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Introduction.

The meromorphic praoperty of complex powers of polynomials

established by Bernstein—-Gel’fand [BG] is a powerful tool in the
construction of hyperfunctions or distributions invariant under

group actions. For example, one may recall the construction of

fundamental solutions of partial differential equations with
constant coefficients, those of relative invariant |
hyperfunctions on prehomogenecus vector spaces and so on. The
original proof of the result of Bernstein-Gel’fand is based on
Hironaka’s desingularization theorem. ‘Later, a simpler proof
was given by I. N. Bernstein [BJ, showing the exiétence of
b-functions (= Befnstein—Sato polvynomials) of polynomials on
C". It is stressed here that it is M. Sato who showed the
existence of b-functions of relétive invariant polynomials aof
prehomogenenuskvector spaces and conjectured the existence of
b-functions of arbitrary polynomials in early 1960's. An

extension to the case of holomorphic functions were shown by
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J-E. Bjork [Bjl and M. Kashiwara [K1J.

Let G/H  be a semisimple symmetric space. Then to
construct Poisson kernels on G/H 1is equivalent to do
hyperfunctions on G which are invariant under left H-action
and '"relative invariant" under right action of an appropriate
parabolic subgroup of G. The latter is reduced to the problem
of regularizing of distributions which are defined by the
product of complex pouwers of aba]ytic functions on G. So it is
possible to apply the result of Bernstein-Gel’fand mentioned
above. Such distributions play an important role in the study
of representations of G because they generate principal series
representations for G/H (c?. [021.

We now explain the contents shortly. In §1, we shall
formulate a generalization (cf. Theorem 1) of the result of I.
N. Bernstein and S. I. Gel’fand [BG] to the case of E—Qalued
polynomials under an assumption (Theorem 1, condition (A))
concerning the continuity of complex powers of C-valued
polynomials. This assumption seems less trivial to check for
given polynomials. Section 2 is devoted to an application of
Theorem 1. Let G be the universal covering group of
SU(p+q,p) and let H be a connected closed subgroup of @&
whose Lie algebra is solp+q,q). Introduce real analytic

functions ?J(g) (1 < j < 2p+t9-1) on 6 which are left

~

H-invariant. As an application of Theorem 1, it will be shawn

in Theorem 9 that if £,,..., L,y €Z, my,eee, mo € N, then
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defines distributiaons on G depending on complex parameters o,

8, 11,.;w, A meromarphically. The key tao its proof is to

p-1
check the conditon (A)Y of Theorem 1. In this paper, we do not
expla@n the role of Ql,a,6{9> in the study of analysis on
semisimple symmetric spaces. The reader wha is interested in
this subject, consult [0S1, 23. In §3, we restrict our
attention to the case p =1, that is, G = SUCq+1,1)"  and
study -spherical functions ®a;6(9} on F\G which are obtained
from gl,a,8{9> by inteéfating over a certain clased Subgrmup
of B (cf. §3,(1)). 1In particular, we shall prove Theorem 12
‘which states that éa,ﬁ is expressed in terms of Gaussian
hypergeometric functions. In ?emark 14, 3 connection betuween

the study of éa B(g) and c-functions for cemicsimple symmetric
14 .

cpaces 1s explained.

§1. Meromorphic continuatiogn of distributuions defined bv the

product of complex powers of polvnomials

Let P(Xl"°"xn) be an R-valued polivnomial. Then the
function IP{x)ll is continuous if Re i > O, and as a function
of X, it is extended to a D" (R")-valued meromorphic function on
C. This is .a result of I. N. Bernstein- S. I. Gel’fand [BGIJ.

An extension of the meromorphic property of IP(x)Il to the
case of C-valued po]ynnmialé is formulated in the following
manner . |

Theorem:-1., Let Fl(x),..., FQ(%) be R-valued polynomials

3
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and let gl(x),-~~. gm(x) be C-valued polynomials of

X = (xl,...,xn). Let Q be a connected component of the set
{x € R™; Fi) #0 (1 <1<, g0 #0 (1<j<m} and
take p € Q@ and fix it. Suppose that ?i(p) =1 (1 <1i <48,

g.(p) =1 1< j<m.

