RIMS, July 27, 1987 Character 9-modules on a reductive group R. Hotta (堀田良之) Mathematical Institute Tohoku University, Sendai 980, Japan Though the problem we are going to discuss is ancient, our motivation is rather new. One of the most important problem of group representations is clearly the classification and the description of the irreducible characters of a group you happen to be interested in. Here let all of us assume to be interested in a real reductive group. You probably know much about the subject and you can rightfully assert those great masterpieces created by I. M. Gelfand, Harish-Chandra, T. Hirai, R. P. Langlands and ... are enough for its understanding. There may seem to be no rooms for new comers with new ideas. But we also know a great monument by G. Lusztig which, however, is centered around a reductive group over a finite field. Since Lusztig himself has clearly been stimulated by those ancestors' work when he has got the idea of the classification [L1] and that of the so-called "character sheaves" [L2], it never seems for us to be waste of time to retrospect Lusztig's philosophy from our point of view, i.e., the Riemann-Hilbert correspondence between perverse sheaves and regular holonomic \mathfrak{D} -modules on our group. The name "character \mathfrak{D} -modules" comes simply from this correspondence. Here thus occurs an involutive base change principle $\mathbb{R} \mapsto \mathbb{F}_q \mapsto \mathbb{R}$! As a bonus, we shall get a new approach (actually only half a way) to Barbasch-Vogan's mysterious "unipotent representations" [BV]. This is a report of work in progress jointly with M. Kashiwara. - §1. A Gauss-Manin connection associated to the Grothendieck-Springer-Steinberg diagram - 1.1. The Grothendieck-Springer-Steinberg diagram. Let G be a connected complex reductive algebraic group and B⊃ T a Borel subgroup and a maximal torus, fixed once and for all. We then have a notable simultaneous resolution diagram $$T \ \stackrel{\textstyle \theta}{\longleftarrow} \ \widetilde{G} \ \stackrel{\textstyle p}{\longrightarrow} \ G \ .$$ Here the notations are as follows. $$\widetilde{G} = \{(x, gB) \in G \times X \mid x \in gBg^{-1}\}\$$ $(X = G/B),$ $p = pr_{\widetilde{G}}|\widetilde{G}$ (proper). We have an isomorphism $$G \times^B B \xrightarrow{\sim} \widetilde{G}$$, ((g, b) \longmapsto (gbg⁻¹, gB)), where $G \times^B B$ is the fiber bundle associated to the B-principal bundle $G \longrightarrow X$ with the inner B-action on B. The projection $$G \times B \longrightarrow B \longrightarrow T = B/U$$ (U = unipotent radical of B) gives rise to the smooth map $$\theta : \widetilde{G} \simeq G \times^B B \longrightarrow T$$. # 1.2. A Gauss-Manin connection N₁. Let t = Lie T be the Lie algebra of T and t^* the linear dual of t. An element $\lambda \in t^*$ defines the multi-valued holomorphic function t^{λ} on T^{an} (= underlying analytic manifold of T) and we have the rank-one integrable connection $$\theta_{\lambda} = \mathcal{D}_{T} t^{\lambda} \simeq \mathcal{D}_{T} / \sum_{h \in t} \mathcal{D}_{T} (L_{h} - \lambda(h))$$ where, in general, \mathcal{D}_Y denotes the sheaf of algebraic linear differential operators on an algebraic manifold Y and $L_h \in \Gamma(T, \mathcal{D}_T)$ is the (left) invariant differential operator defined by $h \in t$. We consider a complex of \mathcal{D}_{G} -modules $$\int_{\mathbf{p}} \theta^* \theta_{\lambda}$$ on G. Theorem 1.2.1. $$\mathcal{H}^{i} f_{p} \theta^{*} \theta_{\lambda} = 0$$ ($i \neq 0$) and $N_{\lambda} = \mathcal{H}^{0} f_{p} \theta^{*} \theta_{\lambda}$ is a regular holonomic \mathfrak{D}_{G} -modules in the algebraic sense. # 1.3. The integral Weyl group $W(\lambda)$ acting on N_{λ} . We know the categorical equivalence by Kashiwara-Mebkhout, the Riemann-Hilbert correspondence Sol: $$D_{rh}^b(\mathfrak{D}_Y) \xrightarrow{\sim} D_c^b(\mathbb{C}_Y)^0$$ defined by Sol M = R $\mathcal{H}om_{\mathfrak{J}_Y}$ (M, $\mathfrak{O}_{Y^{an}}$). Here $D^b_{rh}(\mathfrak{D}_Y)$ is the derived category of bounded complexes of \mathfrak{D}_Y -modules whose cohomologies are regular holonomic in the algebraic sense (Y is an algebraic manifold) and $D^b_c(\mathbb{C}_Y)$ is that of bounded complexes of $\mathbb{C}_{Y^{an}}$ -modules whose cohomologies are algebraically constructible (Y^{an} is the underlying complex manifold of Y). We first consider the special case (Deligne's theorem). We have an equivalence {regular connections of rank one on T} \simeq {local systems of rank one on T^{an} } $$\simeq \pi_1(T) = \operatorname{Hom}(\pi_1(T), \mathbb{C}^{\times}), \qquad (\pi_1(T) = \pi_1(T^{an})).