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Though the problem we are going to discués is ancient, our
motivation is rather new. Cne of the most importaht problem of
group representations is clearly the classification and the
description of the irreducible characters of a group you happen
to be interested in. Here let all of us assume to be interested
in a real reductive group. You probably Kknow much about the
subject and you can rightfully assert those great masterpieces
created by I. M. Gelfand, Harish-Chandra, T. Hirai, R. P.
Lahglands and ... are enough for its understanding. There may
seem to be no rooms for new comers with new ideas.

But we also know a great monument by G. Lusztig which,
however, is centered around a reductive group over a finite
field. Since Lusztig himself has clearly been stimulated by

those ancestors' work when he has got the idea of the



classification [L1] and that of the so-called "character
sheaves" [L2], it never seems for us to be waste of time to
retrospect Lusztig'shphilosophi from our point‘of_view, i.e.,
the Riemann-Hilbert correspondence between perverse sheaves and
regular holonomic<9-modules on our group. The name "character
@—moduies" comes simply from this correspondénce. Hefe thus
occurs an involutive base change prinéiple R - Fq — R ! As a
bonus, we shall get a new approach (actually only half a way) to
Barbasch-Vogan's mysterious "unipotent representations" [BV].
This is a report of work in progress jointly with M.

Kashiwara.

81. A Gauss-Manin connection associated to the Grothendieck-

Springer-Steinberg diagram

1.1. The Grothendieck-Springer-Steinberg diagran.

Let G be a connected complex reductive algebraic group and B D

T a Borel subgroup and a maximal torus, fixed once and for all.

We then have a notable simul taneous resolution diagram

0 - P
T ¢ G » G .

Here the notations are as follows.
G=1((x, g8B) € Gx X | x € gg™ 1 (X = G/B),
p = prcla (proper).

We have an isomorphism.

41



42

¢xBp =i, ((g, b) — (gbg L, gB)),

where G xB B is the fiber bundle associatéd to the B-principal

bundle G — X with the inner B-action on B. The projection

GXB— B— T = B/U
(U = unipotent radical>of'B) gives rise to the smoo th map
0 : GxGXPB— T .

1.2. A Gauss-Manin connection NA.

Let t = Lie T be the Lie algebra of T and t* the linear

dual of t. An element 1 € t* defines the multi-valued

A

holomorphic function t on Tan

(= underlying analytic

manifold of T) and we have the rank-one integrable connection

= A -

0, = D pt" > 9./ zhetg’T(Lh A¢h))

where, in general, QY denotes the sheaf of algebraic linear
differential operators on an algebraic manifold Y and Lh €

rqr, QT) is the (left) invariant differential operator defined
by h € t.

We consider aAcomplex of 96~modules

fpe*el on G.

Theorem 1.2.1. xifpe*el =0 (i # 0) and
0 *
Nl = £ fpe GA

i8 a regular holonomic QG—nodules in the algebraic sense.
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1.3. The integral Weyl group W(x) acting on Nx‘

We know the categorical equivalence by Kashiwara-Mebkhout, the

Riemann-Hilbert :correspondence

. b ~ b 0
Sol : Drh(QY) _— DC(CY)
- V b .
defined by Sol M := Rﬂongy(M, oYan)' Here Drh(QY) is the

derived category of bounded complexes of QY—modules whose
cohomologies are regular holonomic in the algebraic sense (Y is
an algebraic manifold) and DE(CY) is that of bounded complexes

of C a -modules whose cohomologies are algebraically

Y
constructible (Yan is the underlying complex manifold of Y).

n

We first consider the special case (Deligne's theorem)g

We have an equivalence

{regular connections of rank one on T}

an

R

{local systems of rank one on T '}

Ty, €%, (x, (T) = nlcTa“)).

R

NI(T) = Hom(nl

This correspondence is realized as follows. Since Sol 0)L o

Ctl, the monodromy representation of Qtl is given by the one

e

dimensional representation 1JL € nl(T)v defined by
1Ay = 2T (v € m (T)).
Here we take the identification
A, (T) ~ Hom (€, T) — t

1 alg gp
and the natural pairing
t*

<, > x t — C.
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We then have a short exact sequence

t* — nl(T)" — 0 a — 1Y

where P= (L € t* | <A, v>€l (ren

0 » P >

1(T))).