J
Assume the condition:
(A) Take 2; €C (1 <i @), a4, v;el (1Lj<m
such that Re 1, > 0, Re (RJ uJ) > 0. Then each branch of
2 A, m T T
the function mIf, (x| ma.(x) 3.0 1 on Q is
. i PPN | J
i=1 Jj=1
single-valued.
Let &7 (x) be the branch of the function
A ,,&,U
2 ii m J7 V.
mf. (x)] M g.(x) g.(x) ¥ such that o7 (p) = 1.
- i Cg J F ANV
i=1 Ji=1
. . n
Define a function ¢i,ﬁ,u(X) on R so that
¢l,u,u(X) = ¢l,n,u(X) if x € Q and ®l’ﬁ,u(x) =0 if

otherwise. Then the following hold.

(i) For a non—hegative integer p, define.
Z2+2m

Sip) = {A,4,v) € C 3 Revii >p (1 <i <2, Re “J > P,y

, ‘ , P ,
Re v >p (1 < < m}. Then ®1,M,V(X) is of class C if
(Zytt,0)- € S(p). Moreover, as a function of ((X,x,v), ¢l P u(X)

is holomorphic on the open subset S{0) of C£+2m.

(ii) @ {(x) is extended to a Df(Rn)—vaiued meramorphic

2+2m

T INY)
function on the whole (1,4,v)-space C

This theorem can be shown by an argument similar to that in

Bernstein-Gel’ fand [BGJ1, where Hironaka’s desingularization

theorem plays a central role. This also follows from the

3
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existence of b-functions of multi-parameters which is stated as

follows.

Theorem 2 (Kashiuara—ﬁawai [KK], Sabbah [S]) Let: hi(x) (1

i £ &2) be polynomials of x = (x1’°"‘xn} and define a

z i

I hi(x) ! an an open
i=1

subset X = {x € C"; h,(x) # 0 (1 <1 <23 of C". Then for

H

multi-valued analytic function @i(x)

each 1 (1 (i £ £), there exist a polynomial Pi{i)‘ of X
whose coefficients are differential operators of the variable x
and a non-zero polynomial bi(i) e LLX] such that

¢ VTR = - .
Pi‘i)(hi(x}¢l(X)) bi(i)¢l(x) halds onA b 4

Remark 3. Theorem 2 is a generalization to multi-parameter
. case of Bernstein’s result on the existence of b-functions.
Theorem 2 as well as its references is communicated to the

author by M. Kashiwara.

Under the situation of Theorem 1, it seems difficult tao
decide whether the condition (A) halds for the given polvnomials
Fi(X)""’ Fﬁ(x), 91(X)""’ gm(x) or not. In the rest of this
section, we give some examples which agree with the conditian
(A).

y

Example 1. x “(x + V=Ty)*

First ndte that (x + J:Ty)ﬂ defines a continuous function

on  ((x,y) € R%; «x >0} if Re &4 > 0. So Theorem 1 can is

applicable and we conclude that x+l(x + v=1y)¥ defines

5_
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distributions on Rz meromorphically depending on the

parameters 1, .

Example 2. Let P(x), Q(x) be polynomials aof

X = (xgyeeeyx ) Assume that Pix) 2 0 for all x. Let

A

0, (X0 be a branch of (P(x) + V=IQG)Y" (P(x) = V=T (x))%.

Then it is easy to see that ¢ %) is a single-valued

_ X,ﬁ(
continuous function if Re{il + x#) > 0. So, by Theorem 1,

& {x) 1is extended to a D” (R")-valued distribution on the

At
whole (1,u#)~space.

2 — 2.2
Example 3. Put Ffix,y,t) =1 + 2z + (V-1t - |z
(z = x + Vv-1y)). If Re{i+x) > 0, each branch of the function

F(X,Y,t)AF(X,Y,t)ﬁ defines a single-valued continuous function

on RS. This is shown in the following way. First note that

fix,y.t) = %(1 + 1212 - VTTHZ2(1 + hix,y,t)),

l

where

2, 422

2 .

(1 - 1212 + V=11)
(1 + 1212 - V=IO

hix,y,t)

A simple calculation shows the inequality |hix,y,t)] < 1.