$$ This correspondence is realized as follows. Since Sol $\emptyset_{\lambda} \simeq \mathbb{C}t^{\lambda}$, the monodromy representation of $\mathbb{C}t^{\lambda}$ is given by the one dimensional representation $1^{\lambda} \in \pi_{1}(T)^{\times}$ defined by $$1^{\lambda}(\gamma) := e^{2\pi i \langle \lambda, \gamma \rangle} \qquad (\gamma \in \pi_1(T)).$$ Here we take the identification $$\pi_1(T) \simeq \operatorname{Hom}_{\operatorname{alg gp}}(\mathbb{C}^{\times}, T) \hookrightarrow t$$ and the natural pairing $$\langle , \rangle : t^* \times t \longrightarrow \mathbb{C}.$$ We then have a short exact sequence $$0 \longrightarrow P \longrightarrow t^* \longrightarrow \pi_1(T) \longrightarrow 0 \qquad (\lambda \longmapsto 1^{\lambda})$$ where $P = \{\lambda \in \mathfrak{t}^* \mid \langle \lambda, \gamma \rangle \in \mathbb{Z} \mid (\gamma \in \pi_1(T))\}.$ Let $W = N_G(T)/T$ be the Weyl group which acts on T, t, t^* , P, $\pi_1(T)$ etc., \cdots . Set $$W(\lambda) := \{ w \in W \mid w1^{\lambda} = 1^{\lambda} \} = \{ w \in W \mid \lambda - w\lambda \in P \},$$ the integral Weyl subgroup. Let $$\widetilde{\mathbb{W}} = \mathbb{W} \ltimes \pi_1(T) \supset \widetilde{\mathbb{W}}(\lambda) = \mathbb{W}(\lambda) \ltimes \pi_1(T)$$ be the corresponding modified affine Weyl groups (semidirect product). As was seen in [Ho], we have the following: Lemma 1.3.1. Let G_{rs} be the open subset of G consisting of regular semisimple elements and set $T_{rs} = T \cap G_{rs}$, $\widetilde{G}_{rs} = p^{-1}G_{rs}$. - i) $\widetilde{G}_{rs} \simeq G/T \times T_{rs}$ and hence $\pi_1(\widetilde{G}_{rs}) \simeq \pi_1(T_{rs}) \longrightarrow \pi_1(T)$. - ii) Let K be the kernel of $\pi_1(\widetilde{G}_{\Gamma S}) \longrightarrow \pi_1(T)$. Then by the short exact sequence $$1 \longrightarrow \pi_1(\widetilde{G}_{rs}) \longrightarrow \pi_1(G_{rs}) \longrightarrow W \longrightarrow 1,$$ we have $$1 \longrightarrow K \longrightarrow \pi_1(G_{rs}) \longrightarrow \widetilde{W} \longrightarrow 1.$$ iii) Consider the local system $\mathbb{C}_{\lambda} = \mathrm{Sol} \ \emptyset_{\lambda} \simeq \mathbb{C}t^{\lambda}$ on T. Then the monodromy representation of the local system $$p_*\theta^{-1}C_{\lambda}|G_{rs}$$ on G_{rs} is given by the induced representation $$\operatorname{Ind}_{\pi_{1}(T)}^{\widetilde{W}} \stackrel{1^{\lambda}}{\simeq} \operatorname{Ind}_{\widetilde{W}(\lambda)}^{\widetilde{W}} (\mathbb{C}[W(\lambda)] \otimes 1^{\lambda})$$ $$\cong \bigoplus_{\chi \in \mathbb{W}(\lambda)} V_{\chi}^* \otimes \operatorname{Ind}_{\widetilde{\mathbb{W}}(\lambda)}^{\widetilde{\mathbb{W}}} (V_{\chi} \otimes 1^{\lambda})$$ through the factorization $\pi_1(G_{rs}) \longrightarrow \widetilde{W}$. Here $\mathbb{C}[W(\lambda)]$ is the group algebra, V_{χ} is an irreducible $W(\lambda)$ -module for a class $\chi \in W(\lambda)$ and V_{χ} is its dual. Since $W(\lambda)$ fixes $1^{\lambda} \in \pi_1(T)$, $V_{\chi} \otimes 1^{\lambda}$ defines a representation of $\widetilde{W}(\lambda) = W \ltimes \pi_1(T)$. Note that $\operatorname{Ind}_{\widetilde{W}(\lambda)}^{\widetilde{W}}(V_{\chi} \otimes 1^{\lambda})$ is irreducible by Mackey's criterion. iv) The induced space $\operatorname{Ind}_{\pi_1(T)}^{\widetilde{W}}$ $^{1^{\lambda}}$ has $(W(\lambda), \widetilde{W})$ -action in such a way that $W(\lambda)$ acts on V_{χ}^* parts in the irreducible decomposition in iii). Hence the local system $p_*\theta^{-1}\mathbb{C}_{\lambda}|_{G_{rs}}$ has the $W(\lambda)$ -action and the simple decomposition $$p_*\theta^{-1}\mathbb{C}_{\lambda}|_{G_{rs}} \simeq \bigoplus_{\chi \in W(\lambda)} V_{\chi}^* \otimes F(\chi, \lambda)$$ where $F(\chi, \lambda)$ is the local system whose monodromy representation is $Ind_{\widetilde{W}(\lambda)}^{\widetilde{W}}$ $(V_{\chi} \otimes 1^{\lambda})$. v) Let IC be the intersection cohomology functor. Then $\operatorname{Rp}_*\theta^{-1}\mathbb{C}_{\lambda}[\operatorname{n}]\simeq\operatorname{IC}(\operatorname{p}_*\theta^{-1}\mathbb{C}_{\lambda}|\operatorname{G}_{\operatorname{rs}})$ $$\simeq \bigoplus_{\chi \in W(\lambda)} V_{\chi}^* \otimes IC(F(\chi, \lambda))$$ where n = dim G. In particular, the perverse sheaf $\operatorname{Rp}_*\theta^{-1}\mathbb{C}_{\lambda}$ acquires the $W(\lambda)$ -action. By the Riemann-Hilbert correspondence, we have Sol $$N_1 \simeq Rp_* \theta^{-1} C_1$$ and by Lemma 1.3.1,v), the $W(\lambda)$ -action on the \mathcal{D}_G -module N_{λ} . For the later convenience, we change the $W(\lambda)$ -action on N_{λ} by multiplying the signature representation sgn of $W(\lambda)$. Thus we have the following. Theorem 1.3.2. The $(W(\lambda), \mathcal{D}_G)$ -module N_{λ} decomposes as $$N_{\lambda} \simeq \bigoplus_{\chi \in W(\lambda)} V_{\chi} \otimes N(\chi, \lambda)$$ where $N(\chi, \lambda)$ is a regular holonomic simple \mathfrak{D}_G -module such that Sol $N(\chi, \lambda)[n] \simeq IC(F(\chi \otimes sgn, \lambda))$. ### §2. Character 9-modules ### 2.1. The Harish-Chandra equations. Let g = Lie G be the Lie algebra of G, U(g) the universal enveloping algebra and Z the center of U(g). The Harish-Chandra isomorphism given by the fixed pair $B \supset T$ is an algebra isomorphism $$z \xrightarrow{\sim} U(t)^{\cdot W} \simeq \mathbb{C}[t^*]^{\cdot W}$$ where the superscript .W means the invariants by the dot action defined by $$w.