Relative Recursive Enumerability of Generic Degrees

Dedicated to

Victor De Sabata

Masahiro Kumabe

c/o Prof. Masaru Fukuyama
Department of Mathematics
School of Science and Engineering
Waseda University
3-4-1, Ohkubo,
Shinjuku, Tokyo, 160
Japan

Introduction. Let ω be the set of natural numbers, i.e. $\{0.1.2.3.\cdots\}$. A set $A \le \omega$ is called n-generic if it is Cohengeneric for n-quantifier arithmetic. As characterized by Jockusch[4], this is equivalent to saying that for every Σ_n° set of strings S. there is a $\sigma(A)$ such that $\sigma(B)$ or $\forall v \ge \sigma(v \ne S)$. By degree we mean Turing degree (of unsolvability). We call a degree n-generic if it has an n-generic representative. For a degree a, $D(\le a)$ shows a set of degrees recursive in a.

The relation between n-generic degrees and minimal degrees is widely studied in Chong[1]. Chong and Jockusch[2], Haught[3], Jockusch[4], and Kumabe[5]. Jockusch[4] showed that for each n≥2, if a is n-generic and 0<b≤a then there is an n-generic degree c with c≤b. From this and the fact that no n-generic degree is minimal, he showed that any n-generic degree bounds no minimal degree. Chong and Jockusch[2] showed the same result for 1generic degrees below 0'. Haught[3] showed a stronger result that if a is 1-generic below 0' and 0<b<a then b is also 1-generic. On the other hand Chong[1] and Kumabe[5] independently showed that there is a 1-generic degree which bounds a minimal degree. Further Chong[1] showed by a different method that there is a 1generic degree which bounds a minimal degree below 0'. These results show an interesting downward homoginity property of D(≤a) for n-generic degrees a with n≥2, but the same result does not hold for all 1-generic degrees.

As 1-generic degrees are not r.e., relative recursive enumerability of n-generic degrees is an interesting problem.

Jockusch[4] showed if a is 1-generic there is a c(\(a \)) such that a is r.e. in c. So by the result of Haught[3] above, if a is a 1-generic degree below 0' then there is a 1-generic degree b(\(a \))

such that a is recursive enumerable in b. We show that for all $n\ge 1$ and for any n-generic degree a there is an n-generic degree $c(\langle a \rangle)$ such that a is r.e. in c. This answers to the question in Jockusch[4].

Our notation is standard. A string is a mapping from an initial segment of w into {0,1}. Lower case Greek letters other than w denote strings. For strings of and v, o≥v denotes that of extends v, and in this case we say that v is a substring of σ . Further σ and ν are said to be compatible if either extends the other. If σ and ν are incompatible we denote this by $\sigma | \nu$. We identify a set A≤w with its characteristic function. So o≤A means that the characteristic function of A extends the string of and in this case we say that o is a beginning of A. We write oxv for the usual concatenation of o and v. We identify 0, 1 with the corresponding strings 0, 1 of length 1. We use i only for 0 or 1 and let [i]=1-i. Φ denotes the empty string. For each n, i (n) denotes the string σ of length n such that $\sigma(m)=i$ for all m < n. For a string σ , $|\sigma|$ denotes the length of σ and σ is the substring of σ such that $|\sigma| = |\sigma| - 1$. Further for a number $m \le |\sigma|$, $\sigma[m]$ is the substring of σ of length m. For two strings σ and ν , onv is the substring λ of σ and ν such that for all $m(|\lambda|)$ $\sigma(m)=v(m)$, and $\sigma(|\lambda|)\neq v(|\lambda|)$ or at least one of them are not defined. Let Φ_n be n-th partial recursive operator for some fixed recursive enumeration of all the partial recursive operators. Let $\Phi_n(\sigma)(x)$ =y mean that the n-th partial recursive operator with oracle σ and input $x < |\sigma|$, yields output y in at most $|\sigma|$ steps and further that $\Phi_n(\sigma)(u)$ is defined for all u(x. Similarly, for an enumeration procedure Ξ , we say that $\Xi(\sigma)(k)=1$ if there is a computation in E with oracle o enumerating k. Of course B is

recursive in A iff for some e. $\Phi_e(A)=B$. For two partial recursive operators (or enumeration operators) Ψ and Φ , $\Psi \ge \Phi$ denotes that for every string σ and every number n, $\Psi(\sigma)(n)=\Phi(\sigma)(n)$ whenever $\Phi(\sigma)(n)$ is defined. Strings σ and ν are called $\Phi_n(\sigma)$ and $\Phi_n(\nu)$ are incompatible.

The Result.

We first give two definitions and a lemma which will play an important role throughout the proof of the theorem.

Definition 1. Let Ψ be a partial recursive operator.

- (1) σ is called Ψ -good if for any $\lambda \ge \Psi(\sigma)$ there is a $\tau \ge \sigma$ with $\Psi(\tau) \ge \lambda$.
- (2) σ is called almost Ψ -good if there is a finite set F of strings such that
 - (2-i) for any $\tau \ge \sigma$ and $\delta \ge F$, $\Psi(\tau) \ge \delta$,
- (2-ii) there is a string $v \ge \Psi(\sigma)$ such that $v \mid \delta$ for any $\delta \in F$, and
- (2-iii) For any string λ such that $\lambda \ge \Psi(\sigma)$ and $\lambda \ge \delta$ for any $\delta \in F$, there is a $\tau \ge \sigma$ with $\Psi(\tau) \ge \lambda$.