Let W: NG(T)/T be the Weyl group which acts on T, t,

*

t*, P, nl(T) etc., ---. Set

WD) = (wew | wid=1" = (wew]|a-wreP},

the integral Weyl subgroup. Let

W= WK n, (T) W) = W) K n, (T

be the corresponding modified affine Weyl groups (semidirect

product). As was seen in [Ho), we have the following:

Lemma 1.3.1. Let G.g be the open subset of G consisting of

regular semisimple elements and set Trs =T N Grs’ Grs =
-1

p Grs'

i) G =~ G/T x T. and hence =

rs (Grs) = (Trs) —» . (T).

1

(Grs) - R

1 1

ii) Let K be the kernel of = (T). Then by the

1 1

short exzact sequence

1 — = (Grs) — R

1 (Grs)_—_* W—1,

1
we have

1 -——— K ~— Kl(Grs) — W — 1.

iii) Consider the local system Cl ='Soi GA ~ Ct* on T. Then
the monodromy representation of the local system
-1 ‘
p*e Clers on Grs
i8 given by the induced representation

1l 2« Ind

=

€1 e 1Y)
) |

Ind T

= =2

1



! E2

~ @& . Vy ® Ind v, e 1%
xewy X Wen X »

through the factorization nl(Grs) ——*zﬁq(”Here CIWwx)1 is the

group algebra, Vx i8 an irreducible W(L)-module for a class

X € W) and vV, is its dual. Simce W) fizes 1% €

nl(T)v, V. ® 1* defines a representation of W) = W X T (T).

Note that IndE (v, ® 1*) is irreducible by Mackey’s
W X
eriterion.
iv) The induced space Indg o, 1* has (W, Wr-action in
1

such a way that W) acts on v: parts in the irreducible
decomposition in iii). Hence the local syster ~p*9'1€l|Grs has

the W(x)—-action and the simple decomposition

-1 ok
p.6 Clg._ =~ D . V. ® F(x, x)
% A rs XGW(A) X
where F(x, x) is the local system whose monodrory
L. ) W A
repregsentation is Ind_ (V_® 17).
‘ W)

v) Let IC be the intersection cohomology functor. Then

-1 - -1
Rp*G Ck[n] a IC(p*G CllGrs)

T P . v; ® IC(F(X, 1))
XEWX)

where n = dim G. . Ian particular, the perverse sheaf Rp*e‘lcl

acquires the wW(x)—action.

By the Riemann-Hilbert correspondence, we have
" N 1
Sol NA & Rp*e CA

and by Lemma 1.3.1,v), the W(x)-action on the QG—module NA.
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For the later convenience,?we change the W(x)-action on NJL
by multiplying the signature representation sgn of W().

Thus we have the following.

Theorem 1.3.2. The (W), 96)—module Nl decomposes as

N o> @D .V, @ N&X, Q)
XEW (L)

where N(x, A) is a regular holonomic simple QG-nodute such
that

Sol N(x, A)I[n) = IC(F(x ® sgn, A)).

§2. Character 2-modules
2.1. The Harish-Chandra equations.

Let g = Lie G be the Lie aigebra of G, U(g) the universal
enveloping algebra and Z the center of U(g). The Harish-
Chandra isomorphism given by the fixed pair B DT 1is an
algebra isomorphism |
z =5 vy Y o~ crt*rV

where the superscript .W means the invariants by the dot
action defined by

W.x = WX+ p) - p (w €W, 2€th
(p 1is the half sum of the positive roots). Hence it gives rise

to the map



t*,———* t*/.w Y Zv = HOmC-al“(z’ o
w w &
X > X,
such that Xx, = Xx,, <= w.x = A"  for some w € W.

