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Abstract

Interesting and deep relationships between super Virasoro
algebras and super soliton systems (super KdV, super mKdV and
super sine-Gordon equations) are investigated at both classical
and quantum levels. An infinite set of conserved quantities
responsible for solvability is characterized by super Virasoro
algebras only. Several members of the infinite set of conserved

quantities are derived explicitly.



1. Introduction

Solving quantum nonlinear field theories (,or field theories
with nontrivial interactions) exactly is one of the dreams of
many physicists and mathematicians. Usually the word "solving" is
used to mean the exact calculation of S-matrix or Green's
functions. We try to propose another definition of solvability.
And it is expected that this approach will shed a light on the
research for solving quantum nonlinear field theory.

In classical particle sYstems; the criterion of complete
integrability is the existence of as many independent and
mutually involutive (vanishing Poisson bracket) conserved

quantities as degrees of freedom possessed by the system

(Liouville)l). Integrable classical nonlinear field theories in

1+1 dimensions, or classical soliton systems have an infinite

2)

set of polynomial conserved quantities in involution. When we
try to construct the quantum version of integrable (solvable)
nonlinear field theories, by analogy to the above classical
cases, we may régard the existence of an infinite set of mutually
commutable conéerved.quantities as one guiding principle. From
this point of view, the present authors have investigated 1+1

dimensional quantum soliton systems that have an infinite set of

conserved quantities.3'4)

It is widely recognized that the so called "quantum inverse

5)

scattering method” is a powerful method to solve the nonlinear

systems. Let's briefly summarize the difference between the



quantum inverse scattering method and our approach. The
generating function of the polynomial conserved quantities is the
scattering data S()) defined in the inverse scattering method

M, (ir)~d

In S(x) =
1 3

’ (1.1)
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where Mj stands for each member of the infinite conserved

guantities. At the classical level the following two equations

hold simultaneously,

{ sS(x) , S(v) } =0 , (1.2)
{ In S(x) , In S(y) } =0 , (1.3)
where { , } denotes the Poisson bracket. These two equations are

equivalent. However we can conceive two different schemes of
guantum field theories corresponding to these two equations(1l.2-
3). They are :

(A) a quantum field theory in which the quantum scattering data

operators Sq(A) are well defined énd commute with each other
S (x) , S =0 , 1.4
[ q( ) q(v) ] ( )

where the subscript g means quantum version.
(B) a quantum field theory in which an infinite set of polynomial

gquantum operators qu, j=1,2,+¢¢o0 ,0or (1ln S(,\))q is well defined

and they commute with each other

M. , M
[ qj qk]

[ (1ns(A)) g, (1nS(7))q]

0 , J,k=1,2,¢e0, o _or (1.5)

o . | (1.6)

Due to the problems of operator ordering and divergences,



in the scheme (A), 1n S(A)q is in general not well defined even
if S(,\)q is and, in the scheme (B), exp[(1ln S(A))q] is not well
defined even if (1n S(A))q is. Therefore there is no a priori

reason why these two scheme should be equivalent. Most of the
known quantum systems solvable by the quantum inverse scattering
method belong to the scheme (A). Our approach is the scheme (B).
The present authors showed that such quantization is possible for

some modelss'4)

. The techniques developed in conformal field
theory to evaluate commutators are quite useful. Thanks to these
techniques, the quantum conserved quantities are obtained by
adding quantum corrections to the classical conserved quantities.
These quantum conserved operators are Heisenberg operators. In
other words, our results are non perturbative and exact in the
sense that the quantum corrections stop at finite order of the
Planck constant K. So far gquantum conserved quantities héve been

calculated only in relativistic field theories using perturbation

theory6).

Recently conformal field theory7_1o) has attracted much

attention. The unitarizable conformal field theories with the

8)

discrete series of central charges c<1 are especially
interesting since they are examples in which Green's functions

7’10). From the previous unified point of view on

are calculable
the solvability, we expect that conformal field theories also

have an infinite set of mutually commutative conserved



guantities. At the classical level, there is an indication that

this is so. Gervais pointed out that an infinite set of mutually
involutive polynomial functions of the Virasoro generators exists
provided that the Virasoro commutation relations are regarded as

11). These are nothing but the well known

the Poisson brackets
infinite set of conserved quantities of the Korteweg de Vries
(KdV) eq., a solvable classical field theory; We can extend this
relation between the conformal field theory (Virasoro algebra)

and a nonlinear soliton system (KdV equation). As Gervais pointed

out the second Poisson bracket of the KdV eq. is the classical

Virasoro algebra. In addition, the Miura transformationlz) that

connects the KAV and the modified KdVv (mKdv) is just the

3)

oscillator representation1 of the Virasoro algebra. If we take
the first Poisson bracket of the mKdv then the second Poisson
bracket of the KAV is simply the consequence of the Miura

ig¢

transformation. A half of the sine-Gordon Hamiltonian (i.e. e

or e_iﬁ¢ ﬁart of cospé) can be considered as a Primary field, a
familiar concept in the area of conformal field theory, with
respect to the Virasoro algebra. On the other hand, it is known
that KdV, mKdV and sine-Gordon (sG) essentially share common
conserved quantities. This knowledge give us a new

characterization of the conserved quantities of the KdV-mKdv-

4)

sine-Gordon equations™ ‘.