<u>Definition 2.</u> (1) A set S of strings is called dense if every string has an extension in S.

(2) A set P of strings is called strongly dense (s-dense) if for any nonrecursive set A and any beginning σ of A there is a beginning ν of A such that $\sigma \leq \nu$ and $\nu \in P$.

Clearly if σ is Ψ -good then σ is almost Ψ -good, and if a set P of strings is s-dense, P is dense. The next lemma corresponds to Lemma 4.6 in Jockusch[4].

Lemma 1. For all $n\ge 1$, if Ψ is a partial recursive operator and there is a dense Σ_n^0 (or s-dense) set P of almost Ψ -good strings, then $\Psi(A)$ is total and n-generic whenever A is n-generic.

Proof. Let F be the finite set of strings as defined in Definition 1-(2). To show that $\Psi(A)$ is total, let for each n, $S_n = \{\sigma: \psi(\sigma)(n) \text{ is defined}\}$. Then S_n is a dense recursive set of strings. (In fact for any o let v be such that v≥P and v≥o, and let $v' \ge v$ be such that $|\psi(v')| > n$.) Then by the 1-genericity of A, for each n there is a $\sigma(A)$ such that $\sigma(B)$. So $\Psi(A)$ is total. Next let S be an arbitrary Σ_n^0 set of strings. Let T be the set of strings v such that $\Psi(v) \ge \lambda$ for some $\lambda \ge S$. Then T is a Σ_n^0 set of strings. As A is n-generic, there is a v≤A such that v∈T or no extension of v is in T. If there is a v≦A such that vεT then Ψ(A) extends some string λ in S. If there is a v≤A such that no extension of v is in T then let $\delta \epsilon P$ be a string such that $v \le \delta \langle A$. (Such a δ exists because P is a dense Σ_n^0 (s-dense) set.) Since δ is almost Ψ-good, let λ be such that δ≤λ<A and Ψ(λ)|τ for any $\tau \in F$ (such a λ exists as $\Psi(A)$ is total). As for any $\xi \ge \Psi(\lambda)$ there is a $\mu \ge \delta$ with $\psi(\mu) \ge \xi$, it follows that no extension of $\psi(\lambda)$ is in S. Since S was an arbitrary Σ_n^0 set of strings it follows that Ψ(A) is n-generic. D

Theorem. For any $n\geq 1$ and any n-generic degree a, there is an n-generic degree $c(\langle a \rangle)$ such that a is recursive enumerable in c.

Proof. Let A be an n-generic set of degree a. We construct Ψ_s at stage s such that $\Psi_s \ge \Psi_{s-1}$ and $\sup_{s=0}^{\infty} \Psi_s = \Psi$ satisfies that $\Psi(A)$ is a set of the desired degree c. Also we construct an enumeration procedure Ξ_s at stage s such that $\Xi_s \ge \Xi_{s-1}$ and $\sup_{s=0}^{\infty} \Xi_s = \Xi$ enumerates A relative to $\Psi(A)$ (denote this by $\Xi(\Psi(A)) = A$).

Before constructing Ψ we give the abstract motivation of the construction. To prove the theorem we must construct a partial recursive operator Ψ and an enumeration procedure Ξ which satisfy the following conditions:

- (1) $\Xi(\Psi(A))=A$,
- (2) $\Psi(A)$ is n-generic, and
- (3) A is not recursive in $\Psi(A)$.

Within the motivation, we use letters $\alpha, \mathcal{R}, \gamma$ to refer to conditions on A. and σ, τ, δ to refer to conditions on $\Psi(A)$. To satisfy (1), it is enough to arrange the following conditions:

(1-i) if $\Psi(\alpha)=\sigma$ and $\Xi(\sigma)(k)=1$ then $\alpha(k)=1$, and (1-ii) if $\alpha(k)=1$ there is an extension $\mathcal B$ of α with $\Xi(\Psi(\mathcal B))(k)=1$.

To satisfy (2), we construct a s-dense set G of Ψ -good strings. (As a matter of fact, we construct a dense recursive set G of almost Ψ -good strings, but here assume as above.) Then by Lemma 1 Ψ preserves n-genericity. To satisfy (3), by the diagonal requirement for each n we must satisfy $\Phi_n(\Psi(A)) \neq A$. In terms of

dense sets, it is enough to arrange that for any α , there is a k and a $\mathcal{R} \ge \alpha$ satisfying

(3-i) $\Phi_n(\Psi(\mathcal{B}))(k)=0$ and $\mathcal{B}(k)=1$,

(3-ii) $\Phi_n(\Psi(R))(k)=1$ and R(k)=0, or

(3-iii) there is no extension of $\Psi(\mbox{\it B})$ that makes Φ_n converge at k.

The construction is organized in terms of strategies. During the course of executing a strategy we may take one of the following actions.

