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Abstract

A modular Gr\"obner basis method for solving systems of algebraic equations is de-

scribed. Given equations with integer coefficients, the method calculates Gr\"obner basis over

$Z/(p_{i}),$ $i=1,$ $\ldots,$
$k$ , where $p_{1},$ $\ldots,$

$p_{k}$ are distinct primes, then it converts them to a Gr\"obner

basis over Q. By this method, we can perform the reduction of equations efficiently by

avoiding intermediate coefficient growth. Furthermore, a device to avoid unnecessary S-

polynomial construction is presented.
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\S 1. Introduction

After Buchberger’s invention of Gr\"obner basis construction algorithm [1], a drastic progress

has been accomplished for solving systems of algebraic equations $[2\sim 5]$ . Compared with the

conventional resultant method, Gr\"obner basis methods suppress the intermediate expression

growth strongly. However, computation of Gr\"obner basis is still time-consuming because of

the following two points: one is the intermediate coefficient growth and the other is the

construction of S-polynomials which are reduced to zero immediately. When calculating

Gr\"obner basis actually, we readily find very large-sized numbers in the basis polynomials

and even larger numbers in the intermediate polynomials. Furthermore, we can find that

considerable part of computation time is spent for the construction of S-polynomials which

are reduced to zero immediately. In fact, when solving a large-sized system of equations,

the computation time is mostly spent for the coefficient calculation and the construction of

zero-reduced S-polynomials.

When the coefficient domain is $Z$ (integer ring) or $Q$ (rational number field), the coeffi-

cient growth problem can be solved by utilizing modular arithmetic. In the case of Gr\"obner

basis construction, Trinks [6] presented a p-adic construction method in the context of solv-

ing algebraic equations, and Winkler [7] investigated the utilization of Hensel construction.

In this paper, we investigate a simpler modular method, $i.e.$ , the utilization of Chinese

remainder algorithm.

In \S 2, we describe a modular Gr\"obner basis algorithm grossly. The algorithm is elabo-

rated in \S 3, and several examples with timing data are presented in \S 4.

\S 2. Gross description of algorithm

We first define several notations. In the following, we consider that the polynomials are in

$K[x_{1}, \ldots, x_{n}]$ , with $K$ a number field.

Term $order\triangleright$ . Let $T_{i}=c_{i}x_{1}^{e:1}\cdots x_{n}^{e:}n$ be a monomial in $K[x_{1}, \ldots, x_{n}]$ , where $c_{i}\in K$. By

using the n-tuple $(e_{i1}, \ldots, e_{*n})$ , we can order the monomials in $K[x_{1}, \ldots, x_{n}]$ uniquely, and

we denote the order by $\triangleright$ . The $order\triangleright is$ such that if $T_{1}/c_{1}\neq T_{2}/c_{2}$ then either $T_{1}\triangleright T_{2}$ or
$T_{2}\triangleright T_{1}$ and if $T_{1}\triangleright T_{2}$ and $T_{2}\triangleright T_{3}$ then $T_{1}\triangleright T_{2}$ , for any $T_{1},$ $T_{2}$ and $T_{3}$ .
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Head term and head coefficient (abbreviated to $ht$ and $hc$ , respectively.) Let $P$ be a

polynomial. The highest order monomial, with respect $to\triangleright$ , of $P$ is called the head term

of $P$ and written as $ht(P)$ . Let $ht(P)=cx_{1}^{e_{1}}\cdots x_{n}^{e_{n}}$ , with $c\in K$ , then $c$ is called the head

coefficient of $P$ and written as $hc(P)$ .

$S$ -polynomial (abbreviated to Spol.) Given polynomials $P_{1}$ and $P_{2}$ , S-polynomial of $P_{1}$

and $P_{2}$ is defined by

Spol$(P_{1}, P_{2})= \frac{lcm}{ht(P_{1})}P_{1}-\frac{lcm}{ht(P_{2})}P_{2}$ , (1)

where $lcm=LCM(ht(P_{1}), ht(P_{2}))$ .

We also use the terms M-reduction and Grobner basis. For these terms and the

Gr\"obner basis construction algorithm, see [1].

