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Introduction. Let w be the set of natural numbers, i.e.

{0.1.2.3.---}. A set Asw is called n-generic if it is Cohen-
generic for n-quantifier arithmetic. As characterized by
Jockuschl4]. this is equivalent to saying that for every,E; set
of strings S. there is a o<A such that g=S or\vaUIv%S). By
degree we mean Turing degree (of unsolvability). We call a degree
n-generic if it has an n-generic representatiVe; For a degree a,
D(sa) shows a set of degrees recursive in a.

The relation between n-generic degrees and minimal deérees
is widely sfudied in Chongl1l. Chong and Jockusch[23, Haught[31],
Jockusch[4]. and KumabelS5]. Jockuschl4] showed that for each nz2,
if a is n-generic and 0<bsa then there is an n-generic degfee C
with cSb. From this and the fact that no n-generic degree is
minimal. he showed that any n-generic degree bounds no minimal
degree. Chong and Jockuschl[2] showed the same result for 1-
generic degrees below 0'. Haught[3] showed a stronger result that
if a is 1-generic below 0' and 0<b<a then b is also l-generic. On
the othef hand Chéng[l] and'KumabeESJ independently showed that
there is a l-generic degree which bounds a minimél degree.
Further Chongl(1] showed by a different method that there is a 1-
generic degree which bounds a minimal degree below 0'. These
results show an interesting downward homoginity property of D(sa)
for n-generic degrees a with n22, but the same result does not
hold for all 1-generic degrees. . _ L : -

As l-generic degrees are not r.e., relafive recursive
enumerability of n-generic degrees is an interesting problen.
Jockuschl41 showed if a is l-generic there is a c(<a) such that a
Is r.e. in c. So by the result of Haught[3] above, if a is a 1-
generic degree below 0' then there is a l-generic degree b(<a)
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such that a is recursive enumerable in b. We show that for all
n2l and for any n-generic degree a there is an n-generic degree
c(<a) such that a is r.e. in c. This answers to the question in
Jockuschl4].

Our notation is standard. A string is a mapping from an
initial segment of w into {0,1)}. Lower case Greek letters other
than w denote strings. For strings o and v, od&v denotes that o
extends v. and in this case we say that v is a substring of o.
Further o and v are said to be compatible if either extends the
other. If ¢ and v are incompatible we denote this by dlv. We
identify a set AsSw with its characteristic function. So osSA means
that the characteristic function of A extends the string ¢ and in
this case we say that o is a beginning of A. We write oxv for the
usual concatenation of o and v. We identify 0, 1 with the
corresponding strings 0, 1 of length 1. We use i only for 0 or 1
and let [ilJ=1-i. ¢ denotes the empty string. For each n, jm
denotes the string o of length n such that g(m)=i for all m<n.
For a string o, |ol denotes the length of 0 and d 1is the
substring of o such that |og |=|ladl-1. Further for a number mslgal,
dlml is the substring of ¢ of length m. For two strings o and v,
anv is the substring A of o and v such that for all m<|Al
ag(m)=v(m), and o(|[A])#v(|X|) or at least one of them are not
defined. Let °n be n-th partial recursive operator for some fixed
recursive enumeration of all the partial recursive operators. Let
¢n(o)(x)=y mean that the n-th partial recursive opérator with
oracle g and input x<|ol|, yields output y in at most |o| steps
and further that @n(u)(u) is defined for all u<x. Similarly, for

—

an enumeration procedure =, we éay that Z(g)(k)=1 if there is a

-~

computation in £ with oracle o enumerating k. Of course B is
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recursive in A iff for some e, Qe(A)=B. For two partial recursive
operators (or enumeration operators) ¥ and ¢, ¥29 denotes that
for every string g and every number n, ¥(d)(n)=9%(g)(n) whenever
¢(a)(n) is defined. Strings ¢ and v are called @n(or n)-split if

@n(o) and @n(v) are incompatible.

The Result.

We first give two definitions and a lemma which will play an

important role throughout the proof of the theorem.

Definition 1. Let ¥ be a partial recursive operator.

(1) o is called ¥-good if for any A2¥ (o) there is a teo with
viT)2A.
(2) o is called almost w~-good if there is a finite set F of
strings such that
(2-i) for any rt20 and ¢6&F, W(r)%é.
(2-i1i) there is a string va¥(og) such that vl|é for any
6eF, and
(2-iii) For any string A such that Az2¥(g) and A%G for

any 6eF, there is a t=20 with w(r)2\.