It is known that a quantum version of this characterization

4)

exists“’. We can calculate several quantum conserved guantities
explicitly as "polynomials" of quantum Virasoro generators. These
quantum conserved quantities exhibits remarkable features at the

known special values of the coupling constant in Coleman's

theory14)

of quantum sine-Gordon equation. A recursion formula
for the quantum conserved quantities at a special value of the
coupling constant is given.(eq.(5.17) of Ref.4)

15)

On the other hand, recently, the super version of the

9)

Virasoro algebra has attracted much attention in the area of
superstring theory and critical phenomena theory. Therefore a
supersymmetric extension of the previous story is very

interesting. So far some authors have studied the relationlS)

between the super Virasoro algebra and "super KdV (s-KdV) and

super mKdV (s-mKdv) equations"17). However, their equations

actually do not have the supersymmetry. In the field theoretical
point of view, supersymmetric systems should have not only a
Grassmann odd field but also a super invariant Hamiltonian or an

equation of motion. In this sense, the supersymmetric Kdv

equation proposed by Manin and Radu118)has the desired symmetry.
We adopt this s-KdV equation. In order to display the

supersymmetry manifestly, we use the superspace

formulationlg)throughout this paper. We will discuss the relation

between the super Virasoro algebra and the super soliton systems



(super KdV, super mKdV, super sine-Gordon) at classical and
guantum levels.

This paper is organized as follows. The section 2 is for the
supér soliton equations at the classical level. We present the
recursion formulas of the conserved quantities of super KdV,mKdv

and sine—Gordonzo)

systems based on the superspace formulation.
In section 3, we introduce the Poisson bracket or the Hamiltonian
structure. As in the non-super case, we consider the super Miura
transformation as the generator of the super Virasoro algebra and
a part of the super sine-Gordon Hamiltonian as a super primary
field, and we derive the new characterization of s-{m)Kdv-sG
hierarchy. In section 4, we quantize the super soliton theories
and derive the super version of the previous characterization.

With it we derive the explicit forms of some quantum conservation

quantities.

2., Conserved Quantities of Classical super (m)KdV-sine-Gordon
In this section, we introduce a special type of super soliton
theories and study their integrability. To hold supersymmetry

explicit, we use the superspace formulation. The superspace

coordinates 6 consist of a space coordinate ¢ (0=<0<2n) and a
corresponding Grassmann odd super coordinate 4. Superfields are

defined as Grassmann odd or even functions of the superspace

, A . ., ,
coordinates o¢. For notations in the superspace formulation, we

generally follow Ref.19.



2-1 Super Korteweg de Vries (s-KdV) Equation

The s-KdVv eq. readsls)
= 53 3_
atw = aaw + nzaa(WDW) (2.1.1)

in which W=W(t,9;n) is a Grassmann odd superfield depending on
time(t) and superspace(?) coordinates, D(=ao-i980) is the super

derivative and « is a coupling constant. The s-KdV field W has
two component fields ¢(Grassmann odd) and v(even) when expanded

in powers of ¢,
W(t,0:6) = o(t,o0:x)/2 + 6 v(t,os6) . (2.1.2)

We adopt the periodic boundary condition,

o(t,o+2n:;x) = * o(t,o;x) , (2.1.3)

v(t,o+2n;k) = vit,o;x) , : (2.1.4)

where the double sign is important only at the quantum level.

The associated linear problem of the s-KdV eq. is given asla)
(82+ Lwp)u(t,85x) = 2%u(t,5;x) , (2.1.5)
K .
AL _ 3 6 3 A,
atW(t,a,n) = (430 + szuaa + KZBGWD) ¥(t,o;x) , (2.1.6)

in which ¥ is a Grassmann odd field depending on (t,é;n) and on
the spectral parameter 3. In other words, the compatibility
condition of egs.(2.1.5) and (2.1.6) reduces to the s-Kdv
eq.(2.1.1). We can find an odd superfield Z that is a functional
of ¥ and satisfies a conservation law and a Riccati equation:;

atz = DF ’ (2.1.7)



1
aaz = 2\Z - —iw - ZDZ ’ (2.1.8)