\lambda = w(\lambda + \rho) - \rho$$ $(w \in W, \lambda \in t^*)$ (ρ is the half sum of the positive roots). Hence it gives rise to the map such that $\chi_{\lambda} = \chi_{\lambda}' \iff w.\lambda = \lambda'$ for some $w \in W$. For a fixed $\lambda \in \mathfrak{t}^*$, we consider the \mathfrak{D}_G -module $$M_{\lambda} = \mathcal{D}_{G}/\mathcal{I}_{\lambda} = \mathcal{D}_{G}u_{\lambda}$$ where $$\begin{split} \mathcal{I}_{\lambda} &\coloneqq \sum_{z \in Z} \mathcal{D}_{G}(L_{z} - \chi_{\lambda}(z)) + \sum_{a \in g} \mathcal{D}_{G}(L_{a} + R_{a}), \\ u_{\lambda} &\coloneqq 1 \mod \mathcal{I}_{\lambda}. \end{split}$$ Here L_z (resp. R_z) denotes the left (resp. right) invariant differential operator on G corresponding to $z \in U(g)$. This \mathfrak{D}_G -module M_λ is known to be the defining equations of invariant eigendistributions. However, as was first noticed by Hirai [Hi], the irreducible characters with infinitesimal character x_λ generally do not span the space of the invariant eigendistributions. Our first motivation is to construct the \mathfrak{D}_G -module whose distribution solutions are spanned by the irreducible characters. For this, we want to connect M_λ with N_λ . 2.2. The \mathfrak{D}_{G} -module \widetilde{M}_{λ} defining characters. We need the following well-known lemma. Lemma 2.2.1. Let $T \xleftarrow{\theta} \widetilde{G} \xrightarrow{p} G$ be the Grothendieck-Springer-Steinberg diagram and ω_G a non-zero G-invariant highest form (unique up to scalar multiplications). There then exists a unique nowhere vanishing G-invariant highest form ω $\widetilde{\mathsf{G}}$ such that $$\mathbf{p}^*\boldsymbol{\omega}_{\mathbf{G}} = (\mathbf{D} \cdot \boldsymbol{\theta})\boldsymbol{\omega}_{\mathbf{G}} + (\mathbf{D} \cdot \boldsymbol{\theta})\boldsymbol{\omega}_{\mathbf{G}}$$ where D is the function on T given by $$D(t) = \Pi_{\alpha > 0} (1 - t^{-\alpha}) = t^{-\rho} \Delta(t),$$ $$\Delta(t) = \Pi_{\alpha > 0} (t^{\alpha/2} - t^{-\alpha/2})$$ (the products run through the positive roots $\alpha > 0$). Using these forms $\omega_G^{}, \ \omega_G^{}, \ we can define a global section <math display="inline">v_{\lambda}^{} \in \Gamma(G, \, N_1^{})$ by $$\mathbf{v}_{\lambda} \coloneqq \boldsymbol{\omega}_{\widetilde{\mathbf{G}}} \otimes \mathbf{1} \otimes \mathbf{p}^{*}\boldsymbol{\omega}_{\mathbf{G}}^{-1} \otimes \mathbf{t}^{\lambda} \in \Gamma(\mathbf{G}, \, N_{\lambda}) = \Gamma(\widetilde{\mathbf{G}}, \, \mathcal{D}_{\mathbf{G} \leftarrow \widetilde{\mathbf{G}}} \otimes_{\mathcal{D}_{\widetilde{\mathbf{G}}}}^{\mathfrak{g}} \theta^{*}\boldsymbol{0}_{\lambda}).$$ (Note that by definition $$\mathcal{D}_{\mathbf{G} \leftarrow \widetilde{\mathbf{G}}} = \Omega_{\widetilde{\mathbf{G}}} \otimes_{\boldsymbol{0}_{\widetilde{\mathbf{G}}}} \mathbf{p}^* (\mathcal{D}_{\mathbf{G}} \otimes_{\boldsymbol{0}_{\mathbf{G}}} \Omega_{\mathbf{G}}^{-1})$$ where Ω (resp. Ω_G) is the canonical line bundle of \widetilde{G} (resp. \widetilde{G}), which is a right 9-module.) By Lemma 2.2.1 combined with Harish-Chandra's formula for $M_{\lambda}|_{G_{rs}}$ and by the fact that N_{λ} is a minimal extension (Theorem 1.3.2), it is easily seen that Ann $$u_1 \subset Ann v_1$$ where Ann denotes the annihilator in ${\mathfrak D}_G$. Hence we can define a ${\mathfrak D}_G$ -module homomorphism $$\varphi : M_{\lambda} = \mathcal{D}_{G} u_{\lambda} \longrightarrow N_{\lambda}$$ by $\varphi(Pu_{\lambda}) = Pv_{\lambda} \quad (P \in \mathcal{D}_{G}).$ Definition 2.2.2. $$\widetilde{M}_{\lambda} = \operatorname{Im} \varphi = \mathscr{D}_{G} v_{\lambda} \subset N_{\lambda}$$. Theorem 2.2.3. i) \widetilde{M}_{χ} is regular holonomic. ii) Let $W_{\lambda+\rho} = \{w \in W \mid w(\lambda+\rho) = \lambda+\rho\} \subset W(\lambda)$ and $N_{\lambda}^{W_{\lambda+\rho}}$ the \mathfrak{D}_G -submodule of $W_{\lambda+\rho}$ -invariants by the $W(\lambda)$ -action in 1.3. Then The Att of the state of the state of the $$\widetilde{M}_{\lambda} = N_{\lambda}^{W_{\lambda + \rho}} \simeq \bigoplus_{\chi \in W(\lambda)} V_{\chi}^{W_{\lambda + \rho}} \otimes N(\chi, \lambda).