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$\Sigma_{2}$ Collection and Maximal Sets
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The subject of reverse recursion theory studies the following basic
question $(^{*})$ : What axioms of Peano arithmetic are required, or suffi-
cient, to prove theorems in recursion theory ? This question (perhaps first
raised by Stephen Simpson) is a natural offshoot of a related, more gen-
eral question: Which set existence axioms of second order arithmetic are
required, or sufficient, to prove theorems in ordinary mathematics (Simp-
son [1985]) ? While it was only in recent years that investigations were
carried out on $(^{*})$ , some of the answers obtained have nevertheless been
very interesting–not only because they provide a better understanding
of the fundamental constructions in recursion theory, but also because
many of the techniques used to obtain the answers were inspired by those
introduced in $\alpha$ recursion theory. Indeed in many cases the original tech-
niques appear to fit snugly into the new situation, giving the impression
of a technical development that is historically correct. Our purpose here
is to study the question on the existence of maximal sets, prove a general
nonexistence result of these sets for a wide class of models of $P^{-}+B\Sigma_{2}$ ,
and to point out the connection of the proof techniques with those in $\alpha$

recursion theory.

Let $P^{-}$ be the set of axioms of Peano arithmetic minus the induction
scheme. These consist of universal closures of the following:

$x’\neq 0$

$(x’=y’)arrow(x=y)$

$x\neq 0arrow 0’\leq x$

$x<yrightarrow(\exists t)(x+t’=y)$

$x<y\vee x=y\vee x>y$
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$x+y=y+x$; $x\cdot y=y\cdot x$

$x+(y+z)=(x+y)+z$
$x\cdot(y\cdot z)=(x\cdot y)\cdot z$

$x+0=x$ ; $x\cdot 0=0$ ; $x^{0}=0’$

$x+y’=(x+y)^{r}$ ; $x\cdot y’=(x\cdot y)+x$

$x^{u’}=x^{y}\cdot x$

$x\cdot(y+z)=(x\cdot y)+(x\cdot z)$

$x+y=x+zarrow y=z$

The induction scheme is arranged into a hierarchy of increasing
complexity strength. For each $n<\omega$ , let $I\Sigma_{n}$ be the $\Sigma_{n}$ induction scheme
which says that for every $\Sigma_{n}$ formula $\varphi$ ,

$[(\varphi(0)\ (\forall x)(\varphi(x)arrow\varphi(x’))arrow(\forall x)\varphi(x)]$ .

Clearly we have Peano Arithmetic $=P^{-}+\{I\Sigma_{n}|n<\omega\}$ .

A scheme which is closely related to the $\Sigma_{n}$ induction scheme is the
$\Sigma_{n}$ least member scheme. This states that if $\varphi$ is $\Sigma_{n}$ and is nonempty,
then there is a least member $a$ satisfying $\varphi$ . And finally, we have the $\Sigma_{n}$

collection scheme: if $\varphi$ is $\Sigma_{n}$ , then

$(\forall y<x)(\exists w)\varphi(y,w)$

implies there is a $b$ such that

$(\forall y<x)(\exists w<b)\varphi(y,w)$ .

In other words, on every initial segment of a model of $P^{-},$ the existence
of a witness for every member in the initial segment implies the existence
of a uniform bound where witnesses may be found.

Define $B\Pi_{n},$ $m_{n}$ and $L\Pi_{n}$ similarly for $rL$ formulas.

The next theorem provides a classffication of the relative strengths
of these arithmetical schema:
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Proposition (Kirby and Paris [1978]). $In$ every model of $P^{-}+I\Sigma_{0}$ ,
we have

$I\Sigma_{n+1}arrow B\Sigma_{n+1}arrow I\Sigma_{\hslash}$

$I\Sigma_{n}rightarrow\Pi I_{n}rightarrow L\Sigma_{n}rightarrow LrL$

$B\Pi_{n}rightarrow B\Sigma_{n+1}$

Arrows do not revers$e$ except where indicated.