Qg_lni;ign_gA (1) A set S of strings is called dense if
every string has an extension in S.

(2) A set P of strings is called strongly dense (s-dense) if
for any nonrecursive set A and any beginning o of A there is a

beginning v of A such that ogsv and veEP.



48

Clearly if o is ¥-good then g is almost w-good, and if a set
P of strings is s-dense, P is dense. The next lemma corresponds

to Lemma 4.6 in Jockuschl4].

For all n21, if ¥ is a partial recursive operator

0
n

strings. then W(A) is total and n-generic whenever A is n-

Lemma_ 1.

and there is a dense I (or s-dense) set P of almost ¥w-good
generic.

Proof. Let F be the finite set of strings as defined in
Definition 1-(2). To show that W(A) is tofal, let for each n,
Sn={a: Y(o)(n) is defined}. Then Sn is a dense recursive set of
Strings. (In fact for any o let v be such that veP and v2d, and
let v'2v be such that |(v')|>n.) Then by the l-genericity of A,

for each n there is a o<A such that ossn. So Y(A) is total. Next

0
n

strings v such that w(v)2)\ for some AsS. Then T is a &

set of strings. Let T be the set of

0
n

strings. As A is n-generic, there_is a vSA such that veT or no

let S be an arbitrary &

set of

extension of v is in T. If there is a vsSA such that veT then ¥(A)
extends some string A in S. If there is a vsA Such that no

extension of v is in T then let 6P be a string such that v56<A.

0
n

is almost Ww-good, let A be such that 63SA<A and ¥(\) |t for any

(Such a 6 exists because P is a dense &. (s-dense) set.) Since 6
TeF (such a X\ exists as Ww(A) is total). As for any szm(A) there

iIs a u26 with w(u)2€, it follows that no extension of ¥(A) is in

0

n set of strings it follows .that

S. Since S was an arbitrary E

VY(A) is n-generic.D

orem.. For any n21 and any n-generic degree a, there is an
n-generic degree c(<a) such that a is recursive enumerable in c.
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Proof. Let A be an n-generic set of degree a. We construct

[+ : » : P
s-1 and Y, ¥ =0 satisfies that ¢(A)

is a set of the desired degree c. Also we construct an

ws at stage s such that wszw

enumeration procedure Es at stage s such that ESZES_I and

sgo ES=E enumerates A relative to ¥(A) (denote this by
(v (A))=A).

Before constructing ¥ we give the abstract motivation of the
construction. To prove the theorem we must construct a partial

recursive operator ¢ and an enumeration procedure E which satisfy

the following conditions:

(1) 2(v(A))=A,
(2) w(A) is n-generic, and

(3) A is not recursive in v(A).

Within the motivation, we use letters «,8,Y to refer to
conditions on A. and o.7,6 to refer to conditions on $(A). To

satisfy (1), it is enough to arrange the following conditions:

(1-1) if ¥(«)=0 and Z(0)(k)=1 then «(k)=1, and
(1-ii) if «x(k)=1 there is an extension B of « with

E(V(R))(K)=1.

To satisfy (2), we construct a s-dense set G of ¥-good strings.
(As a matter of fact, we construcf a dense fecursive set G of
almost ¥w-good strings, but here assume as above.) Then by Lemma 1
VY preserves n-genericity. To satisfy (3), by the diagonal

requirement for each n we must satisfy Qn(W(A))ﬂA. In terms of
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dense sets, it is enough to arrange that for any «, there is a k

and a R2a satisfying

(3-i) on(w(e))(k)=o and BR(k)=1,
(3-ii) @n(w(s))(k)=1 and B(k)=0, or
(3-iii) there is no extension of ¢(8) that makes @n converge

at k.

The construction is organized in terms of strategies. During
the course of executing a strategy we may take one of the

following actions.

(A) Enumerate axioms into one or both of ¥ and =E.

(B) Prohibit such enumeration by strategies of lower
priority. We restrain the enumeration of k above o by prohibiting
the enumeration of any axiom to the effect of E(7)(k)=1 with t=2g.
Similarly, we restrain ¢ away from g above « by prohibiting the

enumeration of any axiom ¥(B)=t with 20 and B2«.