Therefore Re(l + hix,y,t)) > O for all (x,y,t) € R>. So each
branch of (1 + h(x,y,’())lf2 is single-valued and
Fexuy Y2 = Lt 4 1212 - VFTH A+ hix,y, tn 2,
V2

&



Then the claim follows. App!ying The0rém 1, we find that
f{x,y,t)l??§T§TT7ﬁ defines a family of distributions on Pg
meromorphically depending on (X,%). This example 15 3 special
case of Theorem 9 in §2. Moreover, it is an interesting problem
to regularize the divergent integral j f(x,y,z)l?T§7§T57&dxdydz
(cf. Remark 13 (iii)). '

S

§2. &n application of Theorem 1.

Take positive integers p, 9 and put n = 2p + q. DBefine

- - o
3¥pq9 = Spats

J, 1
where S = I} with JP " a pxp
Jy 1
matrix. By definition, G = SU(p+q,p). Take mutuall& commuting

involutions &, ¢ of G defined by #&(g) = tg_l, g(g) = g

G=4{ge SLn, C;

for any g € G. Using 8, o, define K ={ g e G; 8(g) = g7

and H=4{ ge G; o(g) g+ Then, clearly we have

K =~ S(U(p+q)xU{p)), H = SO0{p+q,p) and in particular, K 1is a
maximal compact subgroup of G. Let g be the Lie algebra of
G.

Introduce same notation:

o
(o
|

= { % € g3 ¥ is a real diagonal matrix:

{ dlag(tlgtiogtP,O,ooo,OQ—tp"009_t1);
tl’...,th € R}
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For a mat
determinant of
{.‘

functions {

k
follows fram t

Lemma 4.

n—-1J).

G
be

Let b

G = G ‘a
subgroups of

exp a_, N

-—

A simple

=

1

¢

{ X e g3 X 1is upper triangular and nilpotent:
{ X e g3 X 1is lower triangular and nilpotent?
Lie algebra of K
Lie algebra of H
Zk(g—)
ZK(;B) |

exp 2, N = exp n, N =expn

The identity cbmponent of H.
rix g = (gij)lgi,jgn’ let Dk(g) denote the

the matrix (gij)lﬁi,jgk' Using these, define
g) = Dk(o(g)—lg) for any g € G. The next lemma
he definition.
(i> ?k(hg) = Pk(g) for any h e H (k =.1,¢0¢.,
g)y = ?n_k(g) (k = 1,000, PJ)o»
e the universal covering group of G and let
natural projection. Let K, H be the analytic
[e corresponding to k, h, respectively. Put Kp
exp n, N=expn in G and M= Z (a,)-

K -
calculation shows that )
.{(¢,a1,...,ap,m); ¢€R, a.€C, la,l =1 (1<igp),
m ¢ a unitary matrix of degree gq
e = e-n¢f1¢ = det m %
p

{i(b’gl,h"gapyx);ég 91;"‘,9PGIR

s



X ¢ a

V-1

and that under this

~
far any (@,al,.-.,ap,m) € M.
many one—dimensional

define representations Ij (1

Xj(é,al,...,ap,m) =

representations of M.

ckew Hermitian matrix of dearee g

G+ on v 8 = -=1n¢ = = tr % 3

1

identification

Since M 1is reductive, there are

In particular,

_<_ J P) of H by

(2N

eZJv—lé(a 2

1o¢‘a‘j)

for any (¢,a1,...,ap,m) e M. Their differentials are denoted
by §IJ (1 < j £ pP)e Then
GIJ(®,91,...,BP,X) = ¢—1(81+ e+ 93 + 2jd)
for any (®,91,...,9P,X) € m.
Lemma 5. Assume that 1 < j < p-1. Then uéIJ is lifted
to a character of ™M if and only if # € Z. On the other hand,
Ip(exp )% = exp ﬂéZP(Y) (Y € m) defines a character of [

7

165



166

for any & € C..

This Temma follows fraom the concrete Form of M given
before.,

For simplicity, put

a(‘t} = exp(diag(tl,ooo,tp,o,oot,O,"tp,ooo,_tl))r € Kp

—

for any tl""’ tp € R and ?J = fj°x (1 < j £ n-1). The next

lemma ?ol]ows from the definition.

Lemma 6. If 1 £ j £ p,y then

2t1+°°'+2t.
?J{gma(t)n) = e JIj(m)?‘j(g)

~

for any g € E, m € H, a(t) e Ep, n € N.

=
>

Lemma 7. (i) The set Q = N is connected and open
dense in G.

(ii) Q = {g € G ?‘j(g> #0 (1 <j<prz.