It is not difficult to $veri\Phi$ that all the basic notions of recursion
theory can be formalized in $P^{-}+I\Sigma_{0}$ . For example, $n$-tuples can be coded
by single elements in models of $P^{-}+I\Sigma_{0}$ . Indeed, given $\mathcal{M}\models P^{-}+I\Sigma_{0}$ ,
one has the following definition:

DEFINITION. $H\subset M$ is M-finite if $Hh$as a code in M.

In particular, finite sets are not the only M-finite sets. In any ini-
tial segment of $\mathcal{M}$ , the $\Delta_{0}$ sets are all $\mathcal{M}$-finite. Using this notion of
M-finiteness, we may define, in a model $\mathcal{M}$ of $P^{-}+I\Sigma_{0}$ , a set to be recur-
sively enumerable (r.e.) if it is $\Sigma_{1}(\Lambda t)$ , and is recursive if its complement
is r.e. as well. The notion of reduction can also be introduced:

DEFINITION. Let $X$ and $Y$ be subsets of $\mathcal{M}\models P^{-}+I\Sigma_{0}$ . $X$ is pointwise
recursive in $Y$ (or weakly recursive in Y) if there $is$ an $r.e$ . set $\Phi$ of
quadruples such that for all $x$ ,

$x\in X(\exists H)(\exists K)$ [( $x,$ $1,H$, K)\in \Phi &H\subset Y&

$K\cap Y=\emptyset]$ ,

an$d$

$x\not\in X(\exists H)(\exists K)$ [($x,0,H$, K)\in \Phi &H\subset Y&

$K\cap Y=\emptyset]$ .
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($H,$ $K$ are M-finite sets.)

The notation $X\leq_{w}Y$ is used to express the relation pointwise
recursive in. It is not difficult to see that if $\mathcal{M}$ is the standard model
of arithmetic, then $\leq_{w}$ is a transitive relation. In general, however, the
transitivity of $\leq_{w}$ is not automatic.

Let $M$ be a model of $P^{-}+I\Sigma_{0}$ . Let $R$ be denote the collection of
all r.e. sets in $M$ . One may $veri\mathfrak{h}^{\gamma}$ that $R$ forms a lattice, with $\emptyset$ and $M$

forming respectively the least and greatest element in the lattice. Let $R^{*}$

be obtained from $R$ by $identi\theta ing$ those r.e. sets with $M$-finite difference.

DEFINITION. An $r.e$. set $M$ is maximal in $R^{*}$ if there is no $r.e$ . set
lying strictly between $M$ an$dM$ , modulo M-finite sets.

Maximal sets were first constructed by Friedberg [1957] for the stan-
dard model $N$ . It has since become a subject of intense study for recursion
theorists (see Soare [1987] for an exposition). Our interest here is to ex-
amine the strength of the statement ‘there exists a maximal set’ vis \‘a vis
fragments of the induction scheme. More specifically,

THEOREM 1. $(a)$ There is a maximal set in every model of $P^{-}+I\Sigma_{2}$ .
$(b)$ There is a model of $P^{-}+B\Sigma_{2}+\neg I\Sigma_{2}$ with no $m$axim$al$ set.
$(c)$ There is a model of $P^{-}+I\Sigma_{0}+\neg I\Sigma_{1}$ with a maximal set.
Our original proof for (a) covered only the case of $P^{-}+I\Sigma_{3}$ . Slaman

pointed out that the argument worked for $I\Sigma_{2}$ as well. We will not discuss
the proofs of (a) and (c) (see Chong [to appear]), but will instead take up
(b).