K
where F is a rational function of ¥,D¥,W and DW. Eqg.(2.1.8)
admits the following asymptotic solution,
@ Z

Z =3 “n
n=1 (2)) °

(2.1.9)

By substituting this expansion into eq.(2.1.8), we find the

recursion formula for the conserved quantities Kn[W] of the s-Kd4dv

equation,
n-1 1
Zn+1 = aazn + = Zk Dzn—k , Z1 = —Ew , (2.1.10)
k=1 K
2n
_ 1 2n A _
Kn[W]— i j do 22n+1(w) , n=0,1,2,¢0., (2.1.11)
0
ZnA 27
in which f do=/[ dafda . (2.1.12)
0 0

Explicit forms of some lower members of the conserved quantities
are given in Appendix I. They are Grassmann even conserved

quantities.

2-2 Super Modified Korteweg de Vries (s-mKdV) Equation
The super Miura transformation has the form (U is an odd

superfield)
W(t,0:;x) = U(t,0)DU(t,s) + inaaU(t,é) . (2.2.1)

With s-KdVv egs.(2.1.1) and (2.2.1), we get the following super

modified K4V equation,
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53y . 3 2,3
atU = GUU + nz(aaU)(DU) + KZU(DU)aUDU . (2.2.2)

Namely, W defined by eq.(2.2.1) satisfies the s-KdV eq.(2.1.1) if

U satisfies the above super mKdVv eq,

3 3
atw - [ o W + :ﬁaa(WDW) ]
_ U U . _ 3 3 2 3
= (D; + KD +1ag) [atU [aau + ;i(aaU)(DU) + :iu(nu)aanu ]}

(2.2.3)
So far as we Kknow the explicit form of the super mKdV eqg. had not
yet been given before. The super Miura transformation factorizes

the linear problem (2.1.2),
(D-2)D(D+2)D¥ = (ix )2y ) (2.2.4)

It should be noticed that this factorization property of the
Miura transformation is inherited from the non-supersymmetric
mKdV system. Although we can derive the recursion formula of the
s-mKdV conserved quantities with eq.(2.1.8) and the super Miura
transformation (2.2.1), we will show that the recursion formula
can also be derived from the factorized linear problem (2.2.4).
Initially we define a superfield Y that is a functional of ¥ and
satisfies the Riccati equation (2.2.6),

¥ - (D+U/x)DV¥ /i)

¥ =5y + D(D+U/x)D¥/ix

, (2.2.5)

U

9 Y = 20Y - i¥ + i(pY)vpy i (2.2.6)
a K K

With the asymptotic expansion,
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© Yn
Y =3 5 , (2.2.7)
n=1 (2))

we derive the recursion formula of the s-mKdV conserved

quantities In ;

n-1

_ oYy . _ .U
Y =9 Y i(D7) kil Y, DY ., ., Y, =i~ (2.2.8)

1

2n-3[27A
I = >« Ioda (DU) Y, (2.2.9)

-1 °

They are Grassmann even conserved quantities.

2-3 Super Sine-Gordon (s-sG) Equation

For later discussion, we introduce a super coordinate Bt'

namely, the Grassmann odd variable associated with the time
coordinate t. The super time derivative is of the form

3 2

. 3 o
Dt = m - 10t ’6“_E and Dt = 18t . (2.3.1)
We define the super sine-Gordon equation as follows
D.D & = -i—2—sinB%_ (2.3.2)

t B 2 ’
where & is a fundamental superfield (Grassmann even) of the
system. The time (t) evolution of ¢ is obtained by applying the

Dt operation to eq.(2.3.2). According to Girardello and

Sciutozo),'the linear equations are
v ire, -8pe, o v
1 P 2 1 _
D V2 = iD@, ixe, 2 V2 and (2.3.3)
V3 0, -i, ix¢g V3

Il
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V1 0 , 0 , —-sin(p®/2) V1
Dil Vy = 0 , 0 , cos(Bpd/2) vy |-
V3 —isigiﬂ@/Z)' ico§§ﬂ¢/2), 0 V3
(2.3.4)

where V1 and V2 are Grassmann even superfields and V3 is an odd

superfield. The recursion formula for the s-sG conserved

quantities Jn is derived from the linear problemzo),(x is an odd
superfield)
X =3 X_ + é(D2<1>) n;l X, DX , X, = Bps (2.3.5)
n+l o'n 2 k=1 k n-k 1 2 ’
2n
g = 5% J a% i(p%s) X, 1 . (2.3.6)
0

This recursion formula (2.3.5) coincides with the s-mKdV formula

(2.2.8) provided that we identify s-mKdV superfield g with %iD¢,

Therefore we can say that the s-KdV, s-mKdV and s-sG systems
share essentially the common conserved quantities. We call the
set of these conserved quantities the super (m)KdV-sine-Gordon

hierarchy.