$$ iii) If $G_{\mathbb{R}}$ is a connected real form of G, then the space of distribution solutions to \widetilde{M}_1 , $$\operatorname{Hom}_{\mathfrak{D}_{\mathbf{G}}}(\widetilde{\mathbf{M}}_{\lambda}, \mathfrak{Dist}_{\mathbf{G}_{\mathbf{R}}}),$$ is spanned by the irreducible characters of G_R with infinitesimal character χ_{λ} (Dist $_{G_R}$ is the sheaf of Schwartz distributions on G_D). We make a few comments for the proof. i) is clear since N_{λ} has the same property. ii) follows from the analysis of the W(λ)-action on N_{λ} and Theorem 1.3.2. iii) follows from Fomin-Shapovalov-Nishiyama's results [N1], i.e., the solution space turns out to be the space of "constant coefficient invariant eigendistributions". Remark 2.2.4. By ii), \widetilde{M}_{λ} is acted by the Hecke algebra $H(W(\lambda), W_{\lambda+\rho})$ which gives rise to Nishiyama's action [N2] on the character span $\operatorname{Hom}_{\mathfrak{D}_{\mathbf{G}}}(\widetilde{\mathbf{M}}_{\lambda}, \operatorname{Dist}_{\mathbf{G}_{\mathbb{R}}})$. ### 2.3. Character 9-modules. Let $G_{\mathbb{R}}$ be a connected real form of G. Since \widetilde{M}_{λ} is regular holonomic, $$\operatorname{Hom}_{\mathfrak{D}_{G}}(\widetilde{M}_{\lambda}, \mathfrak{Dist}_{G_{\mathbb{R}}}) = \operatorname{Hom}_{\mathfrak{D}_{G}}(\widetilde{M}_{\lambda}, \mathfrak{B}_{G_{\mathbb{R}}})$$ where $\mathcal{B}_{G_R} = \mathcal{H}_{G_R}^n$ (0) \otimes or G_R is the sheaf of Sato hyperfunctions (or G_R is the orientation sheaf of G_R). Hence the character span decomposes as $$\begin{split} \operatorname{Hom}_{\mathcal{D}_{G}}(\widetilde{M}_{\lambda}, \, \, \operatorname{Dist}_{G_{\mathbb{R}}}) &= \operatorname{H}^{0}(G_{\mathbb{R}}, \, \, \operatorname{R} \operatorname{Hom}_{\mathcal{D}_{G}}(\widetilde{M}_{\lambda}, \, \, \operatorname{R} \Gamma_{G_{\mathbb{R}}}(\mathfrak{G}_{\operatorname{an}})[n]) \\ &\simeq \operatorname{H}^{n}(G_{\mathbb{R}}, \, \, \operatorname{R} \Gamma_{G_{\mathbb{R}}}(\operatorname{Sol} \, \, \widetilde{M}_{\lambda})) \\ &\simeq \bigoplus_{\chi} \, (\operatorname{V}_{\chi}^{\operatorname{W}_{\lambda} + \rho})^{*} \otimes \operatorname{H}^{n}(G_{\mathbb{R}}, \, \, \operatorname{R} \Gamma_{G_{\mathbb{R}}}(\operatorname{Sol} \, \operatorname{N}(\chi, \, \lambda)), \end{split}$$ where we fix an orientation of $G_{\mathbb{R}}$. Note that by 1.3, Sol $N(\chi, \lambda) \simeq IC(F(\chi \otimes sgn, \lambda))[-n]$. Definition 2.3.1. For $\lambda \in \mathfrak{t}^*$, we call a simple \mathfrak{D}_G -module $N(\chi, \lambda)$ satisfying $(\chi|\mathbb{W}_{\lambda+\rho}\colon \mathbb{1}) \neq 0 \quad \text{and} \quad \mathrm{H}^n(G_{\mathbb{R}}, \ \mathrm{R}\Gamma_{G_{\mathbb{R}}}(\mathrm{Sol}\ \mathrm{N}(\chi,\ \lambda))) \neq 0$ a character \mathcal{D}_G -module with infinitesimal character χ_{λ} . Thus character \mathcal{D}_G -modules are exactly those simple \mathcal{D}_G -modules contributing to irreducible characters of $G_{\mathbb{R}}$. In this aspect, this concept may be considered as a real analogue to Lusztig's "character sheaves" over a finite field [L2]. Solutions to such $N(\chi, \lambda)$ should then be called "almost-characters". #### 2.4. Character cycles. As in 2.3, for the character span, we have $$\begin{split} \operatorname{Hom}_{\mathscr{D}_{G}}(\widetilde{M}_{\lambda}, \,\, \mathscr{B}_{G_{\mathbb{R}}}) \, & \simeq \, \operatorname{H}^{0}(G_{\mathbb{R}}, \,\, \operatorname{R}\Gamma_{G_{\mathbb{R}}}(\operatorname{Sol} \,\, \widetilde{M}_{\lambda})[\operatorname{n}]) \\ \\ & \simeq \, \operatorname{H}^{0}(G_{\mathbb{R}}, \,\, \operatorname{R}\Gamma_{G_{\mathbb{R}}}((\operatorname{Rp}_{*}\theta^{-1}\mathbb{C}_{\lambda})_{W_{\lambda+\rho}})[\operatorname{n}]) \end{split}$$ where the subscript $W_{\lambda+\rho}$ means the $W_{\lambda+\rho}$ -covariants (\simeq the $W_{\lambda+\rho}$ -invariants in the present case). Set $\widetilde{G}_{\mathbb{R}} := p^{-1}G_{\mathbb{R}}$. Then the above space is isomorphic to $$H^{0}(\widetilde{G}_{\mathbb{R}}, R\Gamma_{\widetilde{G}_{\mathbb{R}}}^{(\theta^{-1}\mathbb{C}_{\lambda})[n])}W_{\lambda+\rho}$$ $$\simeq H^{0}(\widetilde{G}_{\mathbb{R}}, \theta^{-1}\mathbb{C}_{\lambda} \otimes \omega_{\widetilde{G}_{\mathbb{R}}}^{[-n])}W_{\lambda+\rho}$$ (ω is the dualizing complex of $\widetilde{\mathsf{G}}_{\mathbb{R}}$) $$\simeq \operatorname{H}^{-n}(\widetilde{\operatorname{G}}_{\mathbb{R}},\ \theta^{-1}\mathbb{C}_{\lambda} \otimes \omega_{\widetilde{\operatorname{G}}_{\mathbb{R}}})_{\mathbb{W}_{\lambda}+\rho}.