To obtain a model as specified by (b), one is reminded of the or-
dinal $\aleph_{td}^{L}$ in which Lerman and Simpson [1973] showed that there is no

$\#$
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maximal set. A key property that wes used in that paper was that every
constructible subset of $\omega$ is $\aleph_{\omega}^{L}$ -finite. Thus the first step towards estab-
lishing (b) is to perhaps identify a model $\mathcal{M}$ of $P^{-}+B\Sigma_{2}+\neg I\Sigma_{2}$ with a
similar property. This is supplied by a result of Mytilinaios and Slaman
[1988]:

LEhmA 1. There is a model $M_{0}$ of $P^{-}+B\Sigma_{2}+\neg I\Sigma_{2}$ such that every
set of natural numbers is the $s$tandard part of an $\mathcal{M}_{0}$ -Bnite set.
Proof: Starting with $V_{+\omega}$ , the collection of all sets of rank less than $\omega+\omega$ ,
form the ultrapower $V^{*}$ of $V_{+w}$ over a nonprincipal ultrafilter. There is
an embedding $j$ of $V_{+w}$ into V’. The structure $j(N)$ is then a model of
full Peano arithmetic with the additional property that every set of natural
numbers is the standard part of a $j(N)- finite$ set. Now take a nonstandard
number $a$ in $j(N)$ , and let $M_{0}$ be the union of the $H_{n}s$ defined below:

$H_{0}=\{b|b<a\}$ ;

$H_{n+1}=\Sigma_{1^{-}}^{n+1}Hull(\{b|(\exists c>b)(c\in H_{n})\})$ .

Here $\Sigma_{1}^{n+1}(H_{n})$ means taking the Skolem hull of $H_{n}$ in $j(N)$ with respect
to the first $n+1\Sigma_{1}$ functions. Then $M_{0}$ is a $\Sigma_{1}$ elementary substructure
of $j(N)$ . An argument of Kirby and Paris [1978] shows that $\mathcal{M}_{0}$ is a model
of $B\Sigma_{2}$ but not of $I\Sigma_{2}$ . Furthermore, in $\mathcal{M}_{0}$ every set of natural numbers
is the standard part of an $M_{0}- finite$ set.

We say that a set $A$ in a model $\mathcal{M}$ . is regular if $A|a$ is $\mathcal{M}$-finite for
every $a.$ . The next result is well-known:

LEMMA 2. Every $r.e$ . set $A$ in a model of $P^{-}+I\Sigma_{1}$ is regular.

$LEr4A3$. Let $\mathcal{M}_{0}$ be as in Lemma 1. There is a function $f\leq_{w}\emptyset’$ such
$th$at $f$ maps $N$ cofin$aIly$ into $\mathcal{M}_{0}$ .
Proof: Define $f(n)$ to be the supremum of $H_{n}$ in the proof of Lemma 1.

$\mathcal{E}$
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An effective version of Lemma 3 yields the following approximation
for the function $f$ :

LEMMA 4. There is a tot$al$ recursive function $f’$ such that
$(a)$ For all $n\in N,$ $\lim.f’(s,n)=f(n)$ ;
$(b)$ For all nonstandard $n,$ $\lim.f’(s,n)$ does not exist;
$(c)f’(s,n)\leq f’(t,m)$ for all $s\leq t$ and $n\leq m$ .

Thus the model $M_{0}$ is seen to be endowed with properties reminis-
cent of the ordinal $\aleph_{v}^{L}$ : Every set of natural numbers is the standard part
of an $M_{0}-finite$ set, and there is a $\Sigma_{2}$ cofinal function from $N$ into $\mathcal{M}_{0}$ . In
Lerman and Simpson [1973], analog of these properties in $\aleph_{\{\theta}^{L}$ were suffi-
cient to show that no maximal sets exist. The idea was to split $\aleph_{\omega}^{L}$ into
the union $\{A_{n}\}$ of $\omega$ many pairwise disjoint simultaneous r.e. sets. By
choosing those $n’ s$ for which $A_{n}$ has nonempty intersection with a given
$\Pi_{1}$ set $X$ , one gets an $\aleph_{ty}^{L}$ -finite subset $K$ of $\omega$ , with the propertry that
$X\cap A_{n}\neq\emptyset$ for each $n\in K$ . One can now easily split $K$ into two dis-
joint infinite $\aleph^{L}$ -finite sets $K_{1}$ and $K_{2}$ , so that the corresponding r.e. sets
$\cup\{A_{n}|n\in K_{1}\}$ and $\cup\{A_{n}|n\in K_{2}\}$ split $X$ into two $non-\aleph_{t\theta}^{L}$ -finite pieces.

