常微分方程式に対する数値解のBalanced Pair について

北里大教養 大橋常道 (Tsunemichi Oohashi)

§1序. ここに述べる数値解法の大筋は1985年4月の数学会(都位大)において発表したものである。その後後らかの修正を加え[1]にまとめた。この研究会では balanced pair なる数値解法を考えた動機、公式の特徴、数値例等を中心にして、この数値解法を紹介したい。

次の初期値问題の数値解法について考える。

(1.1) y' = f(x, y), $y(a) = y_0$.

ここに $f: R^{x}R^{m} \rightarrow R^{m}$, $f \in C^{8}$ ($\{25\}$) とする。また闭匠间[α , β] において (1.1) の一意解 y(x) の存在を仮定する。 y(x)の近似解を得るために、次数 Pの One-step 法の Pair を考える。

- (1.2a) $U_{n+1} = U_n + \hbar \Phi_i(x_m, U_m, U_{n+1}; \hbar)$
- (1.2b) $y_{n+1} = y_n + h \bar{P}_2(x_n, y_n, y_{m+1}; h)$
- これらの局所打切誤差は各々次の形をむものとする。
- (1.3a) $T_{n+1}^{u} \equiv y(x_{n+1}) y(x_{n}) h \Phi_{i}(x_{n}, y(x_{n}), y(x_{n+1}); h)$ = $C_{P+1} h^{P+1} \varphi(x_{n}, y(x_{n})) + O(h^{P+2}),$

(1.3b) $T_{n+1}^{g} \equiv y(x_{n+1}) - y(x_n) - h \Phi_2(x_n, y(x_n), y(x_{n+1}); h)$ = $-C_{p+1} h^{p+1} \varphi(x_n, y(x_n)) + O(h^{p+2})$

ここに $C_{p+1} \neq 0$, P=1 あるいは $Z \geq 3$ 。 U_n , Y_m の果積打切誤差を否々 $e_n^u = y(x_n) - U_n$, $e_n^u = y(x_n) - y_n$ と表す。

[定義1] 初期値向題 (1.1) に対す3 数値解法の Pair (1.20), (1.26)

は、次のとき balanced pair と呼ばれる。

" $e_n^u + e_n^y = O(h^{p+1})$ as $h \to 0$, nh = x-a, $a < x \le b$ "

Balanced Pair を見つけるために、(1.2)の具体的な公式として、次の2つの公式から可能な組合せを考える。

- (1.4) $y_{n+1} = y_n + \sum_{i=1}^r w_i \hat{k}_i$, $\hat{k}_i = \hat{h} f(x_n + \sigma_i \hat{h}, y_n + \sum_{j=1}^r d_{ij} \hat{k}_j)$, $\sigma_i = \sum_{j=1}^r d_{ij}$, i = 1, 2, ..., r
- (1.5) $y_{n+1} = y_n + h \{\theta f_n + (1-\theta) f_{n+1} \}, 0 \le \theta \le \frac{1}{2}$.
- (1.5)を用いて目的の pair が得られない時は、次の one-leg 法を用いる。
- (1.6) $y_{n+1} = y_n + hf(\theta x_n + (1-\theta) x_{n+1}, \theta y_n + (1-\theta) y_{n+1}), 0 \le \theta \le \frac{1}{2}$

これらの解法は全て One-step 法なので(1.3) を満す pair が存在するとき, 累積打切誤差の漸近的管腦 (Gear [2], P63)は、

 $e_n^u = h^p e(x_n) + O(h^{p+i}), \quad e_n^y = -h^p e(x_n) + O(h^{p+i}).$

ここに e(x)は次の初期値問題の解である。

(1.7) $e'(x) = f_y(x, y(x))e(x) + C_{P+1}\varphi(x, y(x)), e(a) = 0.$

よって、公式(1.4),(1.5)から、(1.3)を満す様、にして行られた数値解弦の Pair は balanced pair となる。

ざて、 $Z_n = \frac{1}{2}(y_n + u_n)$ とがくと Z_n も (1.1) の 1 7の数値解となる。このとき Z_n の局所打切誤差は、 $T_{n+1}^{Z} = \frac{1}{2}(T_{n+1}^{u} + T_{n+1}^{d}) = O(f_n^{P+2})$, また累積打切誤差は $C_n^{Z} = O(f_n^{P+1})$ となる。

[定義2] (E,E)p={balanced pair | (1,2a), (1,2b)共にP次の陽台
Runge-kutta法},

(E,I)p={balanced pair | (1,2a)かりたの野島台 R-K法, (1,2b)が
Pシスの日-method (1,5) (あ3いは (1,6))},

(I,I)p={balanced pair | (1,2a)かア次の半陰台ワスート法, (1,2b)が
Pシスの日-method (1,5) (あ3いは (1,6))}.

R-K法に対にては、パウメーターの自由度が大いなる可能性があるので、 当面単調性を仮定する。

結局、我々の数値解法は次の様がスキームである。

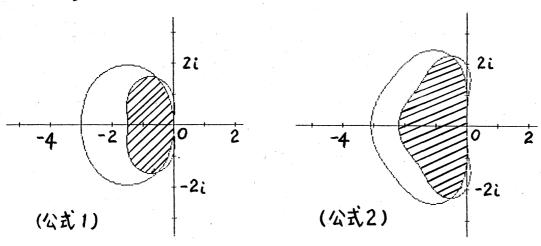
[定義4] Balanced pair の絶対安定領域とは、(1.20)と(1.26)の 絶対安定領域の共通領域をいう。

- §2. Motivation. Balanced pair なる解法は、基本的には2つの異なった解法である解法である。この様な解法を考えるに至った動機を2,3あげる。
- 1) 真の解がわからない方程式にすする trial computation として、低次の公式であってもより確実で信頼のできる解弦をわらって。
- 2)できることならは、2つの数値解で真の解を挟みにい。
- 3) 求めにい解が不安定なとき、通常の解法では初期値を変えて、何回か計算を試みなければ、わかない様な不安定性を、少ない回数の計算で察知しない(次の例参照)。

(何1) $y'=2y-3e^{-x}$, y(0)=1, 真の解 $y(x)=e^{-x}$.