Note that restraint above « implies restraint above any extension
of «.

There are four types of strategies to be considered here.
Three of them are designed to satisfy the three types of
requirements mentioned above. The remaining strategy is a global
constraint imposed on the construction to simplify the analysis
of the forcing relation during a typical step. The crux of the
problem is. for each «, to understand what axioms enumerated so
far imply about the values of ¥ on A or £ on ¥(A) when A extends

. In other words. given the axioms so far, what is the forcing
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relation for ¥ and Z. The analysis can be made very manageable by.

the following.

(I) For each stage and each condition « maintain the
proprerty that « has infinitely many extensions for which there
are no axioms ih Y other than those that already aprly to .
Similarly, for each ¢ maintain the condition that o has
infinitely many extensions for which there are no axioms in =

other than those that already apply to g.

These two property imply that at each stage s the axioms

enumerated into ¥ and £ do no more than the following.

xll-"Y(A) extends o" <===> Y(a) extends o.

ali-FgA <===>\fkeF[E(0)(k)=lJ.

(II) To satisfy E(W(A))=A impose:

(1I-1) W(a)20 and E(g)(k)=1 implies «(k)=1.

(I1-1i1) If «(X)=1 then the enumeration of k cannot be

restrained above «.

Assuming that the construction respects the conditions

mentioned so far, for any stage of the construction and for any

«. we are free to extend ¥ and E so that there is an extension 8

of o with W(RB)=g and E(g)(K)=1. We can enumerate the relevant
axioms and respect (I) by choosing 8 and ¢ to be sufficiently

long length. Combining (I),(II) and the possibility of global
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restraint we obtain the following analysis of the forcing

relation.

aue"w(A) does not extend o" <{===> one of:
(a) ¥(x) is incompatible with og.
(b) Fkla(k)=0 & E(0) (K)=1}

(c) ¥ is restraint away from o above c.

These combine with earlier observation on the forcing relation to
give a complete analysis. Both of the above strategies have a
constant effect on the construction. In the case of (II), the
strategy impose a global restraint and a stage by stage
enumeration of axioms into ¥ and E. However, it does not impose
any coherent pattern to the length or distribution of these
axioms.

(ITI) The third strategy is used to produce a ¥-good
condition extending «. First extend « to 8 and enumerate axioms
into ¥ and E so that if B(k)=1 then E(W¥(R))(k)=1. Note that there
is no reason that the relevant éxioms in E cannot ‘all have the
same use.'namely the length of ¥(8). We work under the assumption
that no higher priority strategy imposes any restraints on the
values of ¥ above B to restrain them away from extensions of W(R)
and also that no higher priority strategy restrains the
enumeration of any number greater than the length of B above
Vv(RB). For each n, impose the restraints that

(n) may be enumerated into w.

(n)

(ITII-i) no axiom with use Bx1

However axioms with use extending 81 *0 may be enumerated,
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(I11-ii1) if a strategy of lower priority restrains ¥ away
from ¢ above B*l(n) and c2¥(B) then that same strategy provides a
mechanism by which the range of ¢ on the conditions extending B8
is dense below g, and

(I11-iii) similarly, if k2|8| and a strategy of lower
priority restrains the enumeration 6f k above o then that

strategy provides a mechanism by which the range of ¥ on the

conditions extending B is dense below g.

Suppose that oz¢(8). Providing that the construction respects
these conditions, either there is a t extending o such that we

can enumerdte an axiom w(B*l(n)

*0)=1 or we can invoke a provided
mechanism that enumerates an axioh putting an extension of ¢ in
the rage of ¥ above B. Note that it is always safe to enumerate
the axiom mentioned. for large ehough n, and respect (II) since
every number in E(g) is already in B*l(n).
(IV) The final strategy is used to make the conditions

forcing @n(w(A))#A dense-for all n as in - the statement (3-i),(3-
ii).(3-iii). Begin with « and move to B as in (III). Let w be the

length of R. Enumerate the axiom

0(8*0)=Q(B)*0.
(IV)-(A) While there is no o2¥(8%0) with @n(o)(w);o, then

(1) restrain ¥ away from W(8%0) above any vy incompatible
with B0 .