Proof. Since H, ﬁ, Kp. N are all connected; so is Q.

That @ is open dense in % is shouwn by direct calculation or

follows from [MJ. (ii) is a special case of [0S2].
The next proposition is the key to the subsequent theorem.

Proposition 8. Take 1 € C uith Re 1 > 0.

/0



(i) Suppose that 1 < i < pe Then ‘Tj(g)*. is
single-valued if and only if 1 is an integer.
(ii) Each branch of ?p(gﬁ* defines a single-valued

continuous function on G.

Proo?.‘ (i) Thé "gnly 1f" part is clear. To prove the

"if" part, consider the case | = 1. Far any =z € C, ﬁl(z)=

L 4
n—l( . ) is contained in N~ and a simple computation

L e
shows that ?P(ﬁl(z)) =1+ 2% If 1 1is not an integer, the

Function (1 + 22)1 is not single-valued and therefore ?P(g)

A

is not single-valued. So the resule follows when |j = 1.  The
other cases are shown by a similar way.
(ii) Define a function & (g on % as follows. If

~

hma(tdn with h e H, m = exp(Y), Ye m, a(t) e Zp,

d
N, then @&

m

n {g) exp{lélp(v) + 21(t1+°°°+tp)} and if

A
g ¢ @, then @1(9) = 0. Since M= Ml x R for a connected

compact Lie group Nl, Ql(g) is well-defined. First show that
Ql(g) is continuous on G - S, where S = {g e G éil ?J(g) =
03. Since Q is connected, it easily follous FrumJ;ie
definition that éi(g) is continuous on .  On the other hénd,
since l@x(g)l = [?é(g)lRel iF/ g € Q and since JE - (QUS) (C
{Tp(g> = 03) is the boundary of @ in & - S, we find that
®,(9) is cnntinuqus on G - S. Next show that ®,(9) s

actually continuous on B. Now take j (1 < j < p) and fix it.

7/
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By the concrete form of ?J(R), we find that codim__ {n e N ;
N

?J(E) =0) »2. Put P= ﬁzpﬁ for simplicity. Then for any

—_—n

RGN,pe?’,‘

¢

(hp) = 0 if and only if ?JcE) = 0. So we

find that codim___ S, N NP > 2, where S. =

NP - !
(g ¢ G; ¥J(g) = 0). On the other hand, the complement of NP
in 8 has also codimension > 2 in G. So codim S; 2 2.

p-1
Since S = U Sj’ we find that codim@S > 2. Now take g€ S
i=1 '

with 7p(g) # 0. Let U be a simply connected neighbourhood of

g such that ?p is invertiblé on it. Noting that @l(g) is

locally a branch of the multi-valued function ?P(g)i, take a

single-valued branch @E(g) of ?p(g)l on U coinciding with

$,(g) on U -S. Since codim$S > 2, U-S is connected.

Hence @i(g) and @i(g) must coincide on U. Then @l(g)

defines a single—-valued continuous function on G. By ,

definitian, @l(g) is the branch aof }p{g)i with @i(e) =1,
A

Therefore, each branch of }P(g) is a constant multiple of

@l(g) and the result follows. GED

For a, B8 € € with Rei{x+B8) > 0, ‘let 7 B(g)- be the
»

Lo N 8 - ,
branch aof ?p(g) ?p(g) such that na,ﬁ(e) 1. Then it
follows from Propositiaon & that na B(g) is a single-valued
continugus function an G. Take ﬁl,..;, ﬂp—l € 7, Myseees
1) € Cp-l, o,

8 € C, define a Func{ion @i o B(g) on G with parameters
’ L]
5 ,

my € W and fix them. For any 1 = Qpeeeeid,_

e, B) e P €2 a5 follows. If g e Q, then

/ 2
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' R ‘ : A
( = ’ ' Jmm
i, 89 =7y gle) T t?3<g>1, Fie
and Ci,a,ﬁig) = 0 if otheruwise.

Thearem 9. Fix ﬁl""’ g € Z and Myseee, M € N.

p—1 q

Then the function £ (g) on B with parameters
. - A ’B, :

(2,a,8) € €P7 1 €2 satisfies the following properties.
(i) If Re(ii+ﬁi) >0 (1 <1< p) and Ref(at8) > 0O, then

Cl (g) 1is a single-valued continuous function on G.