一般解は $y(x) = e^{-x} + Ce^{2x}$ なので、 $y = e^{-x}$ は不安定である。この初期値向題に対し balanced pair ((E,E)2,公式2 …下の表の上段)と、公式2 において Znを次のstep の Unii, y_{n+1} の 計算に用いる方法(即ち普通の Predictor-Corrector 法のような解法になる、…表の下段)との比較を試みに。尚 stepsi3e は共に $f_{0}=0.01$ とした。

n,	x _n	uη	Уn	z_n	d _n
200	2.0	1.35706-01 1.35332-01	1.34958-01 1.35332-01	1.35332-01 1.35332-01	7.4346-06 2.8307-08
400	4,0	3.86271-02 1.81511-02	-2.32003-03 1.81511-02	1.81535-02 1.81511-02	4.0541-04 3.7773-09
600	6.0	1.11153+00 -6.50479-03	-1.12412+00 -6.50479-03	-6.29801-03 -6.50749-03	2.2134-02 2.4167-09
800	8.0	6.05562+01 -4.90149-01	-6.15059+01 -4.90149-01	-4.74871-01 -4.90149-01	1.2085+00 1.6019-07


明らかなことであるが、balanced pair zit Un と yn が どんどん離れていき、それにともなって dna値も大きくなるので、不安定な解を追跡していることが判断できる。これに反して下段の方法では、全2の値が正常に計算されている様にみえるので、数値解が真の解から どんどん 選めていくという状況をとらえることはできない。

でて、理論的には守定な系である Stiff System に適用できる様な balanced pair を考えたとき、我やの方法 は 2つの implicit な公式を用 意しなければならないので、計算上いくらかの困難が予想される。というのは 現在 Stiff System に対する研究は、いかに公式の implicitness を 減するか、 いかに公式の精度を上げるか ということが中心テーマとなっているからです。 そして その様な解法として、implicitness が 極度に軽減でれている kaps-Rentrop 公式 (ROW 法の1って"、埋め込み型公式、「37あるいは C4フを参照せよ) がある。この様な状況の中で我やは、R-K法と の-method からなる (I,I)p 型 の公式を作ったが、重度な implicitness をもつ。計算を I 夫することにより、 implicitness はかなり改善されるが 本質的には ROW法に及ばない。 よって (I,I)p 型 の公式は すらに 改良、I 夫されなければならない。 前4節では、参考のために、 Kaps-Rentrop 公式の計算結果ものせに。

83 Balanced Pairs. 結論を先い言えば、3つの型のロずれに対しても balanced pair は存在する。この節では結果だけを述べる(詳細は[1] を参照せよ)。

(E,E)1, 公式1

 $U_{n+1} = U_n + \frac{R}{2} \{ f(x_n, U_n) + f(x_n + \frac{2}{3}h, U_n + \frac{2}{3}hf_n) \},$ $J_{n+1} = J_n + hf(x_n + \frac{2}{3}h, J_n + \frac{2}{3}hf_n)$ $T^{u} = \frac{1}{6}h^2y''(x) + h^3(\frac{1}{18}F_2 + \frac{1}{6}f_yF_1) + O(h^4)$ $T^{y} = -\frac{1}{6}h^2y''(x) + h^3(-\frac{1}{18}F_2 + \frac{1}{6}f_yF_1) + O(h^4)$ $T^{z} = \frac{1}{6}h^3f_yF_1 + O(h^4), \quad z : : : F_2 = (\frac{2}{3x} + f\frac{2}{3y})f.$

回1. 絕対安定領域(針線部分)

(E,E)2,公式2

 $u_{n+1} = u_n + \frac{1}{6}k_2 + \frac{5}{6}k_3, \quad k_1 = hf(x_n, y_n), \quad k_2 = hf(x_n + \frac{k}{2}, u_n + \frac{k'}{2})$ $k_3 = hf(x_n + \frac{h}{2}, u_n + \frac{1}{2}k_2)$

$$\begin{aligned} \mathcal{J}_{n+1} &= \mathcal{J}_n + \frac{1}{3} \left(k_1' + k_2' + k_3' \right), \quad k_1' = h f(\chi_m, \mathcal{J}_m) \\ k_2' &= h f(\chi_m + \frac{f_2}{2}, \mathcal{J}_m + \frac{1}{2} k_1'), \quad k_3' = h f(\chi_m + h, \mathcal{J}_m + \frac{1}{4} k_1' + \frac{3}{4} k_2') \\ T'' &= h^3 \left\{ \frac{1}{24} F_2 - \frac{1}{24} f_3 F_1 \right\} + h^4 \left\{ \frac{1}{48} F_3 + \frac{1}{48} (f_{\chi_3} + f f_{yy}) F_1 - \frac{1}{96} f_3 F_2 + \frac{1}{24} f_3^2 F_1 \right\} + O(h^5) \end{aligned}$$