Now for models of fragments of arithmetic such as $M_{0}$ , a recursive
splitting of the universe into $\omega$ pieces is not possible (by the Overspill
Lemma), and so a different strategy is required. The intuition remains the
same: Given a $\Pi_{1}$ set $X$ , devise a method of recursively guessing (correctly)
$\omega$ many elements of $X$ , without ‘touching’ $\omega$ many other elements of $X$ .

LEhmA 5. Let $\mathcal{M}_{0}$ be the model of Lemma 1. If $M$ is $r.e$. with
complement $non- M_{0}$ -Hnite, then $M$ is $cont$ained in an $r.e$ . set $B$ such that
neither $B\backslash M$ nor $\mathcal{M}_{0}\backslash B$ are $\mathcal{M}_{0}$ -finite.
Proof: By Lemma 2, $M$ is regular so that $M_{0}\backslash M$ is not bounded. Now
for each $n\in N$ , there is a standard $m>n$ such that every member of
$M|f(n)$ is enumerated by stage $f(m)$ . Let $g(n)$ be the the least such $m$ .

$g$
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The set $K$ of pairs $(n, g(n))$ is the standard part of an $\mathcal{M}_{0}- finite$ set $K^{*}$

Assume without loss of generality that $\overline{M}\cap[f(n),$ $f(n+1))\neq\emptyset$ for each
$n\in \mathcal{N}$ . Choose $m_{g(n)}$ to be the least member of $\overline{M}$ greater than or equal
to $f(g(n))$ . We then have the situation where at any stage $s$ , if the value
of $m_{g(n+1)}$ is correctly guessed (recursively with the help of the function
$f)$ , then so are all the values of $m_{g(n’)}$ for all $n‘<n$ .

The next step is to ensure that when computing approximations to
$m_{g\langle n)}$ , there is no possibility of mistaken identity. In other words, we need
a recursive guessing function such that at any stage $s$ , if $x$ ‘appears’ to
be $m_{g(n)}$ , then $x$ is not $m_{g\{n)}$ for any $n’<n$ . This is obtained via the
function $h$ whose existence is asserted below:

SUBLEMMA. There is a recursive function $ht$aking each triple $(s,n’, n)$

into 2 such that for standard $n‘<n,$ $\lim_{\epsilon}h(s, n’,n)=h(n’,n)$ exists, and
such that if $h(s, n‘, n)=h(n’,n)$ then the number which appeaoe to be
$m_{g\langle n)}$ is not equal to $m_{g(n’)}$ .

This technical lemma evolves from Chong and Lerman [1976] which
studies the existence problem of hyperhypersimple sets in $\aleph_{t}^{L}$ . The key
point is that whilst it is not possible to select recursively from a given $\Pi_{1}$

set a $\Pi_{1}$ subset of order type $\omega$ , the existence of functions like $h$ allows
one to devise a good approximation to this set.

To complete the proof of Lemma 5, one now uses the function $h$ to
‘fill up’ the complement of $M$ to arrive at the r.e. set $B$ whose complement
contains the set of all $m_{g(n)}’ s$ for $n$ odd. This is done by setting $B$ to be
$M$ together with those $x’ s$ which appear to be $m_{g(n)}$ ( $n$ odd) at some stage
$s$ where $h(s, n’, n)=h(n’, n)$ for all $n’<n$ . This ensures that $B$ contains
all $m_{g\langle n)}$ for $n$ odd, and excludes all $m_{g(n)}$ for $n$ even.

Lemma 5 implies Theorem 1 (b). A consequence of this theorem is
the following result which is of methodological interest:
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COROLLARY. There is no $Bn$ it $e$
-

injury construction of a maximal set.
Proof: Mytilinaios [to appear] showed that every finite injury argument
can be carried out in models of $P^{-}+I\Sigma_{1}$ . Theorem 1 (b) says that $B\Sigma_{2}$ ,
hence (by the Proposition) $I\Sigma_{1}$ , is not sufficient to do the maximal set
construction.