(2) restrain the enumeration of w above W(Bx%0),
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) beyond those

(3) restrain all Q-axioms with use B*l(n
arplying to B. and
(4) use the strategy described in (III) to make ¥(Bx0) a W-

good condition.

(IV)-(B) When the first og2V(8*0) is discovered with @nto)(w)=0;
then drop the above restraints and extend ¥ and = so that there

(n)*0)=r.

is an n and a T extending o such that W(8x1
Interference between strategies occurs when a diagonal

strategy of type (IV) moves from condition (A) to (B). For

example. the Y-good strategies (III) are injured in this case.

(n)*0)=r-is enumetrated as above and a strategy

Namely, when b (8]
S. ofltypé (III), was attempting to make some vy with vB%0 and
$(8*%0)s¥(y)sSt, a ¥-good condition, S cannot be successful. By
(I1), v must have some extension-r’ with Z(t')(w)=1. But then
also by (II), 'every condition extending 8%0 is prohibited from
being mapped by ¥ to such a tv'. Similarly, the restraint imposed
by a type (IV) strategy may also be injured by a type (iV)
‘strategy of higher priority. Luckily, a strategy of type (IV)
acts at most one time if not itself injured. (Hence vy will be
almost w-good.)

During a stage s of the construction, we work to make sure
that each condition of length less than s has an extension with
an active strategy for each of the first s many requirements.
Since the set of actions in the construction is E?; any l-generic

- set must meet this set infinitely often. By a Friedberg style
finite injury argument, for any nonrecursive path (not
necessarily generic) every requirement has infinitely many
initial segments above which a strategy relevant to that

- 11 -
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requirement is active and never injured. But there is an
important fact. The string v in the previous paragraph is almost
v-good. and so all the strings are almost ¥-good. To satisfy (2),
by Lemma 1, it is enough to construct a dense recursive set of
almost w-good strings. So such a finite injury argument does not
need. By the notion of "almost ¥-good", the construction and the
proof become extremely simple.

We now give the construction.

Construction.
Stage 0. Let E =¥_=¢. We call 0 maximal string at stage 0.
- Stage nt+]. For a string v and a number m with m<|v], let

Sub(v.m) be the substring 6 of v of length m, if any, such that~-
5%0sSv . For a maximal string g at stage n, we say that o needs m-

attention at stage n+l if

(1) Sub(g.m) is defined and it-is not m-satisfied by the end
of stage n. and |

(2) Qm(wn(d))(m)=0.

I1f g needs m-attention at stage n+l, let m be the least such

n+1

number m, and let ¢ be the least such string o in some fixed

n+1

recursive enumeration of all the strings. We say Sub(0n+1,mn+1)

-satisfied at stage n+l. Let Thel be the maximal string at
(k)

is mn+l

stage n such that (r . ) =Sub(g,m)*1 for some k0. Enumerate

1
the axioms:

*0)=Wn+“( , V%0,

v 1 el

wn+1(r *1*0*0)=wn(0

)%0, wn+1(Tn+1

)1,

n+1 n+i

- 12 -
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Wn+1(rn+l *1*1*0)=¢n(r

°n+1(wn+l(rn+1

mn+1$w$|r

nep)*1s

“x1%0%0))(w)=1 for any w such that

n+1

We call a o, “x1%1%0 maximal strings

Th+l n+1
at stage n+i1. For any maximal string 6 at stage n such that

n+l” rn+1* #1%0%0 and-r

6%a I.T

n+ if such °n+1 and T

exXist, enumerate the axioms;

n+1 n+l

Wn+1(6*0)=wn(6)*0,

(6 *1*0)=wn(6)*1, = (wn+ (6 *1%0))(]|6 |)=1.

Yhet n+1 1

We call 6%0 and & *1%0 maximal strings at stage n+l. For any A

and k let

wn+l}A)=U{wm(A’)lamSn+l EA*SA & W (A*) is explicitly
defined at stage ml} |

En+l(A)(k)=1 if for some A'SA and msn+l, Em(A')(k)=l is
explicitly defined at stage m,

W(A)=U{¢m(k')lam [X'SXA & v (X") is explicitly defined at
stage ml}, and

Z(A)(k)=1 if for some A'SA and m, Em(A')(k)=1 is explicitly

defined at stage m)
This complétes the consﬁruction.
The next lemma follows directly from the construction.
Lemma 2. Let 6 be a maximal string at stage n+l.