$$T^{3} = \beta^{3} \left\{ -\frac{1}{24} F_{2} + \frac{1}{24} f_{3} F_{1} \right\} + \beta^{4} \left\{ -\frac{1}{48} F_{3} + \frac{1}{96} f_{3} F_{1} + \frac{1}{24} f_{3}^{2} F_{1} \right\} + O(\beta^{5})$$

$$T^{2} = \beta^{4} \left\{ \frac{1}{96} (f_{2} + f_{3} + f$$

$$\begin{array}{ll} (E,I)_1, 公式3 & U_{n+1} = U_n + Rf(\chi_n + \frac{R}{4}, U_n + \frac{1}{4}Rf_n) \\ & \forall_{n+1} = \forall_n + R\{\frac{1}{4}f_n + \frac{3}{4}f_{n+1}\} \\ & T^U = \frac{1}{4}R^2y''(x) + R^3(\frac{13}{96}F_2 + \frac{1}{6}f_yF_i) + O(R^4) \\ & T^y = -\frac{1}{4}R^2y''(x) + R^3\{-\frac{5}{24}F_2 - \frac{5}{24}f_yF_i\} + O(R^4) \\ & T^z = R^3\{-\frac{7}{192}F_2 - \frac{1}{48}f_yF_i\} + O(R^4) \end{array}$$

(E,I)1, 公式4

$$u_{n+1} = u_n + \frac{\hbar}{2} \{ f(x_m, u_n) + f(x_n + \frac{2}{3}\hbar, u_n + \frac{2}{3}\hbar f_m) \}$$

$$y_{n+1} = y_n + h f(x_n + \frac{2}{3}h, \frac{1}{3}y_n + \frac{2}{3}y_{n+1})$$

 $T^{u} = \frac{1}{6} h^{2} y''(x) + h^{3} (\frac{1}{18} F_{1} + \frac{1}{6} f_{y} F_{1}) + h^{4} \{\frac{11}{648} F_{3} + \frac{1}{24} (f_{y} F_{2} + f_{y}^{2} F_{1}) + \frac{1}{8} (f_{xy} + f f_{yy}) F_{1}\}$ $T^{u} = -\frac{1}{6} h^{2} y''(x) + h^{3} (-\frac{1}{18} F_{1} - \frac{1}{6} f_{y} F_{1}) + h^{4} \{-\frac{5}{648} F_{3} - \frac{7}{72} (f_{xy} + f f_{yy}) F_{1} - \frac{5}{72} (F_{2} + f_{y} F_{1}) f_{y}\}$ $T^{u} = h^{4} \{\frac{1}{216} F_{3} + \frac{1}{72} (f_{xy} + f f_{yy}) F_{1} - \frac{1}{72} (F_{2} + f_{y} F_{1}) f_{y}\} + O(h^{5})$ $(+O(h^{5})$ $T^{u} = h^{4} \{\frac{1}{216} F_{3} + \frac{1}{72} (f_{xy} + f f_{yy}) F_{1} - \frac{1}{72} (F_{2} + f_{y} F_{1}) f_{y}\} + O(h^{5})$

この公式では、Tu,Taのおよいの項が共に絶対値等しく、符号が逆になる様に選んである。この様な公式は(E,I)の中ではただろっしかない。

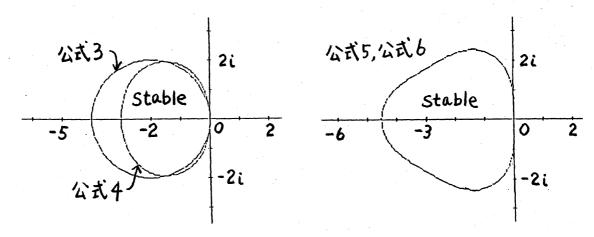


図2.絶対安定領域(由曲線の内側)

$$(E,I)_2$$
,公式5 $u_{n+1} = u_n + \frac{1}{3}(k_1 + k_2 + k_3)$, $k_1 = hf(x_n, u_n)$
 $k_2 = hf(x_n + \frac{h}{2}, u_n + \frac{1}{2}k_1)$, $k_3 = hf(x_n + h, u_n + \frac{1}{2}k_1 + \frac{1}{2}k_3)$

 $y_{n+1} = y_n + \beta f(x_n + \frac{\beta}{2}, \frac{1}{2}y_n + \frac{1}{2}y_{n+1})$

 $T^{u} = \hat{h}^{3} \left\{ -\frac{1}{24} F_{2} + \frac{1}{12} f_{3} F_{1} \right\} + \hat{h}^{4} \left\{ -\frac{1}{48} F_{3} + \frac{1}{24} (f_{xy} + f f_{yy}) F_{1} + \frac{1}{48} f_{y} F_{2} + \frac{1}{24} f_{y}^{2} F_{1} \right\} + O(\hat{h}^{5})$ $T^{3} = \hat{h}^{3} \left\{ \frac{1}{24} F_{2} - \frac{1}{12} f_{y} F_{1} \right\} + \hat{h}^{4} \left\{ \frac{1}{48} F_{3} - \frac{1}{24} f_{y} F_{2} - \frac{1}{24} f_{y}^{2} F_{1} \right\} + O(\hat{h}^{5})$ $T^{2} = \hat{h}^{4} \left\{ \frac{1}{48} (f_{xy} + f \cdot f_{yy}) F_{1} - \frac{1}{96} f_{y} F_{2} \right\} + O(\hat{h}^{5})$

台形法を用いたときは、下の例の様にR-K法は単調にならない。

$$\frac{(E,I)_{2}, (\Delta z)_{0}}{k_{2} = hf(x_{n} + \frac{h}{2}, u_{n} + \frac{h}{2}, u_{$$