- (A) Enumerate axioms into one or both of Ψ and Ξ .
- (B) Prohibit such enumeration by strategies of lower priority. We restrain the enumeration of k above σ by prohibiting the enumeration of any axiom to the effect of $\Xi(\tau)(k)=1$ with $\tau \ge \sigma$. Similarly, we restrain Ψ away from σ above α by prohibiting the enumeration of any axiom $\Psi(\mathcal{B})=\tau$ with $\tau \ge \sigma$ and $\mathcal{B} \ge \alpha$.

Note that restraint above α implies restraint above any extension of α .

There are four types of strategies to be considered here. Three of them are designed to satisfy the three types of requirements mentioned above. The remaining strategy is a global constraint imposed on the construction to simplify the analysis of the forcing relation during a typical step. The crux of the problem is, for each α , to understand what axioms enumerated so far imply about the values of Ψ on A or Ξ on $\Psi(A)$ when A extends α . In other words, given the axioms so far, what is the forcing

relation for Ψ and Ξ . The analysis can be made very manageable by the following.

(I) For each stage and each condition α maintain the property that α has infinitely many extensions for which there are no axioms in Ψ other than those that already apply to α . Similarly, for each σ maintain the condition that σ has infinitely many extensions for which there are no axioms in Ξ other than those that already apply to σ .

These two property imply that at each stage s the axioms enumerated into Ψ and Ξ do no more than the following.

$$\alpha \text{II-"} \psi(A) \text{ extends } \sigma \text{"} <===> \psi(\alpha) \text{ extends } \sigma.$$

$$\sigma \text{II-F}_{\underline{C}} A <===> \bigvee_{k \in F} \Xi(\sigma)(k)=1 \text{]}.$$

- (II) To satisfy $\Xi(\psi(A))=A$ impose:
- (II-i) $\Psi(\alpha) \ge \sigma$ and $\Xi(\sigma)(k)=1$ implies $\alpha(k)=1$.
- (II-ii) If $\alpha(k)=1$ then the enumeration of k cannot be restrained above α .

Assuming that the construction respects the conditions mentioned so far, for any stage of the construction and for any α , we are free to extend Ψ and Ξ so that there is an extension $\mathcal B$ of α with $\Psi(\mathcal B)=\sigma$ and $\Xi(\sigma)(k)=1$. We can enumerate the relevant axioms and respect (I) by choosing $\mathcal B$ and σ to be sufficiently long length. Combining (I),(II) and the possibility of global

restraint we obtain the following analysis of the forcing relation.

 $\alpha II - \Psi(A)$ does not extend $\sigma'' \langle === \rangle$ one of:

- (a) $\Psi(\alpha)$ is incompatible with σ .
- (b) $\exists k[\alpha(k)=0 \& \Xi(\sigma)(k)=i]$.
 - (c) Ψ is restraint away from σ above α .

These combine with earlier observation on the forcing relation to give a complete analysis. Both of the above strategies have a constant effect on the construction. In the case of (II), the strategy impose a global restraint and a stage by stage enumeration of axioms into Ψ and Ξ . However, it does not impose any coherent pattern to the length or distribution of these axioms.

- (III) The third strategy is used to produce a Ψ -good condition extending α . First extend α to $\mathcal B$ and enumerate axioms into Ψ and Ξ so that if $\mathcal B(k)=1$ then $\Xi(\Psi(\mathcal B))(k)=1$. Note that there is no reason that the relevant axioms in Ξ cannot all have the same use, namely the length of $\Psi(\mathcal B)$. We work under the assumption that no higher priority strategy imposes any restraints on the values of Ψ above $\mathcal B$ to restrain them away from extensions of $\Psi(\mathcal B)$ and also that no higher priority strategy restrains the enumeration of any number greater than the length of $\mathcal B$ above $\Psi(\mathcal B)$. For each n, impose the restraints that
- (III-i) no axiom with use $8*1^{(n)}$ may be enumerated into Ψ . However axioms with use extending $8*1^{(n)}*0$ may be enumerated,

(III-ii) if a strategy of lower priority restrains Ψ away from σ above $\mathcal{B}*1^{(n)}$ and $\sigma \succeq \Psi(\mathcal{B})$ then that same strategy provides a mechanism by which the range of Ψ on the conditions extending \mathcal{B} is dense below σ , and

(III-iii) similarly, if $k \ge |\mathcal{B}|$ and a strategy of lower priority restrains the enumeration of k above σ then that strategy provides a mechanism by which the range of Ψ on the conditions extending \mathcal{B} is dense below σ .

Suppose that $\sigma \geq \Psi(R)$. Providing that the construction respects these conditions, either there is a τ extending σ such that we can enumerate an axiom $\Psi(R*1^{(n)}*0)=\tau$ or we can invoke a provided mechanism that enumerates an axiom putting an extension of σ in the rage of Ψ above R. Note that it is always safe to enumerate the axiom mentioned, for large enough n, and respect (II) since every number in $\Xi(\sigma)$ is already in $R*1^{(n)}$.