’a}B )
(ii) As a function of (1,a,8), Cl o B(g) is extended to a
’ .

D" (G)-valued meramorphic function an the whole (i,a,B)-plane.

~“Proof. The idea of the proof is same as in [08S21 extending

that in [0S13.

(i) follows from Proposition 8.
q m.
(ii) Since I ?i(g) 1 is real analytic and since the
i=1
product of a distribution and a real analytic function is a

distribution, to prove the theaorem, it suffices to show the cése

‘where m = ..o =m = 0. So assume the condition m, = ... =
my = 0. As in the proof of Proposition 8, put P = NEPN.W Since

gNNﬁ is an open subset of G for any g € E, it also suffices

to show that the restriction of -£l ta gN'P can be

s, B

extended to a D" (gN P)-valued meromorphic function of (L,x,8).
Let Nx P — gﬁwﬁ be a natural product map and consider the

pull back CE of Cl for this map. Then it follous

,a,B ,a,B

. 13 I3 * -— . - —
from the definition that Cl’a,B(n,man) = Ci,a’B(gn)Ql,a’B(ma)

/S
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(ne N, meM ace KE’ n e N).‘ By definition, Cl,a,B(ma) is
invertible and is holomorphically extended to (X,x,8)-plane. On
the other hand, take a base Xl,..., Xd of n (d = dim n) and
put Ci,a,ﬁ(x1’°’°’xd) = Ql’a,s(gn(x)), where

d"d
complex—valued polynomials, Theorem 1 combined with Proposition

N(x) = exp(x X +..otx X ). Since ?J<gﬁ<x)> (1 < j < p) are

8 implies that Ci o B(gﬁ) can be extended to a mergmorphic
’ ’

Ffunction of 1,a,8). Hence the theorem follows. QED

§3. Properties of functions related with the distribution na g
1]

In this section, we restrict our attention to the case p =
1, namely, the case G = the universal covering group of
| SU(g+1,1>. We have already aefined the distribution na,ﬂ(g}
in the previous section. Put

(1 ¢a,3(9) = j na’s(gk)dk,

Ke

where KS (K,K) and dk is the Haar measure on it normalized

by f dk
Ks
Functiun in detail. As a consequence, we shall compute the

1. The purpose of this section is to study this

value of

"a regularization in a certain sense of the divergent
integral
(2) Ita,8) = j_N va,B(n)dn.

N

.(CF. Theorem 12.) T. Oshima [0J] introduced c-functions for

/%
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semisimple symmetric spaces, generalizing Harish-Chandra’s
c—function for Riemannian symmetric spaces. In the case nf thev
univeral covering space of SU(p+1,9+1)/S0(p+1,q9+1), the
c—function is a regularization of the divergentvintegral

_t (n)dn in some sense and the above integral I(a,B8) is
N"" i!asﬁ
its special case. (See Remark 14 in this section.)

Let E be a matrix of degree g+2 whose (i’,j*) entry

iJ
is 1 if  (i’,j’) = (i,j>» and O if otherwise. Then 3. (=

the complexification of g) is spanned by Eij (i # jJ, E

—

INe
Let U(g) be the universal enveloping algebra of 9. and let

ii
w be its Casimir element. Then, by definition, we have

2
2(q|2w - : {(E.. E..
0 ) )

+ JE..E. . + + +1-2j0E. ..
% 2(q+2)EJ1E1J} (q 2) 2 {q+1 2J)EJJ

In the sequel, we identify elements of S with left invariant
vector fields on & and also identify elements of U(g) with
left invariant differential operators on 3. By direct

calculation, we have

) _ 9 (m_gy2 ‘
Lemma 10. Wy g = {(a+8) (x+B+q+1) + 347 (a—-8)°} P B

We now . start to study_the function ¢a 8" In the sequel,

i = V-1 wunless otherwise stated.

Proposition 11. (i) &, g(g) is (H, K_)-invariant.

s = 9 (5-8)2
(1) w8, g = {(a+B) (atBrq+l) + o5 (@=8)7) &, g.

(iii) ¢a,8 is real analytic.