3. Classical s-(m)KdV-sG Hierarchy and Super Virasoro Algebras
In this section, we introduce the Poisson bracket structure
with which the conservedvquantities are involutive to each other

and we present another qharacterization of the s-(m)KAdv-sG

4)

hierarchy, which closely folloWs the non-super case ’.

12
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3-1 Poisson Brackets
Hereafter we identify U with iD® throughout this paper,

U(t,5) = iDa(t,s) ; (3.1.1)

The fundamental Poisson brackets are of the forms

{ U(t,0) , &(t,0') ) 2% 5(8,5") , (3.1.2)

P.B.

{ U(t,5) , U(t,5") } -27iD8 (5,50 ") , (3.1.3)

P.B.

where $(5,0')=(6-6")6(o-0"') is the delta function in the
superspace. By means of these Poisson brackets, we can show that
any pair of members of s-(m)KdV-sG hierarchy are involutive (,or
have vanishing Poisson bracket). The Poisson bracket of the s-Kdv
field W are derived easily in terms of the super Miura

transformation (2.2.1),
{ W(t,050) , W(E,G'5k) Yy o

=2ﬂ[—inzafnﬁ(9,9')—3W(t,9;n)aa§(9,9')-iDW(t,é;n)Dé(é,Q')

—2aGW(t,9;n)@(9,9') ] ) ' (3.1.4)

We can call W(t,é;n) the super Virasoro field , for the components
¢ and v in eq.(2.1.2) satisfy the super Virasoro algebras at the

Poisson bracket level,

{o(t,08),0(t,0'ir))p 5 = -Bri(v(t,058)4x282)8(a-0"),  (3.1.5)

{¢(t,a;n),u(t,a';n)}P.B?Zﬂ[Sw(t,a;m)608(0—0')+60¢(t,0;n)6(a-a')],

(3.1.6)

I3
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{v(t,o:x ),u(t,a';n)}P.B.= 2w[m2635(0—0' )+4u(t,a;n)606(0—0' )

+24 v(t,a;n)S(a—a')]. | (3.1.7)
g

The fundamental Poisson brackets (3.1.2) and (3.1.3) give the
Hamiltonian structure. The s-KdV equation (2.1.1), s-mKdVv eq.

(2.2.2) and s-sG eq. (2.3.2) are written as the canonical

K., I
equation of motion with respective Hamiltonians ii’ing ;

sG’
Xy
atw = { W, 5 }P.B. , s-KdV equation (3.1.8)
Iy
o,U=1{U, 5= Jpg. - s-mKdV equation (3.1.9)
D,U={U, H: }p g o s-sG equation (3.1.10)
where
K 2n
-+ . 1 A \
Hg gkav(®) = 37 = 2 do (DW)W , (3.1.11)
4dnk 0
I 2n
.2 1 A 2 2 3
Hsomrav(®) ="iz~ 2 J do [ =~(DU)3_ U + U(DU) ], (3.1.12)
dnk 0
4 2n A
Hy_gglh)= 2 do [ 1-cos(p2/2) ] . (3.1.13)
27 B 0

It should be noted that the Hamiltonian of the super sG eq., i.e.
(3.1.13) is Grassmann odd, whereas the other Hamiltonians
(3.1.11) and (3.1.12) are even. Hereafter the time variable (t)
is fixed and suppressed since we are concerned only with equal

time Poisson brackets and their quantum versions.

/4
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3-2 The Special Feature of The Classical s-(m)KdV-sG Hierarchy
The members of the s-(m)KdV-sG hierarchy are differential
polynomials of W by the definition of the hierarchy and W
consists of the super Virasoro generators as is shown in the
previous subsection. On the other hand, it is well known that the
integral of a primary field of unit conformal dimension commutes
with all the Virasoro generators. These facts motivate us to

4)

verify the following relation™’,

. A,
{W(bin) I ahr eiP2(c)/2 Jpg =0 - (3.2.1)

In this equation,

ncEZ/ﬂ (3.2.2)
and

V(5;8)=exp(ipe(5)/2) (3.2.3)
is a conformal dimension 1/2 super primary field with respect to
the super Virasoro field W. Itvshould be remarked that the
integration [d¢ picks up the desired primary field with unit
conformal dimension. Note that. exp(ip®/2) is a part of the s-sG

Hamiltonian density. We arrive at the following theorem.