(IV) The final strategy is used to make the conditions forcing $\Phi_n(\Psi(A))\ne A$ dense for all n as in the statement (3-i),(3-ii).(3-iii). Begin with α and move to β as in (III). Let w be the length of β . Enumerate the axiom

 $\Psi(R*0)=\Psi(R)*0.$

- (IV)-(A) While there is no $\sigma \ge \Psi(\mathcal{B} \times 0)$ with $\Phi_n(\sigma)(w)=0$, then
- (1) restrain Ψ away from $\Psi(\mathcal{B}*0)$ above any γ incompatible with $\mathcal{B}*0$.
 - (2) restrain the enumeration of w above $\Psi(\mathcal{B}*0)$,

- (3) restrain all Ψ -axioms with use R*1 (n) beyond those applying to R, and
- (4) use the strategy described in (III) to make $\Psi(R*0)$ a Ψ -good condition.

(IV)-(B) When the first $\sigma \ge \Psi(\mathcal{B} \times 0)$ is discovered with $\Phi_n(\sigma)(w)=0$, then drop the above restraints and extend Ψ and Ξ so that there is an n and a τ extending σ such that $\Psi(\mathcal{B} \times 1^{(n)} \times 0)=\tau$.

Interference between strategies occurs when a diagonal strategy of type (IV) moves from condition (A) to (B). For example, the Ψ -good strategies (III) are injured in this case. Namely, when $\Psi(\mathcal{B}*1^{(n)}*0)=\tau$ is enumetrated as above and a strategy S. of type (III), was attempting to make some γ with $\gamma \geq R*0$ and $\Psi(R*0) \leq \Psi(\gamma) \leq \tau$, a Ψ -good condition, S cannot be successful. By (II), τ must have some extension τ' with $\Xi(\tau')(w)=1$. But then also by (II), every condition extending R*0 is prohibited from being mapped by Ψ to such a τ' . Similarly, the restraint imposed by a type (IV) strategy may also be injured by a type (IV) strategy of higher priority. Luckily, a strategy of type (IV) acts at most one time if not itself injured. (Hence γ will be almost Ψ -good.)

During a stage s of the construction, we work to make sure that each condition of length less than s has an extension with an active strategy for each of the first s many requirements. Since the set of actions in the construction is Σ_1^{O} , any 1-generic set must meet this set infinitely often. By a Friedberg style finite injury argument, for any nonrecursive path (not necessarily generic) every requirement has infinitely many initial segments above which a strategy relevant to that

requirement is active and never injured. But there is an important fact. The string γ in the previous paragraph is almost Ψ -good. and so all the strings are almost Ψ -good. To satisfy (2), by Lemma 1, it is enough to construct a dense recursive set of almost Ψ -good strings. So such a finite injury argument does not need. By the notion of "almost Ψ -good", the construction and the proof become extremely simple.

We now give the construction.

Construction.

Stage 0. Let $\Xi_0 = \Psi_0 = \Phi$. We call 0 maximal string at stage 0. Stage n+1. For a string ν and a number m with m< $|\nu|$, let Sub(ν .m) be the substring δ of ν of length m, if any, such that $\delta *0 \le \nu$. For a maximal string σ at stage n, we say that σ needs mattention at stage n+1 if

- (1) $Sub(\sigma,m)$ is defined and it is not m-satisfied by the end of stage n. and
 - (2) $\Phi_{m}(\Psi_{n}(\sigma))(m)=0$.

If σ needs m-attention at stage n+1, let m_{n+1} be the least such number m, and let σ_{n+1} be the least such string σ in some fixed recursive enumeration of all the strings. We say $Sub(\sigma_{n+1}, m_{n+1})$ is m_{n+1} -satisfied at stage n+1. Let τ_{n+1} be the maximal string at stage n such that $(\tau_{n+1})^- = Sub(\sigma, m) *1$ for some $k \ge 0$. Enumerate the axioms:

$$\psi_{n+1}(\sigma_{n+1}) = \psi_{n}(\sigma_{n+1}) \times 0, \quad \psi_{n+1}(\tau_{n+1} \times 0) = \psi_{n+1}(\tau_{n+1}) \times 0,$$

$$\psi_{n+1}(\tau_{n+1} - \times 1 \times 0 \times 0) = \psi_{n}(\sigma_{n+1}) \times 1,$$

$$\Psi_{n+1}(\tau_{n+1} = 1 \times 1 \times 1) = \Psi_{n}(\tau_{n+1}) \times 1,$$

$$\Xi_{n+1}(\Psi_{n+1}(\tau_{n+1} = 1 \times 1 \times 0 \times 0)) = 1 \text{ for any } w \text{ such that }$$

$$\Psi_{n+1} \leq w \leq |\tau_{n+1}|.$$

We call σ_{n+1} . $\tau_{n+1}*0$, $\tau_{n+1}=1*0*0$ and $\tau_{n+1}=1*1*0*0$ maximal strings at stage n+1. For any maximal string δ at stage n such that $\delta \neq \sigma_{n+1} \cdot \tau_{n+1}$ if such σ_{n+1} and τ_{n+1} exist, enumerate the axioms:

$$\begin{array}{l} \psi_{n+1}(\delta*0)\!=\!\psi_{n}(\delta)\!*0\,, \\ \\ \psi_{n+1}(\delta^-\!\!*1\!*0)\!=\!\psi_{n}(\delta)\!*1\,, \quad \Xi_{n+1}(\psi_{n+1}(\delta^-\!\!*1\!*0))(|\delta^-|)\!=\!1\,. \end{array}$$