One can generalize Theorem 1 (b) to cover a much wider class of
models of $P^{-}+B\Sigma_{2}$ . To do this we begin with a lemma which is a
refinement of Smory\’{n}ski [1984]:

LEMMA 6. Let $\mathcal{M}\models P^{-}+I\Sigma_{2}$ . $IfK\subset \mathcal{N}$ is the standard part of a $\Pi_{2}$

or $\Sigma_{2}$ subset of $M$ , then $K$ is the standard part of an M-finite set.
Proof: Let $M$ be given as in the hypothesis and suppose that $\varphi(x, a)$

is $\Pi_{2}$ over $M$ with parameter $a$ . An analog of Lemma 2 says that in
a model of $P^{-}+I\Sigma_{2}$ every $\Sigma_{2}$ (hence $\Pi_{2}$ ) set is regular. Let $b$ be a
nonstandard number in $M$ . Then the initial segment of $b$ intersected with
the set of numbers which satisfy $\varphi(x, a)$ is M-finite. The standard part
of this intersection is $K$ . A similar argument applies to $\Sigma_{2}$ subsets. This
proves the lemma.

DEFINITION. A function $p$ on a model of $P^{-}+B\Sigma_{2}$ is an N-function
if $p$ is total on $\mathcal{N}$ and maps standard numbers to standard numbers.

LEMMA 7. Let $M\models P^{-}+I\Sigma_{2}$ . There is an $\mathcal{M}’cM$ such that $M’$ is
a model of $P^{-}+B\Sigma_{2}$ but not of $I\Sigma_{2}$ , with the additional property that
every standard part of a N-function which is $\Sigma_{2}$ definable is th$e$ standard
part of an $M’$ -Bnite set.
Proof: $lnM$ build the sequence $\{H_{n}\}$ as in the proof of Lemma 1. Then
$M‘= \bigcup_{n}H_{n}$ is a $\Sigma_{1}$ elementary substructure of $M$ , with the additional
property that there is a function $f\leq_{w}\emptyset$’ mapping $\mathcal{N}$ cofinally into $M$ ‘.
An analog of Lemma 4 then provides a recursive approximation $f’$ such

2
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that for all $n\in N,$ $\lim_{\epsilon}f’(s,n)=f(n)$ . Let $K$ be the standard part of a
$\Sigma_{2}$ definable $\mathcal{N}$-function $p$ over $M$ ‘, defined by

$(i,j)\in p M’\models(\exists x)(\forall y)\varphi(x,y, a,i,j)$ ,

where $\varphi$ is $\Delta_{0}$ and $a$ is a parameter. We claim that $K$ is the standard
part of an $M$‘-finite set.

Let $Q$ be a set of triples such that

$(i, (m,j))\in Q M’\models(\exists s)(\exists x)(\forall t\geq s)(\forall y)[\varphi$ ( $x,y,$ $a,i$ , j)&

$f’(t,m)=f’(s, m)\ x\leq f’(s,m)]$ .

Then $Q$ is $\Sigma_{2}$ definable. Let $c_{0}\in M’$ be nonstandard, and set $Q_{\epsilon_{0}}=Q|c_{0}$ .
Let $K_{0}$ be the standard part of $K_{\epsilon_{O}}$ . Let $\psi$ be the $\Sigma_{2}$ formula used to
define $Q$ . Since $M$ ‘ is a $\Sigma_{1}$ elementary substructure of $\mathcal{M}$ , we have for
$(i, (m,j))\in M’,$ $M’\models\psi$ implies $M\models\psi$ . This means that members of
$K_{c_{O}}$ continue to satisfy the same formula in $M$ .

Let $X$ be the set of elements less than $c_{0}$ in $M$ satisfying $\psi$ . Then
$X$ is $\Sigma_{2}$ definable over $M$ and so by Lemma 6 is M-finite. As $M’$ is a $\Sigma_{1}$

elementary substructure of $\mathcal{M},$ $X$ is also $M’$ -finite.