Theorem 1 Let F[W] be a fdé integration of a differential
polynomial of W. If it is even with respect to « as a
function of U then F is a conserved quantity of s-sG

system. Namely we have
FIW(5;x)1=FIW(5;-x)] = { FIW(d:x )] , Hoo(B) Ip g= 0 . (3.2.4)

This is proved with eq.(3.2.1) and

15
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4 A AL /\‘_
Hg-g6(#) = 27 B2 I do [ 1-(V(a;p)+V(o:-p))/2 ] . (3.2.5)

This theorem means that s-(m)Kdv-sG hierarchy is characterized by
the left hand side of statement (3.2.4). In other words, we can
use this condition to calculate the s-(m)Kdv-sG hierarchy
explicitly. In section 4, we shall consider the quantum version

of Theorem 1.

4. Quantum s-(m)KdV-sG Hierarchy and Super Virasoro Algebras

In this section, we proceed to the solvable quantum field
theories. The quantum version of Theorem 1 will be established
and we will show the explicit forms of the lower members of the

quantum s-(m)Kdv-sG hierarchy.

4.1 Quantization
The canonical quantization is achieved by replacing the

Poisson bracket by the following equal time commutation relations

[ U(d) , ®(0') 1_ = -R2xib(5,0") (4.1.1)
[ U(G) , UG') 1, = h2xD6(5,5") , (4.1.2)

whefe subscripts + and - stand for anti-commutation and
commutation relation, respectively. For the quantum calculation,
we need the mode expénsion of & and U and the definition of the
Fock space. The superfields are expanded into the component
fields,

8(0) = ¢(a) + i09%(o) , | (4.1.3)

/6
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U(6) = iD&(8) = -y(o) + du(o) , ' (4.1.4)
where usaa¢. The Fourier expansion of the component fields and

hermiticity of oscillators are

n -ino

$(c) =g +agr +i3s —Le , el =a_, (4.1.5)
neZz

$(o) ={ = b_e 1T , ol =b__ ., (Ns) (4.1.6)
reZ+l/2
s a et yal =a_ . (®R) (4.1.7)
reZ

(o) = £ a_e 1M , (4.1.8)

nez

where (4.1.6) and (4.1.7) are Neveu-Schwarz (NS) and Ramond (R)

15)

sectors , respectively. The commutators of oscillators are

derived as follows,

[a  , o 1_ = kn6n+m,0 , La,a 1_-= iﬁsn’o , (4.1.9)
[b., b, 1, ='hsr+s,o (4.1.10)
[a ,d 1, =‘h5n+m,o (4.1.11)

We interpret a. ,n>0 (n<o0), br ,r>0 (r<0) and dn ,n>0 (n<0) as

annihilation (creation) operatbrs. In order to take a well
defined product of field operators, we define the normal ordering
: : as reordering all the annihilation operators to the right of

the creation operators. The vacuum |0> is defined by

a 0> = 0 (n20) , (4.1.12)

br|0> 0 (r>1/2) , ,dh|o> =0 (n>1) , (4.1.13)

17



18

and the Fock space is built by repeated application of creation
operators. We introduce a fictitious time r and a complex

variable ¢=r+io, since we need to calculate contour integrals to
evaluate the commutators. The space coordinate ¢ is on a circle
and then the complex coordinate £ is on a cylinder. Hereafter we

shall consider the quantum field theory on the cylinder.

1)

Next we review the method of evaluating commutators2 . Here

we consider the commutator of two integrated quantities P and Q,

]

P = § a p(u,ou,p%U,.-+ ) , (4.1.14)
(0]

§ d) q(u,pu,p?y,... ) (4.1.15)

0

O
]

where p and q are differential polynomials of U, and

1 r+2x 1
§Od€ = 57 JT ©de Jdo and D = 8,+ 65, . (4.1.16)

The commutator of :P: and :Q: are rewritten by changing the

contour of integration,

[ :P: , :Q: ] = §0d9 § d? T :p(?): :q(ﬁ): (4.1.17)
c

where cn stands for a small contour around 5 and T means the
r-ordering. The r-ordering is defined as follows
A A
T :p(®): ta(n): ={ :p(®): :q(f): , (Re £ > Re )

'i:q(ﬁ): :p(?): , (Ren > Re ¢) (4.1.18)
where the sign factor takBs minus if both q and p are Grassmann

odd. In‘order to calculate the commutator (4.1.17), we expand the

(8
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r-ordered product T:p(?)::q(ﬁ): by Wick's theorem. Namely we
expand a r-ordered product into a sum of a normal ordered product

times propagators. The simplest example of Wick's theorem is

TUE) UE, = UG ud): B A% 8,) L (4.1.19)

in which the propagator A is defined by

R oact,,8,) = <o|r udHut o>

21
cosech 5(61-52)] , (NS) (4.1.20)

=j-ﬁ[ %cosech%(gl—fz) + 0102 %

ﬁ[ % coth %(gl—gz) + 0102 cosech2 %(Sl-ﬁz)}

_=‘h%°°th %512 , (R)  (4.1.21)

.

where 5125 51—52—9102 is the distance between ?1=(§1,61) and

?2=(§2,02) in the (¢,4) superspace.