$$ But then this is by definition isomorphic to $$H_{n}^{BM}(\widetilde{G}_{\mathbb{R}}, \theta^{-1}\mathbb{C}_{-\lambda})_{W_{\lambda+\rho}}$$ $$\simeq (H_{n}^{n}(\widetilde{G}_{\mathbb{R}}, \theta^{-1}\mathbb{C}_{\lambda})^{W_{\lambda+\rho}})^{*}$$ where, in general, $H_n^{BM}(Y, F)$ denotes the n-th Borel-Moore homology group with twisted coefficients in a local system F. The last isomorphism follows from the Verdier duality. Definition 2.4.1. Let Θ be an irreducible character of $G_{\mathbb{R}}$. Through the above canonical isomorphism $$\operatorname{Hom}_{\mathfrak{D}_{\widetilde{G}}}(\widetilde{M}_{\lambda},\ \mathfrak{Dist}_{G_{\widetilde{R}}}) \simeq \operatorname{H}_{n}^{\operatorname{BM}}(\widetilde{G}_{\widetilde{R}},\ \theta^{-1}\mathbb{C}_{-\lambda})_{W_{\lambda+\rho}}\ ,$$ the corresponding n-th cycle $c(\Theta) \in H_n^{BM}(\widetilde{G}_{\mathbb{R}}, \theta^{-1}\mathbb{C}_{-\lambda})_{W_{\lambda+\rho}}$ is called the *character cycle* of Θ . Describing the transition matrix between the character cycles and the geometric cycles seems to be an extremely interesting but very delicate problem (see [K]). For example, assume λ to be integral with λ + ρ regular (\Longrightarrow $\mathbb{C}_{\lambda} \simeq \mathbb{C}$ and $\mathbb{W}_{\lambda+\rho}$ = {e}). Then RHS \simeq $H_n^{BM}(\tilde{G}_R,\mathbb{C})$ is spanned by the fundamental cycles of \tilde{G}_R and even in this case we do not know much about the transition matrix between this basis and the character cycle basis. # §3. Cell decomposition of \widetilde{M}_{λ} #### 3.1. Notation. In Theorem 2.2.3, we have decomposed the \mathfrak{D}_G -module \widetilde{M}_{λ} according to its monodromy. But an irreducible character in general is not a solution to a simple factor of \widetilde{M}_{λ} and in order to elucidate this point, we shall consider more subtle decomposition according to cell representations of the integral Weyl group. For this, we introduce the following notation. Fix $\lambda \in t^*$. For an W(λ)-module V, let N(V, λ) denote the regular holonomic \mathcal{D}_G -module such that Sol N(V, $$\lambda$$)[n] = IC F(V \otimes sgn , λ) where $F(V \otimes sgn, \lambda)$ is the local system on G_{rs} corresponding to the \widetilde{W} -module Ind $$\widetilde{\mathbb{W}}$$ (V \otimes sgn) \otimes 1 ^{λ} . Thus, for example, $$N(\chi, \lambda) = N(V_{\chi}, \lambda),$$ $$N_{\lambda} \simeq N(\mathbb{C}[W(\lambda)], \lambda),$$ $$\widetilde{M}_{\lambda} = N_{\lambda}^{W_{\lambda+\rho}} \simeq N(\operatorname{Ind}_{W_{\lambda+\rho}}^{W(\lambda)} 1, \lambda) \simeq N(\mathbb{C}[W(\lambda)]_{W_{\lambda+\rho}}, \lambda).$$ In the above, we consider $\mathbb{C}[W(\lambda)]$ as the left regular representation and denote by $\mathbb{C}[W(\lambda)]_{W_{\lambda+\rho}}$ the space of covarints by the right $W_{\lambda+\rho}$ -action. #### 3.2. Cells. For the integral Weyl group $W(\lambda)$, let $\overline{V}^L(w)$ (resp. $\overline{V}^R(w)$, $\overline{V}^{LR}(w)$) $\subset \mathbb{C}[W(\lambda)]$ be the left (resp. right, double) cone ideal for $w \in W(\lambda)$. The Kazhdan-Lusztig preorders \leq then mean $$\mathbf{w} \leq \mathbf{y} \iff \overline{\mathbf{v}}^{L}(\mathbf{w}) \subset \overline{\mathbf{v}}^{L}(\mathbf{y}),$$ $$\begin{array}{ccc} w \leq y & \Longleftrightarrow & \overline{V}^R(w) \subset \overline{V}^R(y), \\ R & & & \\ w \leq y & \Longleftrightarrow & \overline{V}^{LR}(w) \subset \overline{V}^{LR}(y). \end{array}$$ The equivalence relations generated by these preorders are denoted respectively by \sim , \sim , \sim . Thus L R LR Note that the double cell equivalence \sim is the smallest LR equivalence relation containing \sim and \sim . L $_{\rm R}$ We denote w < y when $w \le y$ but $w \sim y$ fails. The left cell representation corresponding to $w \in W(\lambda)$ is then defined by $$\mathbf{V}^{\mathbf{L}}(\mathbf{w}) \coloneqq \overline{\mathbf{V}}^{\mathbf{L}}(\mathbf{w}) / \sum_{\mathbf{y} \leq \mathbf{w}} \overline{\mathbf{V}}^{\mathbf{L}}(\mathbf{y}) .$$ Hence if w \sim y, then V^L(w) \simeq V^L(y). Similarly we define the L double (resp. right) cell representation V^{LR}(w) (resp. V^R(w)), which have similar properties. If \boldsymbol{w}_0 is the longest element of $\boldsymbol{w}(\lambda),$ then there exists a natural isomorphism $$V^L(w) \simeq V^L(w_0 w)^* \otimes sgn.$$ If w_{λ} is the longest element of $W_{\lambda+\rho}$ (\subset W(λ)), then $$\operatorname{Ind}_{\mathbb{V}_{\lambda+\rho}}^{\mathbb{V}(\lambda)} \ 1 \simeq \operatorname{sgn} \ \otimes \ \overline{\mathbb{V}}^L(\mathbb{V}_{\lambda}) \ .$$ Now let $$\overline{V}^{L}(w_{\lambda}) \simeq \bigoplus_{i=1}^{k} V^{L}(w_{i})$$ $(w_1 = w_{\lambda}, w_i < w_{\lambda} \text{ for } i > 1)$ be the (non-canonical) decomposition of the left cone representation $\overline{V}^L(w_{\lambda})$ into the left cell representations. Then by the above, we have $$sgn \otimes \overline{V}^{L}(w_{\lambda}) \simeq \bigoplus_{i=1}^{k} V^{L}(w_{0}w_{i})$$ (note that for a Weyl group module V, V \simeq V*). We thus have the cell decomposition of the \mathcal{D}_G -module \widetilde{M}_{λ} as follows. Theorem 3.2.1. $$\widetilde{M}_{\lambda} \simeq \bigoplus_{i=1}^{k} N(V^{L}(w_{i}, w_{i}), \lambda)$$. 