By the definition of $\psi$ , we see that if $i,$ $m$ and $j$ are standard such
that $(i, (m,j))\in X$ , then it must be that $(i, (m,j))\in K_{c_{0}}$ . Furthermore,
by the very nature that $p$ is an N-function, for each standard $i$ there is a
unique standard $j$ such that $(i, (m,j))$ belongs to $X$ for some $m$ . Hence
let $K^{*}$ be the set of $(i,j)s$ in $X$ such that $j$ is the least member of $M’$

satisfying $(i, (m,j))\in X$ for some $m<c_{0}$ . $Then_{-}K$ is the standard part
of $K$“ and $K^{*}$ is $\mathcal{M}’$ -finite. This proves the lemma.

Now Lemmas 3, 4 and 5 continue to hold for models $M’$ satisfying
the conclusions of Lemma 7. In particular, the $\mathcal{N}$-function $g$ in the proof
of Lemma 5 is $\Sigma_{2}$ , and is therefore the standard part of an $M$ ‘-finite set.

?
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The same holds true for the N-function $h$ in the Sublemma. It follows
that in $\mathcal{M}’$ there are no maximal sets.

Now in Smory\’{n}ski [1984], there is a proof of Scott’s Theorem which
gives a characterization of subsets of $2^{\omega}$ which are standard systems of
models of Peano arithmetic (i.e. members of $2^{\omega}$ which are standard parts
of ‘finite sets’ of a given model of Peano arithmetic). This is stated as
follows:

LEMMA 8. Let $X$ be a countable family of sets of natural numbers,
then there is a model $M$ of Peano arithmetic for which $X$ is th $e$ standard
system if and only if:

(a) $X$ is closed under Boolean operations;
$(b)X$ is closed under Turing reducibility;
$(c)X$ satisfies a weak form of K\"onig $s$ Lemma: If $X\in X$ codes an

infinite binary tree, then some $Y$ in $X$ codes an infinite path through $X$ .

Thus there exist infinitely many different countable subsets of $2^{td}$

which are standard systems of models of Peano arithmetic. Applying
Lemma 7 one finds infinitely many countable models $M’$ of $P^{-}+B\Sigma_{2}+$

$\neg I\Sigma_{2}$ with pairwise different standard systems for which all standard parts
of $\Pi_{2}$ or $\Sigma_{2}$ sets are standard parts of $M$ ‘-finite sets. Each of these models
has no maximal sets. This proves the next result.

THEOREM 2. There exist infinitely many countable models of $P^{-}+$

$B\Sigma_{2}+\neg I\Sigma_{2}$ with pairwise different standard systems which have no $\max-$

imal sets.

Note that in contrast the model $\mathcal{M}_{0}$ of Theorem l(b) is uncount-
able. A theorem of Guaspari allows one to improve the above result to
(uncountable) models of $P^{-}+B\Sigma_{2}+\neg I\Sigma_{2}$ with standard systems of size

$\aleph_{1}$ .

$\swarrow 0$
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We end this paper with three questions:

(a) Assume $\mathcal{M}\models P^{-}+B\Sigma_{2}$ . Is it true that if $M$ has a maximal
set then $M\models I\Sigma_{2}$ ? A positive answer to this question would give. a
complete characterization of the existence of maximal sets over the base
theory $P^{-}+B\Sigma_{2}$ .

(b) Theorem 1 (c) indicates that the existence of maximal sets does
not require any assumption stronger than $P^{-}+I\Sigma_{0}$ , provided that the
underlying universe is carefully chosen. In the proof of Theorem 1 (c)
(Chong [to appear]), the model chosen has the property that there is a $\Sigma_{2}$

map from $N$ onto the whole universe. Do all model$s$ of $P^{-}+I\Sigma_{0}+\neg I\Sigma_{1}$

with maximal sets have this property ?

(c) What is the complexity, in the hierarchy of fragments of Peano
arithmetic, of various theorems on maximal $s$et$s$ ? In particular, is Soare’s
theorem (Soare [1974]) on the automorphisms of the lattice of r.e. sets
sending maximal sets to maximal sets provable in $P^{-}+I\Sigma_{2}$ ?

//
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