4.2 Super Virasoro Algebras and Super Primary Fields

In this subsection, we derive the condition that characterizes
the quantum s-(m)KdV-sG hierarchy. In other words, we establish
the quantum version of Theorem 1, statement (3.2.4). For this
purpose, we introduce the quantum super Virasoro field and a
quantum super primary field. The procession to the quantum
theorem is parallel with the classical case in section 3.

The classical s-KdV field W is the super Virasoro field at the

Poisson bracket level. By analogy, we take

/9
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wq(?;n)s :UDU: - x3,U -hFws , o= (NS) , (4.2.1)

£

o o+

(R)
for the quantum super Virasoro field. In the classical limit

Cﬁ*O), wq reproduces the classical field W. The constant‘ﬁwo in
eqg.(4.2.1) is determined so that wq satisfies the super Virasoro

algebras in the following sense.

The operator product expansion of wq fields is calculated by

Wick's theorem,
v (Gt (e t2)

A
¢.-3 (3, ,-2,1.-1 -1 1 0
2615 [ 32 ¢ 3 ¢ haafinde ) (g2 oely) (42.2)

where the central charge is given by

A=1-2x2/k ) (4.2.3)

and 0.,.,= §.,-0

12 1792- This form is known as the operator product

expansion of the super Virasoro field. We define the integration

operator type of the super Virasoro generators:;

L_0(%,)= §cd€1T [%ﬁwq(él)] ¢t o) . nez, (4.2.4)
2

6,0(8)= ¢ abT (B 8D) €512, 0k, remd (R orws)

(4.2.5)

where the contour 02 is a small circle around 22 and it should be
noted that Ln and Gr operate onvan arbitrary local field operator

O(?). Ln and Gr obey the super Virasoro algebrasls),
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A

- (n- Ch(n2-
[ Ln’ m 1. = (n m)Ln+m + 8n(n 1)5n+m,0 | , (4.2.6)
[ L_,G_. 1 = (5 -r)G (4.2.7)

n’ Y2 n+r,0 ’ T
e, 2 1
[ Gr'Gs 1,= 2Lr+S + i(r - Z)5r+s,0 . (4.2.8)
Next we define a quantum super primary field,
2

%;Kg 183 /2 .

Vq(@;ﬂ) = e te : , (4.2.9)

that reproduces the classical one V eq.(3.2.3) in the classical

limit (ﬁaO). The operator product expansion of wq and Vq is

T (3gug 8y (vgdpie)]

} 1 A ) 1 . 0
=8 015 3 vq(éz,ﬁ)+ 5z Dzvq(éz,ﬂ)+ 012 % 82Vq(?2,ﬂ)+ o(¢7,),
€15 12 12

(4.2.10)

2
in which Aq:—%4ﬁ+—%5 (conformal dimension of Vq). Especially in

the case of Aq=1/2, or

K=ok = —%—[ 1 - %gk ] ) (4.2.11)

we get the following relation
[ wq(?l;nq) , §0d22 Vq(éz:ﬂ) ]+= 0 . (4.2.12)
In the classical limit, nq,wq and Vq reproduce nc,w and V

respectively. This relation eq.(4.2.12) is the quantum version of

21
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eq.(3.2.1). Therefore it is natural to define the Hamiltonian

HqsG of quantum super sine-Gordon system,

= ___é__. - . . .2.13
Haaa(®) = 23 ¢ at [(1-vgimrvv@i-pr/2 ), (4.2.13)

which is Grassmann odd. Consequently we can prove Theorem 2 with

eq.(4.2.12) and the definition of H

qsG
Theorem 2 Let F[wq] be a fd@ integration of a differential
polynomial of Wq. If it is even with respect to « as a

function of U then F is a conserved quantity of the gquantum

s-sG system. Namely we have
Frug(86)] = FLug(Ei-0)1 » | FLugBin )11 o(8) |,= 0

(4.2.14)
This Theorem means that the conserved quantities of the quantum
s-sG system are characterized by the left hand side condition of

the statement (4.2.14).

4-3 Quantum s-(m)KdV-sG Hierarchy
Due to Theorem 2, we can calculate conserved quantities of the
gquantum s-sG system. However, we should pay attention to the fact

that a functional of Wq, such as the F[Wq] in Theorem 2, needs to

be carefully defined so as to avoid the singularities of a
product of quantum field operators at the same space-time point.
Here we try to adopt the integration type of super Virasoro

generators,

22



egs.(4.2.4-5) to define well defined functions of Wq. The ansatz

for a conserved quantity of s-sG system has the form

A= §o at a(L,G.) I(¢) . (4.3.1)
in which a(Ln'Gr) is a Grassmann odd "polynomial" of Ln,(ns-Z)
and‘Gr,(rs-B/Z) , and I(¢) is the identity operator. By
Theorem 2, ﬁe arrive at the following theorem.