3.3. Characteristic varieties of the decomposition factors. For simplicity, assume λ is integral and hence $W(\lambda) = W$. We consider the Springer correspondence $$0: W \longrightarrow N/G = nilpotent orbits in g*$$ normalized so that O(1) = regular orbit and $O(\text{sgn}) = \{0\}$. For an irreducible class $\chi \in W$, there exists a unique double cell representation $V^{LR}(w)$ which contains V_{χ} . We then set $$g^{LR}(\chi) := \{\chi' \in W' \mid V_{\chi'} \subset V^{LR}(W)\}.$$ $\mathscr{C}^{LR}(\chi)$ contains a unique special class (the class of a special representation) and thus W decomposes as $$\mathbf{W} = \mathbf{Z} \cdot \mathbf{Special}$$ (partition into the families [L1]). For $\chi \in W$, when $V_{\chi} \subset V^{LR}(w)$, we similarly set $\overline{g}^{LR}(\chi) := \{\chi' \in W \mid V_{\chi'} \subset \overline{V}^{LR}(w)\}.$ For $\chi \in \mathbb{W}$, let $\chi_0 \in \mathcal{C}^{LR}(\chi)$ be the unique special class. Then we set $$\theta_{\rm Sp}(\chi) = \theta(\chi_0) \in N/G$$ which is by definition a special nilpotent orbit. Lemma 3.3.1 ([KT]). Assume $\chi' \in \overline{\mathscr{C}}^{LR}(\chi)$. Then $\mathfrak{O}(\chi') \subset \overline{\mathfrak{O}_{sp}(\chi)}$ where — denotes the closure of a nilpotent orbit. For a coherent \mathcal{D}_G -module M, let Ch M \subset T*G denote the characteristic variety of M. Set Ch M = Ch M $$\cap$$ T *_A G \subset g * where $T_e^*G \simeq g^*$ is the cotangent space at the identity $e \in G$ ("wave front set" of M). We then have the following by [HK1]. Lemma 3.3.2. Let $N(\chi, \lambda)$ $(\chi \in W)$ be the simple \mathfrak{D}_G -module defined in 1.3. Then $$Ch_e N(\chi, \lambda) = \overline{\emptyset(\chi)}.$$ Theorem 3.3.3. In the decomposition of Theorem 3.2.1, $$Ch_e N(V^L(w_0w_\lambda), \lambda) \subset Ch_e N(V^L(w_0w_i), \lambda)$$ and each variety is the closure of a special orbit. We briefly indicate the proof. For $w \in W$, let $\chi_{w} \in W$ be the unique special class such that $V_{\chi_W} \subset V^{LR}(w)$. Then by 3.3.1, $\text{Ch}_e \ N(V^L(w), \ \lambda) \ = \ \overline{O(\chi_W)} \, .$ Since $w_{\lambda} \geq w_{i}$, $w_{0}w_{\lambda} \leq w_{0}w_{i}$, which implies the minimality of $\overline{0(\chi_{W_{0}})}$ by 3.3.1. Thus Lemma 3.3.2 implies the theorem. Remark 3.3.4. Even if λ is not integral, the theorem will be true (except the statement on the speciality of orbits) by using Luszitg's induction $j_{W(\lambda)}^W$. ## §4. Primitive ideals ## 4.1. Review. For $\lambda \in t^*$, let $\operatorname{Prim}_{\lambda} U(g)$ be the set of primitive ideals of U(g) with infinitesimal character $\chi_{\lambda} \in Z^*$. Assume $\lambda + \rho$ is anti-dominant and let L(w) be the unique irreducible quotient of the Verma module $U(g) \otimes_{U(b)} \mathbb{C}_{w,\lambda}$ where $\mathbb{C}_{w,\lambda}$ is the one dimensional U(b)-module with weight $w.\lambda = w(\lambda + \rho) - \rho$ ($w \in W$). Let $I_w = \operatorname{Ann} L(w) \in \operatorname{Prim}_{\lambda} U(g)$. Then the map $\{w\in W(\lambda)\mid w \text{ is minimal in a left coset in }W(\lambda)/W_{\lambda+\rho}\}$ $\downarrow \qquad \qquad (w\longmapsto I_w)$ $\text{Prim}_{\lambda}U(g)$ is surjective (Duflo). In particular, if $\lambda + \rho$ is regular, in the surjection it is notable that $$I_{W} = I_{y} \iff W \sim y \text{ in } W(\lambda).$$ # 4.2. Primitive quotient of \widetilde{M}_1 . In our paper [HK2], we have shown that if $\lambda + \rho$ is integral regular, then for the ${\mathfrak D}_G$ -module $$M_w = M_{\lambda}/I_w M_{\lambda} \simeq N_{\lambda}/I_w N_{\lambda}$$, we have an isomorphism $$M_{W} \simeq N(\overline{V}^{L}(W), \lambda).$$ In general, the situation is as follows: In the above, we first choose $\lambda_0 = \lambda + \mu \in \mathfrak{t}^*$ such that μ is integral and $\lambda_0 + \rho$ is anti-dominant regular. The isomorphism $N_{\lambda} \simeq N_{\lambda_0} \simeq M_{\lambda_0}$ follows from the definition and Theorem 2.2.3 $(\lambda_0 + \rho)$ is regular. The row sequence $$\widetilde{M}_{\lambda} \longrightarrow N_{\lambda} \simeq N_{\lambda_0} \simeq M_{\lambda_0}$$ reflects the "translation principle" of characters. The others are defined as follows. For w minimal in a coset in $W(\lambda)/W_{\lambda+0},$ $$M_{\lambda, w} = M_{\lambda} / I_{w} M_{\lambda} ,$$ $$\widetilde{M}_{\lambda, w} = \widetilde{M}_{\lambda} / I_{w} \widetilde{M}_{\lambda} ,$$ $$M_{\lambda_{0}, w} = M_{\lambda_{0}} / I_{w}^{0} M_{\lambda}$$ where I_w^0 is the annihilator of L(w) with infinitesimal character χ_{λ_0} . Thus the correspondence $$\operatorname{Prim}_{\lambda} U(g) \ni