 $T'' = \frac{1}{12} R^3 y^{(3)}_{(x)} + R^4 \left\{ \frac{1}{24} \overline{H}_3 + \frac{1}{24} (f_{xy} + f f_{yy}) \overline{F}_1 + \frac{1}{48} f_y \overline{F}_2 + \frac{1}{24} f_y^2 \overline{F}_1 \right\} + O(R^5)$ $T'' = -\frac{1}{12} R^3 y^{(3)}_{(x)} + R^4 \left\{ -\frac{1}{24} \overline{F}_3 - \frac{3}{24} (f_{xy} + f f_{yy}) \overline{F}_1 - \frac{1}{24} f_y \overline{F}_2 - \frac{1}{24} f_y^2 \overline{F}_1 \right\} + O(R^5)$ $T'' = R^4 \left\{ -\frac{1}{24} (f_{xy} + f f_{yy}) \overline{F}_1 - \frac{1}{46} f_y \overline{F}_2 \right\} + O(R^5)$

この公式では、ちゅの符号が逆になっていることに注意されたい。また公式5、公式6の絶対安定領域(図2)は同じである。

(I,I)p型の公式について、次の2つの公式のPairを考える。

(3.1a)
$$U_{n+1} = U_n + w_1 k_1 + w_2 k_2$$

$$k_1 = f_1 f(x_n + \alpha k_1, u_n + \alpha k_1)$$

$$k_2 = ff(x_n + \beta f, u_n + (\beta - \lambda) f, + \lambda f_2)$$

(3.1b)
$$y_{n+1} = y_n + h \{ \theta f_n + (1-\theta) f_{n+1} \}, \quad 0 \le \theta \le \frac{1}{2}$$

P=1 に対には、次の方程式を満すように係数を決定する。

(3.2)
$$\omega_1 + \omega_2 = 1$$
, $\omega_1 + \beta \omega_2 = \theta$, $0 < \theta < \frac{1}{2}$
これの一般解は、

(3.3)
$$W_1 = \frac{\beta - \theta}{\beta - \alpha}$$
, $W_2 = \frac{\theta - \alpha}{\beta - \alpha}$, $0 \le \theta \le \beta$ (単調性の仮定より)

$$\frac{(I,I)_{1}, \langle \Delta \dot{X} \dot{7}}{T^{2}} = \frac{1}{4}, \beta = \frac{2}{5}, \lambda = \frac{1}{5}, \omega_{1} = 0, \omega_{2} = 1 \quad | \quad \theta = \frac{2}{5}$$

$$T^{U} = \frac{1}{10} \beta^{2} y''(x) + \beta^{3} \left\{ \frac{13}{150} F_{2} + \frac{11}{300} f_{3} F_{1} \right\} + O(\beta^{4})$$

$$T^{J} = -\frac{1}{10} \beta^{2} y''(x) - \frac{2}{15} \beta^{3} y^{(3)}(x) + O(\beta^{4})$$

$$T^{Z} = \beta^{3} \left\{ -\frac{7}{300} F_{2} - \frac{29}{600} f_{3} F_{1} \right\} + O(\beta^{4})$$

この公式のR-K法は単調かっ Stiffly Stable (Gear [2], P213)である。 一般に次の定理が成立する。

[定理1] 次。(A1),(A2)を仮定する。

(A1)
$$\{\theta-(\alpha+\lambda)\}\{\theta+2\alpha\lambda-(\alpha+\lambda)\}<0$$

$$(A2) \qquad \left\{ 2(\alpha+\lambda)+1 \right\}^2 < 8(\theta+2\alpha\lambda)$$

このとき、(3.3)を満す半陰的 R-K法は Stiffly Stable である。

ここで、みの局所打切 誤差の次数が3となるP=1 の公式を考える。 係数が 満すべき方程式は、(3.2)の 他に 2つ追加されて、次の 様,になる。

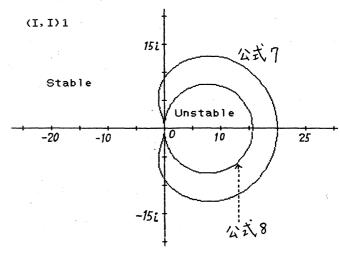


図3. 絕対安定領域(由蝴線の外側)

- (3.4) $W_1 + W_2 = 1$, $\alpha W_1 + \beta W_2 = \theta$, $\alpha^2 W_1 + \beta^2 W_2 = \theta \frac{1}{3}$, $\alpha^2 W_1 + (\alpha \beta + \beta \lambda \alpha \lambda) W_2 = \frac{\theta}{2} \frac{1}{6}$ これの一般文角子は、
- (3.5) d=1, $\lambda=2\beta-\frac{1}{2}$, $\theta=1-\frac{1}{3\beta}$, $\omega_1=\frac{1-3\beta+3\beta^2}{3\beta(\beta-1)}$, $\omega_2=\frac{1}{3\beta(1-\beta)}$, $\frac{1}{3}<\beta<\frac{2}{3}$. $\alpha>\beta$, $\omega<0$ なって" R-K法は単調ではない。
- [定理2] (3.5) をみたす半陰的 R-K法は、 $\frac{3+\sqrt{105}}{24}$ < β < $\frac{2}{3}$ の とき、Stiffly stable z"ある。
- [系] (3.3) および (3.5) を満す半陰的 R-K法で A-stable なもは存在はい (I,I)1,公式8 $\alpha=1$, $\beta=\frac{3}{5}$. $\lambda=\frac{7}{70}$, $\omega_1=-\frac{7}{78}$, $\omega_2=\frac{25}{78}$ $\beta=\frac{4}{9}$ $\beta=\frac{4$