We call $\delta{*}0$ and $\delta^-{*}1{*}0$ maximal strings at stage n+1. For any λ and k let

 $\psi_{n+1}(\lambda) = \bigcup \{ \psi_m(\lambda') \mid \exists_{m \le n+1} [\lambda' \le \lambda \& \psi_m(\lambda') \text{ is explicitly defined at stage m]} \}$

 $\Xi_{n+1}(\lambda)(k)=1$ if for some $\lambda' \le \lambda$ and $m \le n+1$, $\Xi_m(\lambda')(k)=1$ is explicitly defined at stage m,

 $\psi(\lambda)=\cup\{\psi_m(\lambda')\big|^{\frac{1}{2}}m\ [\lambda'\leq\lambda\ \&\ \psi_m(\lambda')\ is\ explicitly\ defined\ at$ stage m]}, and

 $\Xi(\lambda)(k)=1$ if for some $\lambda' \leq \lambda$ and m, $\Xi_{m}(\lambda')(k)=1$ is explicitly defined at stage m}

This completes the construction.

The next lemma follows directly from the construction.

Lemma 2. Let δ be a maximal string at stage n+1.

- (1) If σ_{n+2} is defined and $\sigma_{n+2}=\delta$, then δ is a maximal string at stage n+2 and $\psi_{n+2}(\delta)=\psi_{n+1}(\delta)*0$. If σ_{n+2} is defined and $\tau_{n+1}=\delta$, then $\delta*0$, δ *1*0*0 and δ *1*1*0 are maximal strings at stage n+2. $\psi_{n+2}(\delta*0)=\psi_{n+1}(\delta)*0$, $\psi_{n+2}(\delta^-*1*0*0)=\psi_{n+1}(\sigma_{n+2})*1$, and $\psi_{n+2}(\delta^-*1*1*0)=\psi_{n+1}(\delta)*1$. Otherwise then $\delta*0$ and δ^-*1*0 are maximal strings at stage n+2, $\psi_{n+2}(\delta*0)=\psi_{n+1}(\delta)*0$, and $\psi_{n+2}(\delta^-*1*0)=\psi_{n+1}(\delta)*1$.
 - (2) $\delta(|\delta|-1)=0$.
 - (3) $|\Psi_{n+1}(\delta)| = n+1$.
- (4) If λ is a maximal string at stage n+1 then $\delta | \lambda$ iff $\delta^- | \lambda^-$ iff $\delta \neq \lambda$ iff $\psi_{n+1}(\lambda) \neq \psi_{n+1}(\delta)$.
- (5) If $\lambda < \delta$ then $\psi_{n+1}(\delta) > \psi_{n+1}(\lambda) = \psi_m(\lambda)$ for all m≥n (so $\psi_n(\lambda) = \psi(\lambda)$).
 - (6) If $\lambda \ge \delta + 1$ then $\Psi_{n+1}(\delta) > \Psi_{n+1}(\lambda) = \Psi_n(\lambda)$.
- (7) If $\lambda < \delta$ then there is unique maximal string τ at stage n+1 such that $\tau^- = \lambda * 1$ for some $k \ge 0$.
- (8) α is a maximal string at stage n+1 iff $\Psi_{n+1}(\alpha)$ is explicitly defined at stage n+1 iff for any $\& \geq \alpha \ \Psi_{n+1}(\&) = \Psi_{n+1}(\alpha)$ and $\Psi_{n+1}(\alpha) < \Psi_{n+1}(\alpha)$.
 - (9) $\delta(k)=1$ iff $\Xi_{n+1}(\Psi_{n+1}(\delta))(k)=1$.
- (10) If $Sub(\sigma_n, m_n)$ is m_n -satisfied at stage n then for any s>n, $Sub(\sigma_s, m_s) \neq Sub(\sigma_n, m_n)$ whenever σ_s is defined.
- (11) If σ_{n+2} is not defined or it is defined and $\delta \neq \sigma_{n+2}$ then δ is not a maximal string at stage n+2.
- (12) For any string λ and any number n, there is a maximal string τ at stage n such that λ and τ^- are compatible.
- (13) For each n, if $\Xi_n(\sigma)(k)=1$ is explicitly defined at stage n then $|\sigma|=n$, and there is unique maximal string α at stage

n such that $\alpha(k)=1$ and $\Psi_n(\alpha)=\sigma$. So for each m with $n\geq m$, no axiom of the form $\Xi_m(\sigma)(k)=1$ with $|\sigma|>n$ is enumerated at stage m.

(14) If $\psi_n(\alpha) \ge \sigma$ and $\Xi(\sigma)(k)=1$ for some α then $\Xi_n(\sigma)(k)=1$.

<u>Proof.</u> (1), \cdots , (11) Clear by the construction using induction on stage n.

- (12) Clear by (1) and the construction by using induction on stage n.
 - (13) Clear by (3) and (4).
 - (14) Clear by (3),(8) and (13). \square

By Lemma 2-(10) for each σ let $F(\sigma)$ be the least stage n such that for any stage $s \ge n$, if σ_s is defined then $Sub(\sigma_s, m_s) \ne \sigma$. Clearly Ξ is consistently defined.