I_{W} \longmapsto I_{W}^{0} \in \operatorname{Prim}_{\lambda_{0}} U(g)$$ gives the translation principle of primitive ideals. # Theorem 4.2.1. i) The diagram is isomorphic to the diagram $$N(\mathbb{C}[W(\lambda)]_{W_{\lambda+\rho}}, \lambda) \longrightarrow N(\mathbb{C}[W(\lambda)], \lambda_{0})$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$ $$N(\overline{V}_{\lambda}^{L}(w), \lambda) \longrightarrow N(\overline{V}^{L}(w), \lambda_{0})$$ where $\overline{V}_{\lambda}^{L}(w) \subset \mathbb{C}[W(\lambda)]_{W_{\lambda+\rho}}$ is the image of $\overline{V}^{L}(w)$ by the projection $\mathbb{C}[W(\lambda)] \longrightarrow \mathbb{C}[W(\lambda)]_{W_{\lambda+\rho}}$. In other words, the diagram corresponds to the $W(\lambda)$ -module diagram by the functor $N(, \lambda)$. ii) $$Ch_e \widetilde{M}_{\lambda,w} = Ch_e M_{\lambda_0,w} = Ass I_w^0 = Ass I_w$$ where Ass denotes the associated variety of a primitive ideal, which is the closure of a single nilpotent orbit. ### 4.3. Unipotent characters. We shall try to make an approach to Barbasch-Vogan's "unipotent representations" [BV] in our view-point. Retain the situation and the notations as before. If I_{λ} is maximal in $Prim_{\lambda}U(g)$ (\iff Ass I_{λ} is minimal), then $$I_{\lambda} = I_{w_0 w_{\lambda}}$$. Thus by Theorem 4.2.1, $$\widetilde{\mathsf{M}}_{\lambda}^{min} \coloneqq \widetilde{\mathsf{M}}_{\lambda} / \mathsf{I}_{\lambda} \widetilde{\mathsf{M}}_{\lambda} \simeq \widetilde{\mathsf{M}}_{\lambda, w_0 w_{\lambda}} \simeq \mathsf{N}(\overline{\mathsf{V}}_{\lambda}^{\mathsf{L}}(w_0 w_{\lambda}), \ \lambda)$$ and $$Ch_{e} \widetilde{M}_{\lambda}^{\min n} = \overline{\emptyset(\chi_{0})}$$ where χ_0 is the unique special class in $V^L(w_0^w)$. But then by Theorems 3.2.1 and 3.3.3, for i>1, $$Ch_e N(V^L(w_0^w_\lambda), \lambda) \supseteq \overline{O(\chi_0)}$$. Actually we have $$\overline{V}_{\lambda}^{L}(w_{0}w_{\lambda}) = V^{L}(w_{0}w_{\lambda}).$$ Theorem 4.3.1. $\widetilde{M}_{\lambda}^{\min} \simeq N(V^{L}(w_{0}w_{\lambda}), \lambda)$. Barbasch and Vogan have found a distinguished property of the left cell representation $V^L(w_0w_\lambda)$ related to Lusztig's picture [L1] when λ is particularly chosen with respect to a special nilpotent orbit. We recall the situation of [BV]. Let Lg be the Lie algebra dual to g ($t^* = ^Lt$, {coroots of (g, t)} = {roots of $(^Lg, ^Lt)$ }). There then exists an order-reversing bijection $$0 \longmapsto {}^{L}0$$ between the set of all special nilpotent orbits of g and that of L g (the order is the inclusion relation among orbit-closures). In the notation of 3.3, if $0 = 0(\chi)$ with $\chi \in W$ special, then L 0 = 0 $_{\rm sp}(\chi \otimes {\rm sgn})$, i.e., L 0 = 0 (χ') where $\chi' \in \mathcal{G}^{LR}(\chi \otimes {\rm sgn})$ is the unique special class of L W $\simeq W$. Assume now that λ is integral and I_{λ} is maximal in $Prim_{\lambda}U(g)$ as before. Set $\overline{0} = Ass\ I_{\lambda}$ $(0 = O(\chi_{\overline{0}}))$. We make the following: Assumption 4.3.2. Lo is even. This assumption 4.3.2 is equivalent to the condition that $$\lambda_0 = \frac{1}{2} h_{L_0} \in L_t = t^* \text{ is integral,}$$ where $h_{L_0} \in L$ is a semisimple element such that (u, h_{L_0} , v) is a corresponding st_2 -triplet (u $\in L_0$). Then $$|\lambda + \rho| \geq |\lambda_0|_{\mathcal{H}_{\mathcal{A}}} \leq |\lambda_0|_{\mathcal{H}_{\mathcal{A}}} \leq |\lambda_0|_{\mathcal{H}_{\mathcal{A}}} \leq |\lambda_0|_{\mathcal{H}_{\mathcal{A}}} \leq |\lambda_0|_{\mathcal{H}_{\mathcal{A}}} \leq |\lambda_0|_{\mathcal{H}_{\mathcal{A}}} \leq |\lambda_0|_{\mathcal{H}_{\mathcal{A}}}$$ and the equality holds if and only if $$\lambda_0 = w(\lambda + \rho)$$ for some $w \in W$ ([BV; 5.10]). Under Assumption 4.3.2, the left cell representation $V^L(w_0w_0)$ (w_0 is the longest element of w_{λ_0}) has a surprising feature. To see this, we need Lusztig's extraordinary picture for cells ([L1]). For a special orbit 0, let A(0) be the Lusztig group (the canonical quotient of the component group $Z_G(0)/Z_G(0)^0$). (In [BV], A(0) is denoted by $\overline{A(0)}$.) For a simple g, A(0) is one of the following finite groups: $$S_2^{power}$$, S_i $(1 \le i \le 5)$ where S_i is the i-th symmetric group. Set $M(0) \coloneqq \{([x], \xi) \mid [x] \in Cl\ A(0), \ \xi \in Z_{A(0)}(x)^*\}$ where Cl A(0) is the set of conjugacy classes of A(0) and ξ belongs to the irreducible classes of the centralizer of x in A(0). There are obvious injections: C1 A(0) $$\longrightarrow$$ M(0), [x] \longmapsto ([x], 1), A(0) \hookrightarrow \longrightarrow M(0), ξ \longmapsto ([e], ξ). Let $\chi_0 \in \mathbb{W}$ be the special class corresponding to 0. Lusztig [L1] has then defined the injection $$\mathcal{C}^{LR}(\chi_0) \longrightarrow M(0)$$ (case by case!) with the following property. If 0 is not exceptional, then the image of the above injection contains the image of Cl A(0). In this case, we thus have the injection (4.3.3) C1 A(0) $$\hookrightarrow$$ $\mathscr{C}^{LR}(\chi_0)$, $(x) \mapsto \chi_x$. In this situation, we have the following. **Lemma 4.3.4** ([BV; 5.28]). Let 0 be a special orbit such that L 0 is even and w_0 the longest element of w_{λ_0} . Then the left cell representation $V^L(w_0w_0)$ decomposes as $$V^{L}(w_0 w_0) = \bigoplus_{[x] \in ClA(0)} V_{x_x}.