P=2の公式に対い、満ずさか程式は、

- (3.6) $W_1 + W_2 = 1$, $\alpha W_1 + \beta W_2 = \frac{1}{2}$, $\alpha^2 W_1 + \beta^2 W_2 = \frac{1}{6}$, $\alpha^2 W_1 + (\alpha \beta \alpha \lambda + \beta \lambda) W_2 = \frac{1}{12}$ これの一般解は、
- (3.7) $\overline{W}_1 = \frac{-1}{2(I-6\alpha+6\alpha^2)}$, $\overline{W}_2 = \frac{3(I-2\alpha)^2}{2(I-6\alpha+6\alpha^2)}$, $\overline{B} = \frac{I-3\alpha}{3(I-2\alpha)}$, $\overline{A} = \frac{1-6\alpha}{6(I-2\alpha)}$ $\overline{W}_1 \overline{W}_2 < 0$ なので、半陰的 R-K法 は単詞とはならない。 一般に次の定理が成立する。
- [定理3] (3.7)を満す半陰的 R-K法は、 α> 立のとき A-Stable である。

 $(I,I)_2$,公式9 $\alpha = \frac{2}{3}$, $\beta = 1$, $\lambda = \frac{3}{2}$, $\omega_1 = \frac{3}{2}$, $\omega_2 = -\frac{1}{2}$ $\beta = \frac{1}{2}$ $\beta = \frac{1}{2$

(I,I)p型の公式は 精度に関係なく計算の子間 は同じなのであるが、実際に は Stepsise の Controlをし ながら計算するので P=1の ものが、少らずしも不利である とはいえない。しかし 精度 とStability の両方から (I,I)2の方が少し優れている。

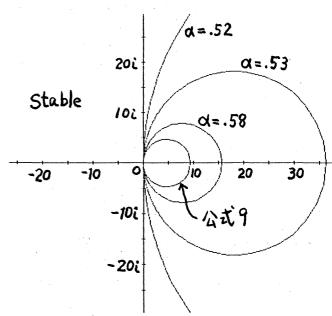


図4.(3.7)を係数にもつR-K法の 絶対安定領域(円の外側」)

34. 数値例. 我々の数値解法では、局所打切誤差をdnによって見積ることができるので、基本的に variable stepsizeを用いる。 Stepsize は次の様に決める。

- 2°. 1°~ 定的られた fin+1 か fin+1 > fimax はらば fin+1 = fimax, を1=0とかく
- 3°. 一度 fimax になった Stepsizeが再が半分になったとき、E,を最 初のも、に設定する。

ここに、 Rmax、 E1、E2 は、使用する公式からび与えられた微分分程式 に対応に通当に決める。また implicit な公式に対しては、Newton法を

用いる。Newton注では、 | Y(v+1) Y(v) | < 10-8

となったとき収束とみなす。計算した例では、O-method (or One-legis) の場合、1stepの中でのiterationの回数は平均に2回位である。 (II)p 型の公式では O-method の方を先に計算して、R-K法のなりの iteration に対には、たja知期値を O-method のfnとfn+1で補 南する。この様にすることで、良o iterationの回数も平均に2回位に おさえることができる。 移りるの計算では、たjo iteration は1回ですませた。 (例1) $y'=(1-x)y^2$, y(0)=1.5, 真の再 $y(x)=\frac{6}{3(x-1)^2+1}$ 積分区面は[0,4],使用に公式は、

 $(E,I)_1$, $\angle x \stackrel{?}{\Rightarrow} 4$; $f_0 = 0.01$, $\epsilon_1 = 10^{-6}$, $\epsilon_2 = 10^{-3}$

(E,E)2, 公式2 } $f_0 = 0.01$, $\xi_1 = 10^{-8}$, $\xi_2 = 10^{-5}$

P=3の Heun 法 (R-K法); fn は上の公式に合わせて計算. 尚公ちの結果については「17を参照されたい。

(1312)
$$\begin{cases} y_1' = y_2, & y_1(0) = 0 \\ y_2' = -9y_1, & y_2(0) = 6 \end{cases}$$
 $\begin{cases} y_1(x) = 2\sin 3x \\ y_2(x) = 6\cos 3x \end{cases}$

積分区间[0,4]

$$(E,I)_1, 公式4$$
 ; $f_0=0.01$, $\epsilon_1=10^{-5}$, $\epsilon_2=10^{-2}$ $(E,E)_2$, 公式2 } $f_0=0.01$, $\epsilon_1=10^{-7}$, $\epsilon_2=10^{-4}$ $(E,I)_2$, 公式6 } $f_0=0.01$, $\epsilon_1=10^{-7}$, $\epsilon_2=10^{-4}$ $P=3$ or Heum 法 , $\exists t= 公式5$ or 符果 $|E_1|=1$ [1] 在参照 世子。

(例3)
$$\begin{cases} y_1' = 998y_1 + 1998y_2, y_1(0) = 1 \\ y_2' = -999y_1 - 1999y_2, y_2(0) = 0 \end{cases}$$
 類解 $\begin{cases} y_1(x) = 2\bar{e}^x - \bar{e}^{1000X} \\ y_2(x) = -\bar{e}^x + \bar{e}^{1000X} \end{cases}$ 積分区由 $[0, 4]$