Consider solving a system of algebraic equations

$\{F_{1}(x_{1}, \ldots, x_{n})=0, \ldots, F_{r}(x_{1}, \ldots, x_{n})=0\}$ , (2)

where $F_{i}\in Z[x_{1}, \ldots, x_{n}],$ $i=1,$ $\ldots,$
$r$ . Assuming that the ideal $(F_{1}, \ldots, F_{r})$ is zero-di-

mensional, $i.e.$ , the system (2) has finite solutions, we want to reduce (2) to the following

form

$\{G_{1}(x_{1})=0, G_{2}(x_{1}, x_{2})=0, \ldots, G_{n}(x_{1}, \ldots, x_{n})=0\}$ , (3)

where $G_{i}\in Q[x_{1}, \ldots, x_{i}],$ $i=1,$ $\ldots,$
$n$ , and all the roots of (2) are given by the roots of (3).

Note that, when (2) has no multiple roots, then (3) often has the following form.

$\{G_{1}(x_{1})=0, x_{2}-\tilde{G}_{2}(x_{1})=0, \ldots, x_{n}-\tilde{G}_{n}(x_{1})=0\}$ . (3)

As is well-known, the system (3) is the reduced Gr\"obner basis of the ideal $(F_{1}, \ldots, F_{r})$ with

the lexicographic term-order

$x_{n}\triangleright\ldots\triangleright x_{2}\triangleright x_{1}$ . ( $4\rangle$

Modular construction of Gr\"obner basis is quite simple in principle. Below, we give the

algorithm in a gross form.

3
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Modular Grobner basis construction [in a gross form].

Input: a set of polynomials $\{F_{1}, \ldots, F_{r}\}\in Z[x_{1}, \ldots , x_{n}]$;

a set of distinct primes $\{p_{1},p_{2}, \ldots \}$ ;

Output: a Gr\"obner basis $\Gamma=\{G_{1}, \ldots, G_{s}\}$ of $(F_{1}, \ldots, F_{r})$ ;

Step 1 [Gr\"obner basis in $Z/(p_{i})[x_{1},$
$\ldots,$

$x_{n}],$ $i=1,$ $\ldots,$
$k$]: For sufficiently many primes

$p_{1},$ $\ldots,p_{k}$ , calculate a reduced Gr\"obner basis

$\Gamma^{(i)}=\{G_{1}^{(i)}, \ldots, G_{s}^{(i)}\}$ in $Z/(p_{i})[x_{1}, \ldots, x_{n}],$ $i=1,$ $\ldots,$
$k$ ;

Step 2 [Gr\"obner basis in $Z/(p_{1}\cdots p_{k})[x_{1},$
$\ldots,$

$x_{n}]$ ]: By applying the Chinese remainder al-

gorithm, construct a Gr\"obner basis $\Gamma^{(0)}=\{G_{1}^{(0)}, \ldots, G_{s}^{(0)}\}$ such that
$\Gamma^{(0)}\equiv\Gamma^{(i)}$ (mod $p_{i}$ ), $i=1,$ $\ldots,$

$k$ ;

Step 3 [Gr\"obner basis in $Q/(p_{1}\ldots p_{k})[x_{1},$
$\ldots,$

$x_{n}]$ ]: Convert the integer coefficients in $\Gamma^{(0)}$

in. such a way that an integer $c$ is converted to a rational $a/b$ satisfying

$c\equiv a/b$ (mod $p_{1}\cdots p_{k}$ ) and $|a|,$ $|b|<\sqrt{p_{1}p_{k}}/2$;

Step 4 : Check that the basis constructed in Step 3 is actually the reduced Gr\"obner basis

in $Q[x_{1}, \ldots, x_{n}]$ . $0$

It is noted that every head coefficient of S-polynomial constructed through this algorithm

should be normalized to 1 in order to recover true Gr\"obner basis over $q[x_{1}, \ldots, x_{n}]$ .

\S 3. Detailed description of the algorithm

Now, we elaborate the algorithm presented grossly in \S 2.

3.1. The number of primes

We denote the Gr\"obner basis constructed in the above Step 3, $i.e.$ , a Gr\"obner basis in

$Q/(p_{1}\cdots p_{k})[x_{1}, \ldots, x_{n}]$ , by $\Gamma_{(p_{1}\cdots p_{k})}$ . We note that we have no method of knowing the

value of $k$ , the number of necessary primes, in advance of the computation, and we must

estimate $k$ by checking the Gr\"obner basis constructed. The estimation is done as foUows: if

$\Gamma_{(p_{1}\cdots p_{k})}=\Gamma_{(p_{1}\cdots p_{k}p_{k+1})}$ then $k$ is a desired value. (This does not mean that $k$ is a sufficient

value.) Therefore, we calculate $\Gamma_{(p_{1}\cdots pi)}$ after the construction of each $\Gamma^{(i)}$ .
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3.2. Integer interpolation

There are two algorithms for performing the above Step 2: the Newton interpolation for-

mula and the Lagrange interpolation formula. Since we calculate interpolations after the

construction of each basis $\Gamma^{(i)}$ , the Newton algorithm is apparently suited for our computa-

tion. The algorithm, in the form of being used iteratively, is as follows.