$$ where $\chi_{X} \in W$ (x \in A(0)) is defined by 4.3.3. Applying this lemma to the \mathfrak{D}_G -module $\widetilde{M}_{\lambda}^{\min}$ ($\lambda = \lambda_0 - \rho$), we have the following. Theorem 4.3.5. Let the assumption be as above. Then $$\widetilde{M}_{\lambda_0^{-\rho}}^{\min n} \simeq \bigoplus_{[x] \in ClA(0)} N(V_{\chi_x}).$$ Remark 4.3.6. Assume a real form $G_R = G_0$ is a connected complex group. Then $G \simeq G_0 \times G_0$, $T \simeq T_0 \times T_0$, $\lambda = (\lambda_1, \lambda_2) \in \mathfrak{t}_0^* \times \mathfrak{t}_0^*$ etc.,..., as usual. Applying the above discussion to a special nilpotent orbit 0×0 in $g = g_0 \times g_0$, we have the following decomposition for the solutions to $\widetilde{M}_{\lambda_0 - \rho}^{\min}$. $$\begin{split} &\operatorname{Hom}_{\mathfrak{D}_{G}}(\widetilde{\mathbb{M}}_{\lambda_{0}^{-\rho}}^{\min},\,\,\mathfrak{F}_{G_{0}}) \,\simeq\, \bigoplus_{[\mathfrak{X}]\in\operatorname{ClA}(0)}\,\, &\operatorname{Hom}_{\mathfrak{D}_{G}}(\mathrm{N}(\mathbb{V}_{\chi_{\mathfrak{X}}}\boxtimes\mathbb{V}_{\chi_{\mathfrak{X}}}),\,\,\mathfrak{F}_{G_{0}})\,. \end{split}$$ In RHS, the direct factor $$&\operatorname{Hom}_{\mathfrak{D}_{G}}(\mathrm{N}(\mathbb{V}_{\chi_{\mathfrak{X}}}\boxtimes\mathbb{V}_{\chi_{\mathfrak{X}}}),\,\,\mathfrak{F}_{G_{0}})\quad \text{turns out to}$$ be one-dimensional, and Barbasch-Vogan's virtual character $R_{\mathfrak{X}}$ ([x] \in Cl A(0)) belongs to this space. The unipotent character X_{π} corresponding to $\pi \in$ A(0) is given by $$X_{\pi} = (\#A(0))^{-1} \sum_{x \in A(0)} \pi(x) R_{x}.$$ Thus the R_{x} 's are "almost-characters" in this case. Generalization 4.3.7. Let $^{L}0$ be a nilpotent orbit of ^{L}g (not necessarily special) and set $\lambda_0 = \frac{1}{2} h_{L_0} \in ^{L}t = t^*$ as before. Let $W(\lambda_0) \subset W$ be the integral subgroup. Let $$L_g = \bigoplus_{i \in \mathbb{Z}} L_{g(i)}$$ be the Dynkin decomposition associated to an nilpotent element $u\in{}^L0$. Then $\,W(\lambda_0)\,$ is the Weyl group of $$L_{\mathfrak{m}} = \bigoplus_{i \in \mathbb{Z}} L_{\mathfrak{g}(2i)}$$. Assume $0_{L_{\mathfrak{M}}} = 0_{L_{\mathfrak{M}}}(u) \subset {^L\mathfrak{m}} \cap {^L0}$ is special in ${^L\mathfrak{m}}$. Setting $\lambda = \lambda_0 - \rho$, we then have $$\widetilde{M}_{\lambda}^{\min} \simeq N(V^{L}(w_{0}^{W_{\lambda}}), \lambda),$$ $V^{L}(w_{0}w_{\lambda}) \simeq \bigoplus_{[x] \in ClA(0_{m})} V_{\chi_{x}}$ as $W(\lambda_{0})$ -modules where $\mathfrak{m}\subset\mathfrak{g}$ is the dual Lie algebra of $^L\mathfrak{m}\subset^L\mathfrak{g}$ and $\mathfrak{O}_{\mathfrak{m}}=^L\mathfrak{O}_{L_{\mathfrak{m}}}$ (special in \mathfrak{m}). ## 48 John March Con References of the property of the [BV] D. Barbasch, D. Vogan: Unipotent representations of complex semisimple groups, Ann. of Math. 121 (1985), 41-110. - [Hi] T. Hirai, Some remarks on invariant eigendistributions on semisimple Lie groups, J. Math. Kyoto Univ. 12 (1972), 393-411. - [Ho] R. Hotta, Holonomic 9-modules in representation theory, Proc. Sympo. in Pure Math. 47, AMS, 1987. - [HK1] ______, M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. math. 75 (1984), 327-358. - [HK2] ______, Quotients of the Harish-Chandra system by primitive ideals, In Geometry of Today, Prog. in Math. 60, Birkhäuser, 1985, 185-205. - [K] M. Kashiwara, Character, character cycle, fixed point theorem and group representations, Preprint RIMS-569 (1987). - [KT] _____, T. Tanisaki, The characteristic cycles of holonomic systems on a flag manifold, Invent. math. 77 (1984), 185-198. - [L1] G. Lusztig, Characters of reductive groups over a finite field, Ann. of Math. Stud. 107, Princeton Univ. Press, 1984. - [L2] _____, Character sheaves. I $\sim V$, Adv. in Math. 56 (1985), 193-327; 57 (1985), 226-265, 266-317; 59 (1986), 1-63; 61 (1986), 103-155. - [N1] K. Nishiyama, Virtual characters and constant coefficient invariant eigendistributions on a semisimple Lie group, Japan. J. Math. 12 (1986), 75-94. - [N2] ______, Representations of Weyl groups and their Hecke algebras on virtual character modules of a semisimple Lie group, J. Math. Kyoto Univ. 27 (1987), 151-181.