75
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(iv) Put. Sa,B(t) = éaiB(exp tY), where Y =

1 |
5(E117Bq42, q42

the following integral formula holds:

E Y+ Then Sa’B(—t) = Sa’B(t)’ and if Re(a+8) > O,

_ 1 {et+2(z,z)+e_t(|212—ix)2}a
(3) Sa, 8V = o7 2 . 2a+qt]
’ g ‘RxCY  (1+1z1%-ix)
{et+2(z.z)+e_t(l232+ix)2}B dxdzd3
~ 2. . (2B+q+1 *
(1+]z|“+ixD

: _ q _ 2 2

where, for any =z = (21,...,zq) e L7, (z,2z) = Z4 +o0st zq and
2 = 2 2 > = p e e . >

Pzl = Tz 1%+..04 12 1% and dzdz = dz,dz, dz dz_ . Moreover,

a, = [ tarlziH 2R 7 axgzaz = A

RxC A » 29 (q+1)

Proof. (i) is clear from the definition. Since w is
contained in the center of U(g) and since ¢a,8 is obtained
by integrating na,B over -Ks’ (ii) follows from Lemma 10.
Noting that '¢a,B is relative invariant by the right K-action,
we find that (ii) implies (iii). Using a standard technique of
changing the integration over KS b? that over N, we obtain
the integral formula in (iv). It is easy to check that the
integral in the right side is actually convergent if Re(a+8) >

0.. QED

Theorem 12.

q+2 q+2
(i) S (1) = @B Moo b )(ch pra+8
o, B q+2 . q+2
: T{a+ WL (8+ )
2 - 2 ‘
y F(—a,—B,E%l; (th )%,

/4
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(ii) If -Re(a+8) > - 5%1 , then

(4 lim o=@ te 4y o o=2x=28 [(a+1IT (2a+28+q+1)

t+o o, B I (2a+q+ 1) (28+9+1)

On the other hand, if Re(a+8) < - 3§l , then

(5) im e (@*B+atlity

a8t

t—> 4o

( ’ q+2
_ 2 sima sin8 Fiq+Idr{a+1)C (8+1)T (a+8+ > )

—_— q-1 L g+2 ,q+2 q+3 !
VR 51nx(a+3+—§—) I (a4 > T (8+ > )F(a+B+—§—)
; Pruof, First of all, put r = 351 for simplicity.

Modifying the technique of calculating the radial component of
the Casimir operator (cf. [W, p.2771), we can obtain the

concrete faorm of (w¢a B)(exp t¥>+. Then Proposition 11,(ii)>
4

leads to
{—9E + (SRt , sh t,d _@a=8)% (@+B8) (a+B+q+1)}S_. ,(t) = O.
dt2 sh t ch t'dt Cch t)2 a, B
_ 2 _
Put x = (ch 1) and Ta,B{X) = Sa,ﬂ(t)’ Then Ta,B<X)
satisfies the differential equation
2 - _a~2
(xx-D=5 + (ranx-DI 4 BB L gug) aegrzeuco = o.
d % X : X

Each solution of this differential equation which is real

analytic in a neighbourhood of t = 0, that is, in a

neighbourhood of x =1 equals to x(a+8)/2F(—a,—ﬁ,r;x;1) up

to a constanf‘Factur; Therefore we find that

/7
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6) S, g(t) = aa,B) (ch 2 BE(—a,=8,r; (th %)

for some constant a(a,8) depending on «a, B meromorphically.

In virtue of the integral representation (3) of Sa B(t) and

the central 1imit theorem, we have

(7) 1im o ‘a*Bitg g (1)
to+e ae
= %— j (14] 2122150722720 (14121 241%) 728720 44243
q “RxC? _
=L f (1+]212)722728-2r+1 4 47
fq 7
x f (1-ix) 722720 (q444)"2872r,

under the condition Re(a+8) > 0. A simple computation shouws

that

,2)—2a—28*2r+1 y 9 [{20+28+2r)

dzdz = (=201 F(oa+28+4r-1)

J

if Re{(x+8) > O. On the other hand, it follows from [E, p.12.

(1+4]z
cd

formula (30)] that

f (1-ix) 28720 (1444)728-2ry,

—

n/2
2 f cos 2{(a—-B28 {(cos 3)2{a+3+2r—1)d9 {x = tan 8)
0 .

“200-2B-4r+4 o eB+Ar—1)

F'(2a+2r)T (28+42r)

_ 2

if Refa+B) > -2r+ %. Therefore we obtain (4) under the

/&
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condition Re(a+B8) > 0. Since both sides of (4) depend on «, &
meromorphically, (4) holds if Rela+8) > -r.