- 13 -
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(1) If 0n+2 is defined and on+2=6, then 6 is a maximal

string at stage n+2 and ¢n+ (8)=y (6)%0. If o© is defined and

2 n+1 n+2

Th+1=0+ then %0, & %1%0%0 and 6 *1%1%0 are maximal strings at

stage n+2. wn+2(5*0)=w (5)%0, wn+ (6 %1%0%0)=y )*1, and

n+1 2 n+1%n+2

(6 %1%1%0)=y (6)%1. Otherwise then 6%0 and & %1%0 are

lun+2 n+1

maxXimal strings at stage n+2, wn+2(5*0)=wn+1(6)*0, and
wn+2(6 *1*0)=wn+1(6)*1:
(2) 6(|sl-1)=0.
(3) Iwn+lsé)l=n+1.
(4) If XA is a maximal string at stage n+! then 6|\ iff 6 |\
iff o6\ iff wn+l(A)#wn+l
(5) If A<{S6 then wn+

(s8).

(6)>lvn+ (A)=wm(k) for all men (so

1 1

wn(A)=w(A)).

(6) If A26 %1 then wn+1(6)>¢n+l(k)=wn(k).

(7) If A<6 then there is unique maximal string t at stage
n+1 such that t =ax1¥) for some k20.

(8) ¢ is a maximal string at stage n+l iff wn+1(a) is
exrlicitly defined at stage n+i iff for any B2« wn+l(3)=wn+1(a)
and ¥ (a0 )<¥ ().

(9) 8(k)=1 iff (6))(K)=1.

En+1(¢n+l

(10) If Sub(g,,m,) is mn4satisf1ed at stage n then for any
s>n, Sub(os.ms)#Sub(Un,mn) whenever US isvdeflned.

(11) If 0n+2 is not defined or it is defined and 6ﬁon+2 then
6 is not a maximal string at stage n+2.

(12) For any string A and any number n,‘there is a maximal
string v at stage n such that A and T are compatible.

(13) For each n, if E (0)(k)=1 is explicitly defined at

stage n then |6|=n, and there is unique maximal string « at stage

...14 -
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n such that «(k)=1 and wn(a)=0. So for each m with n2m, no axiom
of the form Em(o)(k)=1 with |ogl>n is enumerated at stage m.

(14) If wn(a)ZG and E(g)(k)=1 for some « then En(o)(k)=1.

Proof. (1),---,(11) Clear by the construction using
induction on stage n.

(12) Clear by (1) and the construction by using induction on
stage n.

(13) Clear by (3) and (4).

(14) Clear by (3),(8) and (13).0

By Lemma 2-(10) for each o let F(g) be the least stage n
such that for any stage sz2n, if °s is defined then Sub(os.ms)%o.

Clearly E is consistently defined.
Lemma 3. ¥ is consistently defined, i.e. for all n,

(1) if Un is defined then T is also defined, and

(2) for any strings A, if A2t then wn(A)an(r).

Proof. (1) is clear by Lemma 2-(7).

- £ N

(2) We prove (2) by induction on n. Assume the lemma holds
for n. Let X and t be such that A2t. By Lemma 2-(12) let 6 be a
maximal string at stage n+! such that 6 is compatible with A. If

& >\ then by Lemma 2-(5) ¥ (A)=¢n(A)2¢n(T)=¢ (v). If

n+1
(T)=¢n(r). If

n+1

A26%0(=6)>t then by Lemma 2-(5)(8) ¥ (A)v

n+1 n+1

A26 *1>t then by Lemma 2-(5)(6) ¥ (A)=wn(k)2¢n(r)=$n+ (v). If

n+l 1

126 %0(=6) then by Lemma 2-(8) w_, . (X\)=¥ . (). Finally if 126 %1

n+l1

then by lemma 2-(6) wn+ (A)=¢n(k)2wn(r)=wn+ (v).0

1 1
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Lemma 4. Let o be an arbitrary string. If o%¢ and o(|gl-

1)=0. then

(i) o%0 and g *1%0 are maximal strings at some stage, or
(ii1) o%x0. o *1%0%0 and o *1%1%0 are maximal strings at some

stage.
and if 0=%, or g¥¢ and o(|g|-1)=1 then

(iii) o0 is a maximal string at some stage, or

(iv) o%0%0 and ox1%0 are maximal strings at some stage.