Lemma 3. Ψ is consistently defined, i.e. for all n,

- (1) if σ_n is defined then τ_n is also defined, and
- (2) for any strings λ, τ if $\lambda \geq \tau$ then $\Psi_n(\lambda) \geq \Psi_n(\tau)$.

Proof. (1) is clear by Lemma 2-(7).

(2) We prove (2) by induction on n. Assume the lemma holds for n. Let λ and τ be such that $\lambda \geq \tau$. By Lemma 2-(12) let δ be a maximal string at stage n+1 such that δ is compatible with λ . If $\delta > \lambda$ then by Lemma 2-(5) $\psi_{n+1}(\lambda) = \psi_n(\lambda) \geq \psi_n(\tau) = \psi_{n+1}(\tau)$. If $\lambda \geq \delta * 0 (=\delta) > \tau$ then by Lemma 2-(5)(8) $\psi_{n+1}(\lambda) \geq \psi_{n+1}(\tau) = \psi_n(\tau)$. If $\lambda \geq \delta = 1 > \tau$ then by Lemma 2-(5)(6) $\psi_{n+1}(\lambda) = \psi_n(\lambda) \geq \psi_n(\tau) = \psi_{n+1}(\tau)$. If $\tau \geq \delta = 0 = 0$ then by Lemma 2-(8) $\psi_{n+1}(\lambda) = \psi_{n+1}(\tau)$. Finally if $\tau \geq \delta = 1$ then by lemma 2-(6) $\psi_{n+1}(\lambda) = \psi_n(\lambda) \geq \psi_n(\tau) = \psi_{n+1}(\tau)$.

Lemma 4. Let σ be an arbitrary string. If $\sigma \neq \Phi$ and $\sigma(|\sigma|-1)=0$, then

- (i) $\sigma*0$ and $\sigma*1*0$ are maximal strings at some stage, or
- (ii) $\sigma * 0$. $\sigma * 1 * 0 * 0$ and $\sigma * 1 * 1 * 0$ are maximal strings at some stage.

and if $\sigma=\Phi$, or $\sigma\neq\Phi$ and $\sigma(|\sigma|-1)=1$ then

- (iii) o*0 is a maximal string at some stage, or
- (iv) $\sigma*0*0$ and $\sigma*1*0$ are maximal strings at some stage.

So there is a maximal string λ at some stage with $\lambda \ge \sigma$.

<u>Proof.</u> We proceed by induction on the length of σ . First by the construction, 0 is a maximal string at stage 0. So the lemma holds for empty string. Let σ be an arbitrary string with $|\sigma| \ge 1$. If $|\sigma| \ge 2$ let $\sigma(|(\sigma)|) = i$.

If (1) $|\sigma|=1$, (2) $|\sigma|\geq 2$ and i=0, or (3) $|\sigma|\geq 2$, i=1 and (iii) holds for σ , then by the inductive hypothesis σ *0 is a maximal string at some stage s. Let $\delta=\sigma$ *0. If δ is a maximal string at stage t for any t\geqs, then for any t\geqs, σ_t is defined and $\sigma_t=\delta$ by Lemma 2-(10). So Sub $(\sigma_t,m_t)\leq \delta$. But if t\geq F(\delta) this is a contradiction to the assumption on F(\delta). So let t\s be the least stage such that δ is not a maximal string at stage t. Then by Lemma 2-(1),

- (A) $\delta=\tau_t$, and $\delta*0$, $\delta^**1*0*0$ and $\delta^**1*1*0$ are maximal strings at stage t, or
 - (B) $\delta * 0$ and $\delta * 1 * 0$ are maximal strings at stage t.

If (A) is the case and $\sigma=\sigma^**0(=\delta)$ then (ii) holds for σ . If (A) is the case and $\sigma=\sigma^**1(=\delta^**1)$ then (iv) holds for σ . If (B) is the case and $\sigma=\sigma^**0(=\delta)$ then (i) holds for σ . If (B) is the case and $\sigma=\sigma^**1(=\delta^**1)$ then (iii) holds for σ . In all cases, the lemma holds.

Next assume $|\sigma| \ge 2$, i=1 and (iv) holds for σ , i.e. $\sigma *0*0$ and $\sigma *1*0$ are maximal strings at some stage s. If $\sigma = \sigma *0$ then (i) holds for σ . If $\sigma = \sigma *1$ then (iii) holds for σ . In all cases the lemma holds. \square

Definition 3. We say that a string σ is almost Ψ_{s+1} -good at stage s+1 if for any maximal string δ at stage s with $\delta \geq \sigma$, there are maximal strings λ_0 , λ_1 at stage s+1 such that $\lambda_i \geq \sigma$ and $\Psi_{s+1}(\lambda_i) = \Psi_s(\delta) * i$ for each i.

Lemma 5. $\Psi(A)$ is total and n-generic.

<u>Proof.</u> Let σ be an arbitrary string. By Lemma 1 it suffices to show that σ is almost Ψ -good. By Lemma 4 let n be such that there is a maximal string λ at stage n with $\lambda > \sigma$. Let $x=\max\{F(\sigma),n\}$.