Now we recall a c&nnection formula for Gauscian
hypergeometric Functinné (cf. LE, P.107. formula (33)1):

- _ r¢edratb-c),,__yc-a-b
Flab,esn) = =rearapy | 17X

Fic)f {c-a-b)
MN{c—a)T {c—-b)

F{c-a,c-b,c—a-b+131-x)

+ Fia,b,a+b-c+1;1-x)

l)
{0 < x < 1), Substituting a = -a, b=-8, c=1r, x = (th $)*©
in this formula and multiplying both sides by afa,B)(th t)a+8,

we obtain

. C{rmT{a+8+r) a+B
(8) S, gt = ala, Byt Fogery (ch 1)

x Fl-a,-B,-a=8-r+1;(ch t)

2y

‘ Frir)r{-a-8-r) -a-B-2r
+ ale,B8) Fi—enT =gy (ch )

x Fla+r,B8+r,a+8+r+1; {(ch t)-2

)

If Ref(a+8) > -r, this formula implies

C{r) (a+B+r)

—(a+8)t = »~a—=B
Sa,gV) = 27 T3 PO ET

lim e
t=+e

Comparing this with (4), we have

1 1
A Tr+3T (a+B+r+3)
ala,8) = 2% 5 2 1 ? .

F(a+r+§)r(8+r+§)

Then (i) follows. Finally, it follows from (8) that if Rela+8)

< -r, then

~

/7
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(T (~a=B-r)

e(a+B+2r)t
T (=) (=8) :

a+8+2r

Tim

S (t) = 2
t=+w 8

~ aia,B8)

So we obtain (5). QED

Remark 13. (i) The idea of the determination QF Theorem 12
(ii) is based on that in [Sell.

(ii) The integral in (7) in the case where 2(a-8) € Z is
treated in H. Schlichtkrull [Scl. |

(iii) By changing variables of the integrand in (3), Qe

have

e(a+B+q+1>§a

an,B(t)r

(142¢z, )+ U z1%=ix0 9% (1420 0+ 2124088
{1+e_t(lzlz+ix)}2B+Q+1

= f : . dxdzdz.
RxCY (1+e (] z12-1x))2x+at!

If the integration and the 1imit process were commutative in

spite that this is impossible, the divergent integral

(o) Lo

2,8
}
aq J[Rxmq

(14202, 20+ 212102 (14277, 20+ 2| 2+ix) dxdzdz

(a+B+q+1)tS

should coincide with the Timit Tim e o B(t) in the

1o+

casé Re(a+Bﬁ < - 3%1. For this reason, the right-hand side of
(5) is regarded as the value of a regularization of the
divergent integral (9) in a certain sense. It should be noted
that if Re(a+B) > 0, then the integrand of (9) satisfies the

caoandition {(A) of Theorem 1.
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Remark 14. Let G/H be a general semisimple symmetric
space, wWwhere G 1s a connected semisimple Lie group. T. Oshima
(0] introduced c*functiﬁns for  G/H, generalizing
Harish—-Chandra’s c-function for Riemannian symmetric spaces. In
the case where G 1is linear, he explained four statements
i)-iv) in [0,p.365] which in fact give a method of the explicit
calculation of the c—FantiUn. But to trest {he case where G
is not linear, we need a:modiFicatiUn of the part iv) of [O1,

p.365] as follous.,

(B "If G/H 1is split rank one, K-relative invariant

Joint eigenfunctions on G/H of invariant differential

ocperators are expressed by Gaussian hypergeometric '

functions. (Here K 1is a c?dsed subgroup of G sucﬁ thaf

AdG(K) is a maximal compact subgroup éf AdG(G},)”-

We return to our case, namely, G = SU(q+1,1)", H = a
connected closed subgroup of G locally isomorphic to
S0pCa+1,1). .Then‘ wa’B(g) = ®a’3(g-1) is regarded as a

~ . » . . . ~ o~ . .
K-relative invariant eigenfunction on G/H of invariant

differential operators. Theorem 12 states that wa’B(g) is
actually expressed by Gaussian hypergeometric function and that
its asymptotics are determined by using a connection formula of
Gaussian hypergeometric functions. In particular, the statement
(B) holds for the symmetric space G/H. |

A éroo% of the statement (B) for other cases Qi]] bé

published elseuhere.

2/
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