So there is a maximal string A at some stage with Azo.

Proof. We proceed by induction on the length of ag. First by
the construction, 0 is a maximal string at stage 0. So the lemma
holds for empty string. Let o be an arbitrary string with lol21.
If lol22 let o(l(o ) |)=i. |
| If (1) lagl=1, (2) |ol22 and i=0, or (3) |al22, i=1 and (iii)
holds for o—,.then by the inductive hypothesis o %0 is a maximal
string at some stéqe s. Let 6=dg %0. If 6 is a maximal string at

stage t for any tz2s, then for any tds, Gt is defined and g,=6 by

t

Lemma 2-(10). So Sub(dt.m )SS6. But if t2F(6) this is a

t
contradiction to the assumption on F(8). So let t)>s be the least
stage such that 6 is not a maximal String at stage t. Then by

Lemma 2-(1),

(A) 6=7,, and 6x0, & *1x0%0 and 6 *1x1%0 are maximal strings
at stage t, or |
(B) 6%0 and 6 *1*0 are maximal strings at stage t.

- 16 -
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If (A) is the case and o=0 %0(=6) then (ii) holds for o. If (A)
is the case and o=d *1(=6 *1) then (iv) holds for ¢. If (B) is
the case and g=g *0(=6) then (i) holds for d. If (B) is the case
and 6=o‘*1(=6—*1) then fiii) holds for o. In all cases, the lemma
holds.

Next assume |gl22, i=1 and (iv) holds for o , i.e. g *0x0
and ¢ *1%0 are maximal strings at some stage s. If o=o %0 then
(1) holds for a. 1f o=g %! then (11i) holds for o. In all cases

the lemma holds.(

Definition 3. We say that a string g is almost ws+1-good at
stage s+1 if for any maximal string 6 at stage s with 620, there

are maximal strings AO’AI at stage s+1 such that AiZG and

wS+I(Ai)=w5(6)*i for each i.

Lemma_ 5. W(A) is total and n-generic.

Proof. Let g be an arbitrary string. By Lemma 1 it suffices
to show that o is almost wjgood. By Lemma 4 let n be such that
there is a maximal string Avat stage n with A>g. Let
x=max{F(a).n}.

Let F be the set of strings T suéh that |tl=x and rlwx(A)
for any maximal string A at stage x with A2o. Clearly F is
finite. By Lemma 2-(3), wa(A)l=x for any maximal string X\ at
stage x. So any string u of length x is either an element of F or
u=(X\) for some maximal string A at stage x. By Lemma 2-(1), for
any v>X and any maximal string A at stage v, wv(k)=wv_ltk')*i for

some i and maximal string A' at stage v-1.

We first show that A’>0 whenever Adg.-ccccccccccce sececse(%)
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Assume A>g. (1) If A'=0V then A=0V. so A'>g. (2) If A'=rv then
A=A'%0. (A') %1%0%0, or (A') *1%1x0. (2-i) If A=A'%0 then X' and
g are compatible. As A' is a maximal string at stage v-12x, A'>0
by the assumption on x. (2-ii) If A=(A') %1x0%0 or (A') *1x1x0
‘then assume for a contradiction that A’}a. By the assumption on
X. A'#d. As A'=(A') %0 by Lemma 2-(2), o2(A') *1. By Lemma 2-
(3)(6). no string extending (A') %! is a maximal string at stage
v-1(2x). This is a contradiction to the assumption on x. (3)
Otherwise A=A'x0 or (A') ®1%0. If A=A'%0 then the proof is
exactly same as (2-1). If A=(A') %1%0 then the proof is exactly
vsame as (2-ii).