For a fixed X € t*, we consider the QG-module
Ml ? QG/ﬁA = 9Gul
where

5= 2,67 %(Lz - x,(2)) + Eaeg DL, *+ R,

u, = 1 mod fx'

Here Lz (resp. Rz) denotes the left (resp. right) invariant
differential operator on -G corresponding to z € U(g).

This QG—module Ml is known td be the deffning equations
of invariant eigendistributions. However, as was first noticed
by Hirai [Hil, the irreducible characters with infinitesimal
character X, generglly do not span the space of the invariant
eigendistributions. Our first motivation is to construct the
QG-module whose distribution solutions are spanned by the

irreducible characters. For this, we want to connect MA with

NA'

2.2. The QG—nodute ﬁi defining characters.

We need the following well-known lemma.

0 - P : ‘
Lemma 2.2.1. Let T « G » G be the Grothendieck-

Springer-Steinberg diagram and GG a nron-zero G—invariant

highest form (unique up to scalar multiplications). Thaje then
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ezists a unique nowhere vanishing G-invariant highest form o_
G

such that

pYog = (DoOo_
g

where D is the function on T given by

= I Y
D(t) ¢ ﬂa>0(1 t t TAY),

— . a/2 _ . -a/2
A(t) = ﬂa>0(t : t )

(the products run through the positive roots o > 0).

Using these forms o ®_, we can define a global section. v, 6 €

G e X
G, N) by
v. =e_®1®p'letterw N)>=TE 2 _ 8 6%).
X P G x 5 2 Y
G v G«G e
(Note that by definition
* -1
9 _=Q_© p (9,9 Q. )
ad & % G 0g @
where Q  (resp. Q.) 1is the canonical line bundle of G (resp.

G
G), which is a right 2-module.)

By Lemma 2.2.1 combined with Harish-Chandra's formula for
Mlers and by the fact that NJL is a minimal extension
(Theorem 1.3.2), it is easily seen that

Ann u, € Ann vx‘

where Ann denotes the annihilator in QG. Hence vwe can define
a QG-module homomorphism_

® : M. =92 u —— N

by ¢(Pu) = Pv, (P € 9.



.49

Definition 2.2.2.

ii

M

N Im ¢ = QGVA c NA .

Theorem 2.2.3. i) ﬁAV i8 regular holonomic.

W

5 = {w € W | wix +p) =1 + p}) c WL) and le+p

the QG-submoduLe of wl+p—£nvariant3 by the w(x)—action in 1.3.

Then

ii)  Let Wl¥

W W |
M= NP x @ LV AP e Nex, ).
XEW(X) '

iii) If GR i8 a connected real form of G, then the space of
digtribution solutions to N '

X
ﬁom M , Diot,. ),
QG X GR
i8 spanned by the irreducible characters of GR with

infinitesimal character Xy (QiotG i8 the sheaf of Schwartz
R

distributions on' GR).

We make a few comments for the proof. i) is clear since N)~ has

the same property. ii) follows from the analysis of the W(i)-
action on 'NJL and Theorem 1.3.2. iii) follows from Fomin-
Shapovalov-Nishiyama's results [N1], i.e., the solution space
turns out to be the space of "constant coefficient invariant

eigendistributions".

Remark 2.2.4., By ii), ﬁx is acted by the Hecke algebra

H(W), w1+p) which gives rise to Nishiyama's action I[N2] on

- 10 -
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the character span Hom, (M., Disé. ).
QG x GR

2.3. Character 2-modiules.

Let GR be a connected real form of G. Since M is regular

p Y
holonomic,

Hom, (M , Diol, ) = Hom (M , 8.

96 X GR QG A GR
- N . _
where SG = ﬂG (0 an) ® org is the sheaf of Sato hyper
R R G R
functions (orG is the orientation sheaf\of GR)‘ Hence the
R

character span decomposes as

~ . 0 ~
Hom, (M., 9{9¢, ) = H (Gyp, R¥om, (M, , R[, (O YInl)
2, 2 Gp R P26 A Gp  gan

12

n ~
H (GR’ RFGR(SOI M, )

W
~ @_ v.*")* @ u"(Gp, R, (Sol N(x, 1)),
X X R Gp
where we fixXx an orientation of GR‘ Note that by 1.3,

Sol N(x, A) = IC(F(x ® sgn, A))[-nl.