Let F be the set of strings τ such that $|\tau|=x$ and $\tau|\psi_{X}(\lambda)$ for any maximal string λ at stage x with $\lambda \geq \sigma$. Clearly F is finite. By Lemma 2-(3), $|\psi_{X}(\lambda)|=x$ for any maximal string λ at stage x. So any string μ of length x is either an element of F or $\mu=\psi(\lambda)$ for some maximal string λ at stage x. By Lemma 2-(1), for any v>x and any maximal string λ at stage v, $\psi_{V}(\lambda)=\psi_{V-1}(\lambda')*i$ for some i and maximal string λ' at stage v-1.

We first show that λ '> σ whenever λ > σ(*)

Assume $\lambda > \sigma$. (1) If $\lambda' = \sigma_V$ then $\lambda = \sigma_V$, so $\lambda' > \sigma$. (2) If $\lambda' = \tau_V$ then $\lambda = \lambda' * 0$. (λ') *1*0*0. or (λ') *1*1*0. (2-i) If $\lambda = \lambda' * 0$ then λ' and σ are compatible. As λ' is a maximal string at stage $V = 1 \ge X$, $\lambda' > \sigma$ by the assumption on X. (2-ii) If $\lambda = (\lambda') = 1 * 0 * 0$ or (λ') *1*1*0 then assume for a contradiction that $\lambda' > \sigma$. By the assumption on X. $\lambda' \neq \sigma$. As $\lambda' = (\lambda') = 0$ by Lemma 2-(2), $\sigma \ge (\lambda') = 1$. By Lemma 2-(3)(6). no string extending (λ') *1 is a maximal string at stage $V = 1 \ge X$. This is a contradiction to the assumption on X. (3) Otherwise $\lambda = \lambda' * 0$ or (λ') *1*0. If $\lambda = \lambda' * 0$ then the proof is exactly same as (2-ii). If $\lambda = (\lambda') = 1 * 0$ then the proof is exactly same as (2-ii).

If for some v>x, λ >0, and $\tau \in F$, $\Psi_{V}(\lambda) \ge \tau$ then let v be the least such stage. Further let λ ' be the least substring of λ such that $\Psi_{ij}(\lambda) = \Psi_{ij}(\lambda')$. Then by the construction and Lemma 2-(8), $\Psi_{v}(\lambda')$ is explicitly defined at stage v and λ' is a maximal string at stage v. Then by (*), $\Psi_{v}(\lambda')=\Psi_{v-1}(\delta)*i$ for some i and maximal string δ at stage v-1 with $\delta > \sigma$. By Lemma 2-(3), $|\psi_{v-1}(\delta)| = v-1 \ge x$, so $\psi_{v-1}(\delta) \ge \tau (\in F)$. By the assumption on v, v-1 = x. But this is a contradiction to the definition on F. Hence for any v > x. $\lambda > \sigma$, and $\tau \in F$, $\psi_v(\lambda) \geq \tau$. So it suffices to show that σ is almost Ψ_s -good at stage s for all s>x. Let s be an arbitrary number with $s \ge x$, and δ be an arbitrary maximal string at stage swith $\delta > \sigma$. If σ_{s+1} is defined at stage s+1 then Sub $(\sigma_{s+1}, m_{s+1}) \neq \sigma$ by the assumption on F(σ). (A) If $\delta = \sigma_{s+1}$ then, as $\sigma_{s+1} \ge \text{Sub}(\sigma_{s+1}, m_{s+1}), (\tau_{s+1}) \ge \text{Sub}(\sigma_{s+1}, m_{s+1}) \ge \sigma.$ Further by Lemma 2-(1), $\Psi_{s+1}(\delta) = \Psi_s(\delta) * 0$, $\Psi_{s+1}((\tau_{s+1}) - *1 * 0 * 0) = \Psi_s(\delta) * 1$, and δ and $(\tau_{s+1})^{-}*1*0*0$ are maximal strings at stage s+1. (B) If $\delta=\tau_{s+1}$ then by Lemma 2-(1), $\Psi_{S+1}(\delta*0)=\Psi_{S}(\delta)*0$, $\Psi_{S+1}(\delta-*1*1*0)=\Psi_{S}(\delta)*1$, and $\delta*0$ and $\delta*1*1*0$ are maximal strings at stage s+1. (C)

Otherwise by Lemma 2-(1), $\Psi_{s+1}(\delta*0)=\Psi_s(\delta)*0$, $\Psi_{s+1}(\delta^*1*0)=\Psi_s(\delta)*1$, and $\delta*0$ and δ^*1*0*0 are maximal strings at stage s+1. In all cases, σ is almost Ψ_{s+1} -good at stage s+1. \square

Lemma 6. $\Xi(\Psi(A))=A$.

