]
proved among others Gz microhypoellipticity for double characteristic
operators. Our Theorem I is an extention of this in some sence,
though the operators are much restricted.

Recently, Kajitani—Wakabayashi also studied Gevrey micro-—
hypoellipticity in [18] but for more general classes of operators and
obtained the results including our Thecorem I as a spacial case.

However our poof by constructing parametrices reviels how the
quasi—homogeneity of the operators relate to the lowest order of
Gevrey class in which operators being hypoelliptic and gives a more
precise information on the singularities éf solutions (: Proposition

6.1 and Theorem II1I),.

Moreover present method can be applied to the operator:

2 2

2 ¢ 82 4 2

Py =23 t ay

+
z

given by Oleinic—Radkevid [23] and one can show that P2 is hypo-

3/2 3

elliptic in (@ ; while Durand's results gives only G~ hypo-

ellipticity of P2. This will be given in the future publication

together with the complete description of the results in Section 5.
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