If fof some vV>X. A>d, and teF, WV(A)ZT then let v be the
least such stage. Further lét A’ bé the least substring of A such
that wV(A)=¢V(A'). Then by the construction and Lemma 2-(8),

v, (A") is explicitly defined at stage v and A' 1s a maximal

string at stage v. Then by (%), ¥ (A")=¢ (6)*i for some i and

v-1
maximal string 6 at stage v-1 with 6>3. By Lemma 2-(3),

o (6)|=v-12x, so ¥ (6)2t(eF). By the assumption on v, v-1=X.

v-1
But this is a cdntradiction to the definition on F. Hence for any

v-1

V>X. A>d, and teF, wv(A)%r. So it suffices to show that o is
almost ws-good at stage s for all s>x. Let s be an arbitrary
number with s2x, and 6 be an arbitrary maximal string at stage s

with 6>a0. If ¢

s+] 15 defined at stage s+1 then Sub(as+1,ms+1)%0

by the assumption on F(g). (A) If'5=05+1 then, as
Gs+IZSUb(°s+l'ms+l)’ (Ts+l) ZSub(as+1,ms+1)Zo. Further by Lemma
2-(1), ws+1(6)=w5(5)*0, ws+1((Ts+l) f1*0*0)=ws(6)*1, and 6 and

Tgeq) ¥1%0%0 are maximal strings at stage s+1. (B) If 6=t

then by Lemma 2-(1), ¢s+1(6*0)=¢s(6)*0, ws+l(6 *1*1*0)=w5(6)*1,

(

and 6%0 and 6 *1%1%0 are maximal strings at stage s+l. (C)

- 18 -
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Otherwise by Lemma 2-(1), Ws+1(6*0)=¢5(6)*0.

ws+1(6—*1*0)=w5(6)*1. and 60 and'd—*l*O*U.are maximal strings at

stage s+l. In all cases. o is almost ws+1—good at stage s+1.0

Lemma_ 6. Z(V(A))=A,

Proof. It suffices to show that for any numbers s,k and any

strings «.o0.

(1) if wS(a)ZG and Es(o)(k)=l then «(k)=1, and

(2) if «(k)=1 then there is an extension 8 of «[k+1] such

that E(W(R))(K)=1.

(1) We proceed by induction on stage s. Assume ws(aJZU and

Bglo)(K)=1. If ¥__,

by the inductive hypothesis «(k)=1. If b, _q(2)<0o then

(«¢)20 then by Lemma 2-(14), Es_l(o)(k)=1, S0
Vo 1)<V (). By Lemma 2-(12) let « be a maximal string at
stage s such that (e )" and « are compatible. If (a,) 2« then by
Lemma 2-(5) ws_lta)=ws(a), which is a contradiction. If aZ(ao)—¥1
then by Lemma 2-(6) ws_l(a)=¢5(a); also a contradiction. So
«2(e ) %0(=e_ by Lemma 2-(2)). Hence | (o) |=5 and o _y () |=5-1

by Lemma 2-(3)(8). So Ws(a)=0 and ¥ (e)=g . If Es_l(d)(k)=l

s-1
then Es_l(a )(k)éEs_l(ws_l(a))(k)=1 by Lemma 2-(13). So by the
inductive hypothesis a(k)=1. If = (g) (k) is not defined then E

“s-1
(o) (k)=1 is explicitly defined at stage s and ao(k)=1 by Lemma 2-

(13) and the fact that w_(a )=0. As o2egy, a(k)=a,(K)=1.
(2) Assume «(k)=1. By Lemma 4, let n be such that B is a

maximal string at stage n for some BZa[k+1]. Then by Lemma 2-(9)

_n(wn(B))(k)=l.G
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LLemma_7. A is not recursive in V(A).

Proof. It suffices to show that @n(w(A))QA for all n. Let n
be an arbitrary number. Let R be a infinite recursive set of
numbers such that ¢n=¢m whenever meR. Let m and 6 be such that

meR and |6|=m. By the 1-genericity of A it suffices to show that

(1) for any A26x0, & (W(X))(m) is not defined, or

(2) for some Az6%1, 9 (W(X))(m)=0.

Assume for a contradiction that for some A'Zé*o, @m(w(k))(m)=0
and there is no string u2é%1 with Qm(W(u))(m)=0. Let t' be such

that t°'2max{F(s8):|6|=m} and @m(w (A*))(m)=0. By Lemma 4 let t

t'
and A be such that t2t', AZA* and A is a maximal string at stage
t. Then A needs m-attention at stage t+1, and m is the least such
number by the asSumption ont. So Sub(A,m)=6 is m4satisfied at

stage t+1 andet+1((jt+l) *1*0*0)zwttx)zwttx'). Hence

) %1%0%0) (m)=0. But trn )"*12Sub(A*,m) (=6)%1. This

Wi (Crisy

is a contradictioh.D

+1
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