横分区間 [0,4]
(I,I)1,公式8;
$$h_0 = .0002$$
, $h_{max} = .1$, $\mathcal{E}_1 = 10^5$, $\mathcal{E}_2 = 10^2$
(I,I)2,公式9; $h_0 = .0002$, $h_{max} = .1$, $\mathcal{E}_1 = 10^7$, $\mathcal{E}_2 = 10^{-3}$

Kaps-Rentrop公式 (a); $h_0 = .0001$, $h_{max} = .1$, $\mathcal{E}_1 = 10^{-9}$, $\mathcal{E}_2 = 10^{-6}$
(b); $h_0 = .0002$, $h_{max} = .1$, $\mathcal{E}_1 = 10^{-8}$, $\mathcal{E}_2 = 10^{-5}$
(I,I)1,公式7 a 結果は[1]を参照。また Kaps-Rentrop公式 (=つ)
(I,I)1,公式7 a 結果は[1]を参照。また Kaps-Rentrop公式 (=つ)

以上3つの例の計算結果が少数値解の誤差をプロットした。回の一部は、最後にまとめてのせた。

<u>§5 あとがき</u>. Balanced pair として 为くの公式をあげたが、P=1のものとしては、公式4,公式8 を推せんしたい。これらの公式は真の解を挟むという点ですぐれている。 P=2の公式としては、公式2,公式6,公式9

を推せんしたい。これらは、かなり実用的な公式であると思われるので、同時に公式の特徴、注意等を記す。

公式	微分方程式	公式の特徴, その他
(E,E)2 公式2	nonstiff用	周期解に対しては良い・ 積分区間が短い場合は,公式6にべて精度は良い・ 区間が長い場合は丸め誤差の消去・必要・ 絶対安定領域は狭い・ 真の解を挟むという点では,公式5,6に比べて信頼性はやや低い・ 計算時間は平均すると一番短い・
(E,I)2 公式6	nonstiff用	周期解に対しては良い・ 長区間の積分の場合, R-K法は丸め誤差 の消去必要・ Stiffnessが小の時は適用可能・ 又 Stiffness が中程度 **でも積分区間が短い場合は適用可能・ 解を挟むという 点では信頼性は高い・
(I,I)2 公式9 A-stabl	stiff用 e	台形法よりも R-K法の方がある意味で安定・ 積分区間が長い場合でも,ある程度の精度を保つためには, Hmax の設定は必要・Hmaxの設定がなく Stepsizeが大きくなった時,真の解を挟むという事は必ずしも保証できない・R-K法の K」に対するNewton法は One-iterationで十分・

註 * Gillの方法あるいは Møllerの方法を用いれば可能である([5]参照).

最後に、balanced Pair なる解法に対して、多くの有益な助言をしてくださいました、清水辰次郎先生、東京理科大学の 林健児先生 ならびに 名古屋大学の 三井斌友先生に感謝の意を表します。

参考文献

- [1] T.Oohashi: Balanced Pair of Numerical Solutions for Initial value Problems of Ordinary Differential Equations, Kitasato J. of Liberal Arts and Sciences, vol.21 pp41-67 (1987)
- [2] C.W.Gear: Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall (1971)
- [3] P.Kaps and P.Rentrop: Generalized Runge-Kutta Methods of Order Four with Stepsize Control for Stiff Ordinary differential Equations, Numer. Math. 33 pp55-68 (1979)
- [4] 三井 式 : 数值解析入門, 朝倉 (1985)
- [5] 清水辰次郎 :丸め誤差考, bit臨時増刊12, PP126-135 (1975)
- [6] A.I.Johnson and J.R.Barney: Numerical Solution of Large Systems of Stiff O.D.E.'s in a Modular Simulation Framework, Numerical Methods for Differential Systems, Academic Press, PP97-124 (1976)
- [7] 一松 信 : 数値解析, 朝倉 (1982)

^{**} Stiffnessが中程度とは, Stiffness Ratio 103 程度をいう.又 106程度のものは Very Stiff と呼ばれている([6],P107 参照).