Definition 2.3.1. For Xx € t*, we call a simple

QG—module N(x, x) satisfying

(xIW,, 0t 1> # 0 and H"(Gp, RF, (Sol N(X, 1)) * 0

p GR

a character 9,-module with infinitesimal character X,.
Thus character QG—modules are exactly those simple QG—modules

contributing to irreducible characters of GR' In this aspect,

_11_



this concept may be considered as a real analogue to Lusztig's

"character sheaves" over a finite field [L21]. Solutions to such

N{(x, x)- should then be called "almost-characters".
2.4. Character cycles.

As in 2.3, for the character span, we have

0

HomQG(Ml’ 8. ) >~H (GR' RFG (S0l MA)[n])

Gp R

0 -1
~ H (Gp, R[, ((Rp,0 "C.) YInl)
R GR % X wx+p
wherg the subscript wk+p means the Wl+p—covar1§nts (~ the
. . . ~ _ =1
wk+p invariants in the present case). Set GR = p GR’ Then
the above space is isomorphic to
HO Gp, BM_ (07'CHInD)y,
GR X+p
~ (G, 67'C, @ @ [-nD)
v GR) X+p
(o is the dualizing complex of &R)
GR
~H "G, 07'C 2w oy, .
’ GR A+p
But then this is by definition isomorphic to
BM -1
H (G, 6 "C_0>
n R X w1+p
~ (H" (G, 071C )w"*")*
- c R’ X
where, in general, HﬁM(Y, F) denotes the n-th Borel-Moore

homology group with twisted cqefficients_in a local system F.

- 12 -
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The last isomorphism follows from the Verdier duality.

Definition 2.4.1. Let © be an irreducible character of Gp -

Through the above canonical isomorphism

~ . BM ~ —1 .
Homg, (M., Diof, ) = H_ (Gp, 0 "C_)) ’
QG p GR n R X w1+p
, | BM,x -1 .
the corresponding n-th cycle c(®) € H. (Gp, 6 "C_.) is
n R -X w1+p

called the character cycle of 9.

Describing the transition matrix between the character cycles
and the geométric cycles seems to be an ektremely interesting
but very delicate problem (see [K1). For examble, assume A

be integral with x + p regular (= Cl ~ € and w1+p = {e})
Then RHS ~ HD"
ER and even in this case we do not know much about the

transition matrix between this basis and the character cycle

basis.

§3. Cell decomposition of ﬁx
3.1. Notation.

In Thebrem 2.2.3, we have decompdsed the QG-module ﬁx

according to its monodromy. But an irreducible character in

general is not a solution to a simple factor of ﬁx and in

- 13 -

to
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(5R, €) 1is spanned by the fundamental cycles of
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order to elucidate this point, we shall consider more subtle
decbmpositidn according to cell representations of the integral
Weyl group. |
For this, we introduce the following notation. Fix A €
t*. For an W(x)-module V,vlet YN(V, X)) denote the regular
holonomic QG—module such th&t |
Sol N(V, x)I[n] = IC”F(V ® sgn , 1)
where F(V ® sgn, A) 1is the local system on Grs’ corresponding
to the W-module \
Ind? | (V® sgn) @ 1* .
W) '

Thus, for example,

N(x, x) = N(Vx, A,

NA > N(CIW() 1, ),

~ LIPS W)

M, = N, > N(Indg 1, 0 = NCIWOOI, 2.
A+p A+p

In the above, we consider CIW(X)] as the left regular

representation and denotevby C[W(A)]w the space of
A+p
covarints by the right Wl+p—act10n.

3.2. Cells.

For the integral Weyl group W(x), let VE(w) (resp. VR(w).