Theorem 2' If A defined by eq.(4.3.1) satisfies the
condition,

A(k) = A(-x) (4.3.2)

then A is a conserved quantity of the quantum s-sG system.
We use Theorem 2' to calculate the first six conserved quantities

(KqO‘KqS) of quantum s-sG system'in the Ramond sector. They are

listed in Appendix II. The present authors used a formula
manipulation computer language, REDUCE. It should be remarked

that the coefficients depend only on the central charge of the

super Virasoro algebras. We discuss the Neveu-Schwartz sector at

the end of this section.

Next we consider the classical limit of the quantum conserved
guantities of s-sG system. In the classical limit, the r-ordered
product of operators becomes a mere product of numbers.

Therefore, in the definition of Ln and Gr' egs.(4.2.4) and

(4.2.5), the contour integrals are evaluated as follows,

L 0(%,) (£-0) 2(-i-2)z-ﬁ [D'zn'3W(?2)]0(€2) and  (4.3.3)

23
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(F»0) -1 -2r-3
G, o(%,) > Tr372)TR [D W(éz)]O(éz) . (4.3.4)

qo——qu in

In this 1limit, the quantum conserved quantities, K
Appendix II, reduce to the classical ones listed in Appendix I up
to normalization factors;

g (B0) o 4 ) | (4.3.5)

gn n

In section 2, we showed that the s-KdV, s-mKdV and s-sG systems
have common conserved quantities that are in involution with each
other in the classical case. Therefore the second s-sG conserved

gquantity J2 is the s-(m)KdV Hamiltonian 12/2 up to a constant

factor. We expect these soliton systems to maintain these
relationships after the quantization. By the classical 1limit
argument, it is natural that a quantum s-(m)KdV Hamiltonian is

defined as the second quantum s-sG conserved quantity,

His-(m)xav™ Kq1 = §O at L, G_3/p I(€) . (4.3.6)

Here we assume all s-sG conserved quantities are commutable with
each other. Therefore we can conclude that s-(m)KdV and s-sG
system have common conserved quantities also in the quantum case.
We call the set of conserved quantities the quantum s-(m)KdV-sG
hierarchy.

Theorem 2' gives us a method to calculate the quantum s-(m)Kdv
-sG hierarchy. Another method to derive the hierarchy is the
calculation of the quantum s-KdV conserved quantities. They are
defined by, '

[ Hye-(mykav + A 1 =0 , (4.3.7)
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where A is the ansatz (4.3.1). We can rewrite the definition

(4.3.7) as follows by changing the contour of integral and Taylor

expansion,
§ a8 E a(Ln,Gr) I(¢é) =0 , (4.3.8)
0
= i (n+l) ‘
E = E [ L—n—2 Ln—l + 4 G..n_5/2 Gn_l/z } . (4.3.9)

n=0
In this case, we can calculate the quantum s-(m)KdV-sG hierarchy

by using the super Virasoro algebras egs.(4.2.6—8) only. In other

words, the infinite set of mutually commutable operators
responsible for the solvability is uniquely characterized by the
supef Virasoro algebra. We can summarize this paragraph in the
following theorem.

Theorem 3 For a function a(Ln'Gr)’ if there exists a
function b(Ln,Gr) such that

E a(Ln,Gr) I = b(Ln'Gr) I (4.3.10)

©.1/2
then § d? a(Ln,Gr) I(¢) belongs to the quantum s-(m)Kdv-sG
0
hierarchy.
To prove the theorem, it is useful to note that G_1/2 is

equivalent to the super derivative D in the right hand side of
eq.(4.3.10).
A discussion on the hierarchy in the Neveu-Schwarz sector is

in order. The super Virasoro algebras (4.2.6—8) hold not only in

the Ramond sector but also in the Neveu-Schwarz sector.
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Therefore, by Theorem 3, we can have a common argument for the
quantum s-(m)KdvV-sG hierarchy in both sectors. Consequently
KqO’KqS in Appendix II belong to the quantum s-(m)Kdv-sG
hierarchy also in the NS sector. It should be remarked that the

definition of the super Virasoro generators Ln and Gr in the NS

sector are different from that in the R sector only by the

constant term in eq.(4.2.1).