例1の計算結果

表 1.1

公式 n Xn hn Un Yn Zn Vn (E, I) 1, 公式4 (E, E) 2, 公式2 (E, I) 2, 公式6 (E, I) 2, 公式7 (E, I) 2,		6:49 12:08 11:05	0/400 (0%) 3/656 (0.48%) 3/515 (0.58%)	.01 .0061004 .0078377	5649	31 39 41	1,公式4 2,公式2 2,公式6	(E,I) (E,E) (E,I)	
次式 n Xn h _n Un Yn Zn Vn	梦)		•	の平均	H	H	进	7	
次式 n Xn hn Un Yn Zn Vn				1-					
公式 n Xn h, Un Yn Zn Vn 1.1)1,公式4 50 1.4241-02 -1.4763-02 -2.6104-04 1.1)2,公式6 50 .5 .01 -1.7192-04 1.7958-04 3.8280-06 2.752 1.1)1,公式4 100 .01 3.4752-02 -3.6608-02 -9.2833-04 6.813 1.1)2,公式6 125 1.0 .005 -6.0153-04 6.2555-04 1.2012-05 8.254 1.1)2,公式6 125 1.005 -8.1785-06 1.0327-05 1.0743-06 7.016 1.1)2,公式6 325 .005 -2.4913-05 2.6629-05 8.5797-07 5.702 1.1)2,公式6 325 .005 2.6817-06 -2.5523-06 6.4697-08 4.928 1.1)1,公式4 400 4.0 .01 4.8590-04 -4.8738-04 -7.4038-07 5.567 1.1)2,公式6 515 4.0364 .037969 -1.3394-05 1.2977-05 -2.0866-07 3.066		n)-zn, &		• 5	與差 Un=y()Total誤詞		Zn 3¾	_	举
公式 n Xn hn Un Yn Zn Vn 111,公式4 50 112,公式2 50 .5 .01 1.7192-04 1.7958-04 3.8280-06 2.7527 111,公式4 100 .01 3.4752-02 -3.6608-02 -9.2833-04 6.8132 11)2,公式2 148 1.0 .005 -6.0153-04 6.2555-04 1.2012-05 8.2549 11)2,公式6 125 .005 -8.1785-06 1.0327-05 1.0743-06 7.0164 11)1,公式4 200 .01 4.3180-03 -4.4084-03 -4.5219-05 8.6290 11)2,公式6 325 2.0 .005 2.6817-06 -2.5523-06 6.4697-08 4.9281	. 56	7.4038-0 4.3211-0 2.0866-0	4.8738- 8.6720- 1.2977-	.8590- .5363- .3394-	01 1687 3796	4.0 .001 .036	40 65 51)2,	(E,
公式 n Xn hn Un Yn Zn Vn	.62 .70	.5219-0 .5797-0 .4697-0	4.4084-0 2.6629-0 2.5523-0	4.3180- 2.4913- 2.6817-	.005	•	ωωΝ	27.分分	
公式 n Xn h _n Un Yn Zn Vn ,I)1,公式4 50 ,E)2,公式2 50 .5 .01 -1.7192-04 1.7958-04 3.8280-06 2.7527 ,I)2,公式6 50 1.0669-04 -1.0807-04 -6.9061-07	.8132 .2549 .0164	9.2833-0 1.2012-0 1.0743-0	3.6608-0 6.2555-0 1.0327-0	3.4752-0 6.0153-0 8.1785-0	.005	1.0	10 14 12	27.公公	
n Xn h _n Un Yn Zn	.752	2.6104-0 3.8280-0 6.9061-0	1.4763-0 1.7958-0 1.0807-0	1.4241-0 1.7192-0 1.0669-0	.01	. ೮1	01 01 01)2,公	
	Vn	Zn	Yn	Un	hŋ	Xn	n	公式	

¹⁾ F.E. は関数計算の回数を示す. 2) B.F. は Un と Yn が同符号になったSTEP数の相対度数を示す. 3) 計算時間は Henn法の計算 および 全ての計算値の誤差のグラフを 描く時間を含む.

例2の計算結果

表 2.1 (y1 に対する結果)

7	.	۷,	,	1130	V	7.5	V.
公式	n	nx	'nη	Un	nx	2n	۷n
, I) 1 , 公				. 2663	6	25	
	100	1.0	.01	-2.2058-04	2.2281 - 04	1.1151-06	1.1126-06
E, I) 2, 公式6				. 4451	4.	. 58	
, I) 1 , 公	` .			.7022	.5394	13	
,E)2,公	200	2.0	.01	4.2401-04	-4.3221-04	-4.0990-06	-4.0820-06
	٠			.6037	.6398	.80	
, I) 1 , 公	300	. !	.01	.7944-	.4692	. 62	8.7856-06
,E)2,公	300	3.0	.01	-5.9755 - 04	6.1523-04	8.8385-06	8.7856-06
	302	_	.005	.2157-	. 2235	. 92	8.7342-06
, I) 1 , 公	431	4.0	.005	.3723		. 69	-1.4008-05
E,E)2,公式2	400	4.0	.01	7.2948-04	-7.5978 - 04	-1.5148 - 05	-1.5030 - 05
T)2.本	502	4.0	.005	.2174	1.2280-03	. 31	-1.1668-05

注) INV. は逆行列の計算回数を示す.

(E, I) 1, 公式4 (E, E) 2, 公式2 (E, I) 2, 公式6

 $\begin{array}{r}
 1728 \\
 2402 \\
 3018
 \end{array}$

864 0 1006

.0092807

2/431(.46%) 8/400(2%) 1/502(.19%)

0/431(0%) 7/400(1.7%) 0/502(0%)

18:40 11:43 21:58

.0079681

公式

F.E.

INV.

hヵの平均

R.F.

計算時間

表

2.2

例3の計算結果

表 3.1 (y1 に対する結果)

		the second contract of	and the second of the second o			
9:02 12:16 7:53 4:13	y ₂ : 1/129(.77%) y ₂ : 3/183(1.6%)	1/129(.77%) 3/183(1.6%)	16205 y ₁ : 21470 y ₁ : 84586 39421	580 .03 796 .02 235 .01 134 .03	710 980 909 507	(I,I)1,公式8 (I,I)2,公式9 Kaps-Ren.(a) (b)
計算時間	•	к. ғ	nの平均	INV. hn	ਸ.ਸ.	公式
			漱 3.2			
2811-06 .8689-10 .0371-09	1-09 4次: -5. 1-08 -5.	3.7275-05 3次: -4.607 -1.781	.1 .0656841 .0875788	4.07904 4.05290 4.04244 4.03912	183 219 119	(I,I)I,公式(6 (I,I)2,公式9 Kaps-Ren.(a) (b)
1817-0 5791-0 2009-1 1207-0	.2300- .1133- 9 4	. 2936-03 . 7975-05 欠: -1.609 -2.344	.1 .0389239 .0291929 .0583859	.079 .001 .013	9750	(I,I)1,公式8 (I,I)2,公式9 Kaps-Ren.(a)
4268-06 5347-07 1395-10 2680-09	-8.4646-04 6. 1.5700-05 4. 9-09 4次:-4. 2-08 -2.	8.5932-04 -1.4793-05 3次: -3.622 -1.260	.0389239 .0259493 .0291929 .0389239	1.00325 1.01588 1.02097 1.00304	92 127 139 75	(I,I)1,公式8 (I,I)2,公式9 Kaps-Ren.(a) (b)
6640-05 6596-07 5426-10 4033-09	-1.8915-05 -1. -1.4972-06 -3. 4-09 4次: 6. 7-08 5.	-1.4365-05 7.6524-07 3次: 3.425 1.628	.0034172 .0002 .0003375 .00045	.012855 .01 .0103 .0101	40 50 84 43	(I,I)1,公式8 (I,I)2,公式9 Kaps-Ren.(a) (b)
Zn	Yn	Un	hη	Xn	ם	公式