LR

V" (w)) c CIW(A)] be the left (resp. right, double) cone ideal

for w € W(A). The Kazhdgn-Lusztig preorders < then mean

L L

W<y & Viw) cV(y,

<
L

- 14 -



54

w <Yy <= "VR(W) c VR(Y),
R

w< v & TRy e Ry,
LR g

The equivalence relations generated by these preorders are

denoted respectively by ~, ~ , ~ ., Thus
L R LR

W~y & TR = Ve,
L _
W~y & TRao = TRy,
R _
v~ y & TERG = TRy,
LR
Note that the double cell equivalence ~ is the smallest
LR
equivalence relation containing ~ and ~.
L R

We denote w <y when w <y but w~y fails. The

left cell representation corresponding to w € W(A) 1is then

defined by
L - =L =L
Vi = VR /E L V)
L
Hence if w ~ y, then VL(w) Y VL(y). Similarly we define the

L
double (resp. right) cell represehtation VLR(w) '(resp. VR(w)),

which have similar properties.
If wo is the longest element of W(x), then there

exists a natural isomorphism

L L

V7(w) >V (wow)*® sgn.

If wl "is the longest element of Wl+p.(c Wix)), then

W)
v 1

L

Ind ~ sgn ® V ) .

A+p
Now let
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<L k. L
Vi) = D1 Vo)
2 w, < w for i > 1) be the (non—canohical)
i L Py ‘
decomposition of the left cone representation VL(wA) into the

left cell representations. Then by the above, we have

L

L N K
W) > @B VW)

sgn ® V

(note that for a Weyl group module V, V = V*). We thus have

the cell decomposition of the QG—module ﬁx as follows.

Theorem 3.2.1. M. =~ X

K NovEoww), .
i=1 i

0

3.3. Characteristic varieties of the decomposition factors.

For simplicity, assume X is integral and hence W(x) = W. We

consider the Springer correspondence
o : W — N/G = nilpotent orbits in g*

normalized so that O0(1) = regular orbit and O8(sgn) = {0}.

For an irreducible class X € W , there exists a unique

double(cell representation VLR(w) which contains VX' We then

set

LR LR

g-Nx) = (x" € W | VX' c V' (W)},

‘QLR(x) contains a unique gpecial class (the class of a special

representation) and thus ¥ decomposes as

W = |l R0

X:special
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(partition into the families [L11).

For x € wv, when Vx c VLR(w), we similarly set

TR0 = (x" e ¥ | V. c vLR

(w)}.
For Xx € Wv, let X, € QLR(x) be the ﬁnique special
class. Then we set
Gsp(x) = G(XO) € N/G

which is by definition a special nilpotent orbit.

Lemma 3.3.1 ([KT1). Assume x’ € ELR(x). Then O(x") C Gsp(x)

where ~  denotes the closure of a nilpotent orbit.

For a coherent QG—module M, let Ch M CIT*G denote the

characteristic variety of M. Set
- % *
Che M=ChMDON TeG cg

where T*eG ~ g* is the cotangent space at the identity e € G

("wave front set" of M). We then have the following by [HK11.

Lemma 3.3.2. Let N(x, ) (X € W) be the simple QG—module'
defined in 1.3. Then

Che N(x, 2) = 0(x).

Theorem 3.3.3. In. the decomposition of Theorem 3.2.1,

L

L
Che N(V (wowl?, A) cC Che N(V (wowi), X)

and each variety is the closure of a special orbit.

We briefly indicate the proof. For w € W, let xw € Wv be the

- 17 -
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unique special class such that V, c vER (¢>. Then by 3.3.1,
W

L e
Che N(V7(w), x) = G(Xw).

Since w)L f wi, wow;L f wowi,‘wh1§h implies the minimality of

0(x ) by 3.3.1. Thus Lemma 3.3.2 implies the theorem.

Remark 3.3.4. Even if A 1is not integral, the theorem will be

true (except the statement on the speciaLity of orbits) by using

W

Luszitg's induction jW(x)’

§4. Primitive ideals
4.1. Review.