<u>Proof.</u> It suffices to show that for any numbers s,k and any strings $\alpha.\sigma.$

- (1) if $\Psi_{S}(\alpha) \ge \sigma$ and $\Xi_{S}(\sigma)(k)=1$ then $\alpha(k)=1$, and
- (2) if $\alpha(k)=1$ then there is an extension 8 of $\alpha(k+1)$ such that $\Xi(\Psi(8))(k)=1$.
- (1) We proceed by induction on stage s. Assume $\Psi_S(\alpha) \ge \sigma$ and $\Xi_S(\sigma)(k)=1$. If $\Psi_{S-1}(\alpha) \ge \sigma$ then by Lemma 2-(14), $\Xi_{S-1}(\sigma)(k)=1$, so by the inductive hypothesis $\alpha(k)=1$. If $\Psi_{S-1}(\alpha) < \sigma$ then $\Psi_{S-1}(\alpha) < \Psi_S(\alpha)$. By Lemma 2-(12) let α_O be a maximal string at stage s such that $(\alpha_O)^-$ and α are compatible. If $(\alpha_O)^- \ge \alpha$ then by Lemma 2-(5) $\Psi_{S-1}(\alpha) = \Psi_S(\alpha)$, which is a contradiction. If $\alpha \ge (\alpha_O)^- *1$ then by Lemma 2-(6) $\Psi_{S-1}(\alpha) = \Psi_S(\alpha)$, also a contradiction. So $\alpha \ge (\alpha_O)^- *0 = \alpha_O$ by Lemma 2-(2)). Hence $|\Psi_S(\alpha)| = s$ and $|\Psi_{S-1}(\alpha)| = s-1$ by Lemma 2-(3)(8). So $\Psi_S(\alpha) = \sigma$ and $\Psi_{S-1}(\alpha) = \sigma^-$. If $\Xi_{S-1}(\sigma)(k) = 1$ then $\Xi_{S-1}(\sigma)(k) = \Xi_{S-1}(\Psi_{S-1}(\alpha))(k) = 1$ by Lemma 2-(13). So by the inductive hypothesis $\alpha(k)=1$. If $\Xi_{S-1}(\sigma)(k)$ is not defined then $\Xi_S(\sigma)(k)=1$ is explicitly defined at stage s and $\alpha_O(k)=1$ by Lemma 2-(13) and the fact that $\Psi_S(\alpha_O)=\sigma$. As $\alpha \ge \alpha_O$, $\alpha(k)=\alpha_O(k)=1$.
- (2) Assume $\alpha(k)=1$. By Lemma 4, let n be such that $\mathcal B$ is a maximal string at stage n for some $\mathcal B \ge \alpha[k+1]$. Then by Lemma 2-(9) $\Xi_n(\Psi_n(\mathcal B))(k)=1$.

Lemma 7. A is not recursive in $\Psi(A)$.

<u>Proof.</u> It suffices to show that $\Phi_n(\Psi(A)) \neq A$ for all n. Let n be an arbitrary number. Let R be a infinite recursive set of numbers such that $\Phi_n = \Phi_m$ whenever meR. Let m and δ be such that meR and $|\delta| = m$. By the 1-genericity of A it suffices to show that

- (1) for any $\lambda \ge \delta *0$, $\Phi_{m}(\Psi(\lambda))(m)$ is not defined, or
- (2) for some $\lambda \ge \delta + 1$, $\Phi_{m}(\Psi(\lambda))(m) = 0$.

Assume for a contradiction that for some $\lambda' \geq \delta * 0$, $\Phi_m(\Psi(\lambda))(m) = 0$ and there is no string $u \geq \delta * 1$ with $\Phi_m(\Psi(u))(m) = 0$. Let t' be such that $t' \geq \max\{F(\delta): |\delta| = m\}$ and $\Phi_m(\Psi_t, (\lambda'))(m) = 0$. By Lemma 4 let t and λ be such that $t \geq t'$, $\lambda \geq \lambda'$ and λ is a maximal string at stage t. Then λ needs m-attention at stage t+1, and m is the least such number by the assumption on t. So $Sub(\lambda, m) = \delta$ is m-satisfied at stage t+1 and $\Psi_{t+1}((\tau_{t+1}) = *1*0*0) \geq \Psi_t(\lambda) \geq \Psi_t(\lambda')$. Hence $\Phi_m(\Psi_{t+1}((\tau_{t+1}) = *1*0*0)(m) = 0$. But $(\tau_{n+1}) = *1*2Sub(\lambda', m)(=\delta)*1$. This is a contradiction. \square

Acknowledgement. I was very much helped by the referee. For our unintelligible context, he gave us a fine abstract motivation of the construction. I quoted it here with deeply thank.

References.

- [1] Chong, C. T., (1985) Minimal Degrees Recursive in 1-generic Degrees, preprint.
- [2] Chong, C. T. and Jockusch, C. G., (1983) Minimal Degrees and 1-generic Degrees below 0', in <u>Computation and Proof Theory</u>, Lecture Notes in Mathematics, vol 1104. Springer Verlag, Berlin, Heiderberg, New York, pp63--77.
- [3] Haught, C., (1986) The Degrees below a 1-generic Degree(0', Journal of Symbolic Logic, vol 51, pp770--777.
- [4] Jockusch, C. G., (1980) Degrees of Generic sets,

 Recursion Theory, Its Generalizations and Applications, London

 Mathematical Society Lecture Notes, Cambridge University Press,

 Cambridge, pp110--139.
- [5] Kumabe, M., (1986) A 1-generic Degree which bounds a Minimal Degree, preprint.
- [6] Lerman, M., (1983) <u>Degrees of Unsolvability</u>, Springer Verlag, Berlin, Heiderberg, New York.
- [7] Yates, C., E., M., (1976) Banach-Mazur games, Comeager Sets and Degrees of Unsolvability, Proc., of London Math., Soc.,