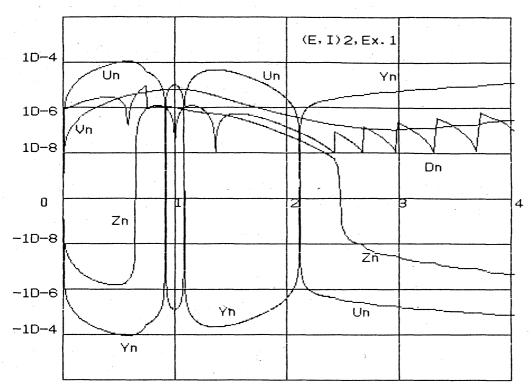


図5.例1に対する公式6の誤差

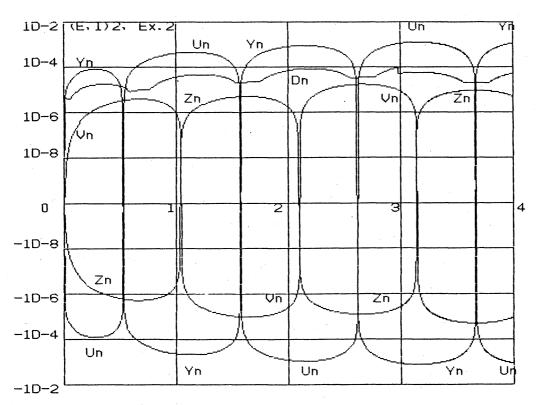


図6.例2に対する公式6の誤差

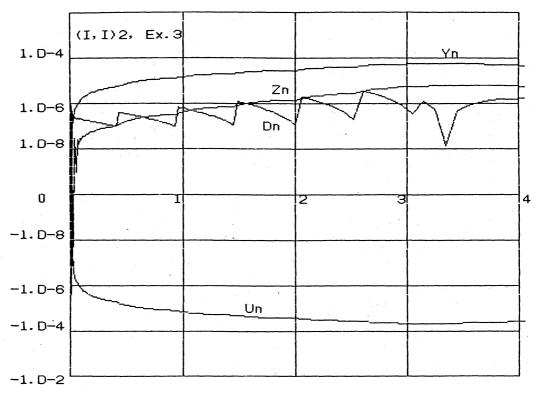


図7.例3に対核公式9の誤差

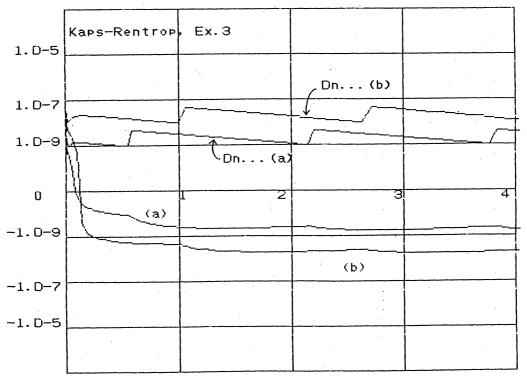


图8. 例3 に対する Kaps-Rentrop公式の誤差

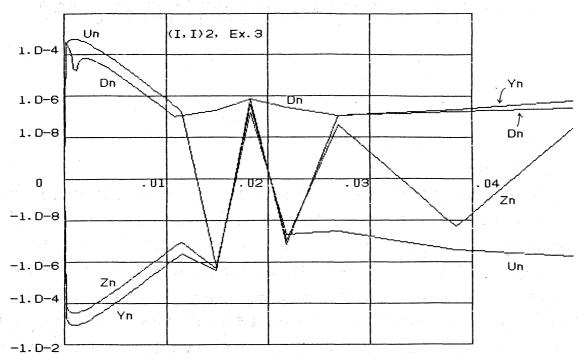


図9、例3:[0,0.04]における公式9の誤差

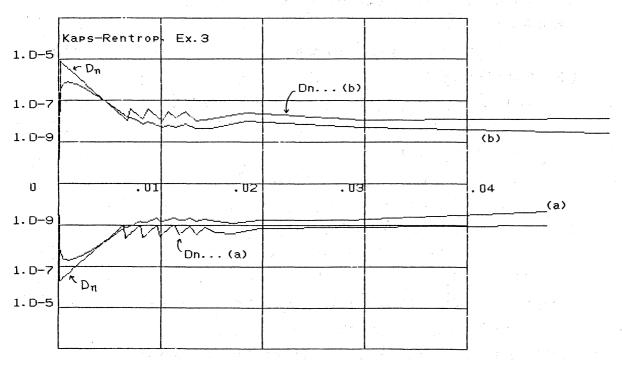


図10. 例3;[0,0.04] における Kaps-Rentrop公式の誤差