For X € t*, let PrimAU(g) be the set of primitive ideals of
U(g) with infinitesimal character xA € Zv. Assume X + p is
anti-dominant and let L(w) be the unique irreducible quotient
of the Verma module U(g) @U(b)cw.x where Cw.x is the one
dimensional U(b)-module with weight WX = WX + p) = p (w € W),

Let Iw = Ann L(w) € PrimlU(g). Then the map
{w € W(1) | w is minimal in a left coset in W(l)/wl+p}
1 (w —— Iw)

PrlmkU(Q)

is surjective (Duflo). In particular, if X + p 1is regular, in

..18-
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the surjection,
W{y) —» PrimAU(g)
it is notable that

'y in WQO.

£
s
e

4.2. Primitive quotient of ﬁx'

In our paper [HK2], we have shown that if x + p 1is integral
regular, then for the QG—module
Mw = MA/IWMA o Nx/IwNA .
we have an isomorphism
M, N(VE (), ).

In general, the situation is as follows:

M’I — Mx = N — NA x Nx & Ml
| o
MW My, w ’ Mxo,w
In the above, we first choose Xx, = X + pu € t* such that a is

0
integral and AO + p is anti-dominant regular. The isomorphism

N. N, =~ M follows from the definition and Theorem 2.2.3
X 10 AO .
(10 + p 1is regular). The row sequence
M, = N. =~ N ~ M
X _ X *0 AO

reflects the “translation principle” of characters. The others
are defined as follows. For w minimal in a coset in

WQO/W L



Mx,w = Mkllei i
Mk,w = MA/IWMA ’
0
M, =M _/I_M
AO,W lo W A

where 18 is the annihilator of L(w) with infinitesimal

character X, - Thus the correspondence
0

\ 0 . .
PrlmlU(g) 3 Iw b——f» Iw € Pr1mAOU(9)

gives the translation principle of primitive ideals.

Theorem 4.2.1., i) The diagram

= e——

A, W )y
18 igomorphic to the diagranm

)

N(C[W(A)]w y X)) &—— N IWW)1, X,
l - l
=L e R =L
N(Vl(w),‘l) » N(V7(w), AO)
where VEw) c CIW)] is the image of L) by the
A wl+p
projection CIW()] —>» C[W(A)Jw

x+p
In other words, the diagram corresponds to the

WO -module diagram !

- 20 -
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C[W(A)]w “- Cw) 1
] - ]
=L " =L
JL(w) « V7 (w)

by the functor N(C , ).

ii) Ch. M = Ch, M

- 0 _
e Ma,w = AsSs Iw = ASS Iw

Ao W
where Ass denotes the associated variety of a primitive ideal

which i8 the closure of a single nilpotent orbit.
4.3. Unipotent characters.

We shall try to make an approach to Barbasch-Vogan's "unipotent
representations" [BV] in our view-point.
Retain the situation and the notations as before. If I

is maximal in PrimlU(g) (&= Ass Ix is minimal), then

. 0 x
Thus by Theorem 4.2.1,
MA = MA/IAMA ~ MA,w v, X N(Vl(wowl). X)

and

where xo is the unique special class in VL(wowl). But then
by Theorems 3.2.1 and 3.3.3, for i1 > 1,
ch. NOVEww ), 0 2 TxO
e o"'x’’ 2 0" -

Actually we have

=L _ L
Vl(wowl) =V (wowl).

..21_
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smin L g
Theorem 4.3.1. MA ~ N(V (wowl), ).

Barbasch and Vogan have found a distinguished property of the

left cell representation VL(wOwl) related to Lusztig's pictufe

[L1] when X 1is particularly chosen with respect to a special

nilpotent orbit. We recall’the situation of [BV]. Let Lg be

the Lie algebra dual to g (t* B Lt, {coroots of (g, t))} =

{roots of (Lg, Lt))). There then exists an order-reversing

bijection

0 — LG

between the set of all special nilpotent orbits of g and that
of Lg (the order is the inclusion relation among orbit-

closures). In the notation of 3.3, if 0 = 0(x) with Xx € W

special, then L@ = @Sp(x ® sgn), i.e., L@ = 0(x") where x° €
QLR(x ® sgn) is the unique special class of Lw > W.
Assume now that X is integral and Il is maximal in

Prim U(g) as before. Set 0 = Ass I, (8 = 8(x,)). We make

the following:

L

Assumption 4.3.2. ® is even.