5. Summary and Comments
Following the general philosophy of solvable quantum field

theories developed by the present authors3’4)

, the supersymmetric
solvable quantum field theories together with their relationship
with the super Virasoro algebra are discussed in some detail. It
is shown that the infinite set of quantum commuting operators
characterizing the solvability of the supersymmetric quantum
field theories (the super-(m)Kdv-sG hierarchy) is expressed as
certain "polynomials" in the super Virasoro generators. Explicit
forms of some lower members of the infinite set of the commuting
"polynomials" of the super Virasoro generators are calculated.
To understand the algebraic meaning of this infinite set of
commuting operators for the non-super and the supersymmetric
cases is an important and interesting open problem in the theory

of infinite dimensional Lie algebras. It is also quite

challenging to make a further investigation into the solvability
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of the super conformal field theory, i.e., calculation of S-
matrix elements and Green's functions, from the point of view of
conserved quantities.

Another interesting problem is to pursue the relationship
between infinite dimensional algebras and solvable equations.
Searching the relationship in the generalized KdV-mKdV-Toda-

2)

lattice2 may be an interesting exercise.
It is well known that the supersymmetric extension of the

Virasoro algebra is possible for N=1,2 and 4 in which N denotes

the number of supersymmetry generators. The N=1 case is discussed

in the present paper. The extended (i.e. N>1) super Virasoro

algebras are known to have various interesting propertie523). As

for the solvable nonlinear theories at the classical and quantum

levels, several interesting models having the extended

4)

supersymmetry are known2 . However, the direct connection
between these two notions in the sense of our previous (Ref.4)

and the present work is yet to be worked out.
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We

Appendix I

list up the classical conserved quantities.

27k

Q>

2(DW)2W + x2(DW)D%W ]

5(DW) W + 6x2(D W) (D2W)DW + 4x2(DW)2W
+c 2 (0%w)p%w ]
[ 14(ow)4w + 2842(0%w) (D%w) (Dw)?2
42,4 (03w) (ow)w + 8:2(D%wW) (D*w)DW + 6t (DOW)%W
+8(07w) (0%w) ]
[ 42 (ow)°w +120x2(03w) (D%w) (ow)3
4, 3 .3 2

+300x2(D3w) % (pw) 2w -35:%(03w)3p%w

+45¢2(0%w) (%) (ow)2 +12:2(D%W) (D%W) (DZW)W
+81:3(D%°w)% (pw)w -20x%(D°w)%D%wW

+10x8(07w) (p®w)pw +8x8(D7wW)%w +x8(0%w) (p%w) ]
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Appendix IT
We list up the quantum conserved quantities. For typographical
simplicity, we use the following coupling constant k throughout
Appendix II,

K

-
B

So it should not be identified with « in Appendix I.

)
¥q0 = §O a (o) 106
Kq1 = §o a2 | L5632 ] I(¢)
K - d? ( L2 G + iéEE:ZlL G 1(¢)
Q2 - o | L-2C-3,2" T 21 -5/2
K - @ [ i . .. Q28D o
a3 0 | L-2C6-3/2 20 L-3%.5/20-2
(16k2 -73).2 (4Ok4—342k2+291)L - 16
10 -3 -3/2 * 200 ~4%-7,2

) 4 L2 2

Kgg = §o aé [ L2,G_g,p* ML L_3G_ g pL7, + m2 L1 56 5 p

2
+ m3 L_ G 7/2 -2 + m4d L 4G ~3/2 + m5 L_ G -9/2 ] I(¢)

ml = k2 - 4

m2 = (2k%-13)3/4
4 2
m3 = (120k%-1438k%+2509)/210
4 2
md = ( 30k%- 356k%+ 853)/70
m5 = (8400k®-115420k%+432668k%-264689)3,/78400

21



5 .3 2 2
§0 aé [ L2,6_g/p* 0l L_g6 g oL, + n2 L5176 5 )

L2
_3C_5/2 * M4 L_,G 5L 5 *+ 05 L_,G ;56 5,26 3,2

2 2
L_4G_7/2 + n7 L_4L_2 G_3/2 + n8 L—SG—Q/ZL—Z

2
+ 109 LIG 5 +nl0 L_gG_,) o ] 1(¢)

nl = (12k%-65)5/42

n2 = (20k%-169)5/28

n3 = (-840k%+16858k%-65987),/4032

nd = (360k%-5578k2+14607)/336

4 2

n5 = (12k"-172k"+523)/168

né = (-201600k%+3043512k%-10871134k2%+4888061) /423360

n7 = (648k%-9854k%+31981),/336

n8 = (100800k6—1844424k4+9831890k2—12590635)/94080

n9 = (161280k°-2940408k%+15785822k%-25037413)/188160

nl0= (907200k®-17387640k%+105348726k%-237606943k>

+109736777)/1058400
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