This assumption 4.3.2 is equivalent to the condition that

= 1 R T
g = 3 h € "t =t is integral,

where hL € Lt is a semisimple element such that (u, hL s V)
0 0
is a corresponding stz-triplet (u € LO). Then

- 22 -
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Ix + pl 2 |2l
and the equality holds if and only if
g = Wx + p)  for some W €W
([BV; 5.101).
Under Assumption 4.3.2, the left cell representation

L

v (wowo) ,(wo is the_longest element of W, ) has a surprising

o
feature. To see this, we need Lusztig's extraordinary picture
for cells ([L11).

For a special orbit 0, let A(0) be the Lusztig group
(the canonical quotient of the component group ZG(G)/ZG(G)O).
(In [BV], A(®) is denoted by A(0).) For a simple g, A(8)

is one of the following finite groups:

szp°“er, s, (1<i<5)

where Si is the i-th symmetric group. Set

M(B) = {(([x], £€) | [x] € C1 ACO), £ € Z (x) )

_ A(O)
where Cl A(®) 1is the set of conjugacy classes of A(0O) and &£

belongs tb the irreducible classes of the centralizer of X in
A(0). There are obvious injections:

Cl A(B) — M(®), [x1 — (Ix1, 1),

A®) ———— M), £ +—— ([el, £).

Let Xg € W be the special class corresponding to 0.
Lusztig’[Lll has then defined the injecfion
g% (x) s M)

(case by case!) with the folldwing prope;ty. If 0 1is not

exceptional, then the image of the above injection contains the

image of Cl1 A(G). In this case, we thus have the injection

- .23 -



(4.3.3)°  Cl A(0) — gLR.(x(g). Xl X,

In this situation, we have the following.

Lemma 4.3.4 ([BV; 5.281). Let 0 be a special orbit such that

LG is even and Wo the longest element of wl . Then the left
0

cell representation VL(wOwg) decomposes as

L v

Vigve) = @ rxiecia® Vx,,

where xx €W (x € A(G)) i8 defined by 4.3.3.

Applying this lemma to the'QG—module ﬁ?ln @8 l@ - p), we

have the following.

Theorem 4.3.5. Let the assumption_be as above. Then

~min

Mg-p = @ xieciacer Ny -

x
Remark 4.3.6. Assume a real form Gp = G, is a connected
complex group. Then G = GO X GO’ T =~ TO X‘TO, X = (11, 12) €

* *
tO X to,

special nilpotent orbit O x O in g = 3, X 8,0 We have the

etec.,*++, as usual. Applying the above discussion to a

following decomposition for the solutions to ﬁflfp.
0
Hom9 (ﬁfif , SG ) o~ ea[x]&ClA(O) Hom9 (N(V, E Vx ), %G );
G *6° 0 . G Xx X 0

X X G

In RHS, the direct factor Hom9 (N(V_ K V_ ), 8. ) turns out to
G X X 0

be one-dimensional, and Barbasch-Vogan's virtual character Rx

_24_
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([x] € C1 A(8)) belongs to this space. The unipotent character

Xn corresponding to m € A(@)v is given by

X_ = (A"

7 R(x) Rx’

XEA(O)

Thus the Rx‘s are "almost-characters" in this case.

L

Generalization 4.3.7. Let "0 be a nilpotent orbit of =g (not
necessarily special) and set Ao = % hL € Lt = t* as before.
. . 0

Let W(AG) Cc W be the integral subgroup. Let

L _ L ..
be the Dynkin décomposition associated to an nilpotent element u

€ 0. Then W(lg) is the Weyl group of

L. .- L .
m = Gaiel g(2i) .
‘ — L L . . L . -
Assume 0 = 0, (u) c mnNn 0 is special in m. Setting A =
L L
n |
10 - p, we then have
ﬁmin o N(VL(w W.,), XA)
X oA’ ’
L Ay -
v (wowl) ~ P [x]EClA(Gu) Vxx as W(Ao) modules

where m c g is the dual Lie algebra of Lm c Lg and Om =

LOL' (special in wm).
"
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