Newton interpolation algorithm [to be used iteratively.]

Input: a set of distinct primes $(p_{1}, \ldots,p_{i-1}, p_{i})$ ;

a set of interpolation coefficients $(v_{1}, \ldots, v_{i-1})$ ;

an $(i-1)st$ interpolation $u$ and the $i$ -th residue $u_{i}$ ;

Output: the i-th interpolation $u$ s.t. $u\equiv u_{j}$ (mod $p_{j}$ ), $j=1,$ $\ldots,$
$i$ ,

and the set of interpolation coefficients $(v_{1}, \ldots, v_{i-1}, v_{i})$ ;

(I1) if $i=1$ then $u:=v_{1}$ $:=u_{1}$ ; return $u$ and $(v_{1})$ ;

(I2) Calculate integers $w_{j},$ $j=1,$ $\ldots,$ $i-1,$ $s.t$ . $w_{j}p_{j}\equiv 1$ (mod $p_{i}$ );

(I3) Calculate $v_{i}$ as $v_{i}=(\cdots((u_{i}-v_{1})w_{1}-v_{2})w_{2}-\cdots-v_{i-1})w_{i-1}$ (mod $p_{i}$ );

(I4) return $u$ $:=u+v_{i}(p_{1}\cdots p_{i-1})$ and $(v_{1}, \ldots, v_{i-1}, v_{i})$ . $0$

3.3. Conversion to rationals

The conversion from integer to rational number modulo $p_{1}\cdots p_{k}$ is based on the following

well-known theorem:

Theorem [well-known]. Let $m,$ $A,$ $B\in N$ satisfying $2AB<m$ . For any $u\in Z$ , there exists

at most one rational number $a/b$ in the range-A $\leq a\leq A$ and $1\leq b\leq B$ , satisfying

$bu\equiv a$ (mod $m$), $GCD(a, b)=1$ . (5)

We use the theorem by setting $m=p_{1}\cdots p_{k}$ and $A=B=[\sqrt{m}/2]$ .

Given positive integers $m(=p_{1}\cdots p_{k})$ and $u$ , the following algorithm calculate a rational

number $a/b$ s.t. $a/b\equiv u$ (mod $m$).

Algorithm $CONV:INT2RAT$.
Input: $u$ , modulus $m$ , and $sqm=\sqrt{m}/2$, where $0<u<m$ ;

Output: integers $a$ and $b$ s.t. $a/b\equiv u$ (mod $m$), $-sqm<a<sqm,$ $0<b<sqm$ ;
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(R1) $a:=arrow(1,0, m);b:=arrow(0,1, u)$ ;

(R2) while $b_{3}\geq sqm$ do
$\{q:=a_{3}/b_{3;r}^{arrow}:=aarrow-q^{arrow}b^{arrow};a :=b;arrowarrow b:=r\sim\}$ ;

if $b_{3}=0$ then return NIL;

(R3) if $|b_{3}|<sqm$ then return $(a:=sign(b_{2})b_{3}, b:=|b_{2}|)$

else $b:=b^{\text{ゆ}}+a;arrowarrow$

if $b_{3}<sqm$ then goto (R3)

else return NIL. $0$

In the above algorithm, the following relations hold always.

$a_{1}m+a_{2}u:a_{3},$ $b_{1}m+b_{2}u=b_{3}$ .

In the while loop of (R2), the values of $a_{3}$ and $b_{3}$ decrease steadily and the values of $|a_{2}|$

and 1 $b_{2}|$ increase steadily. After the while loop. we have $b_{3}<\sqrt{m/2}$ and if $|b_{2}|<\sqrt{m/2}$

then we find the desired rational. if $|b_{2}|\geq\sqrt{m}/2$ then the value of $b_{3}$ has been decreased

too much. So, we increase the value of $b_{3}$ in (R3).

Note 1. If NIL is returned by $CONV:INT2RAT$ then it means that there is no rational $a/b$

satisfying (5) for modulus $m$ . Such a case may happen when $GCD(m, u)\neq 1$ . For a given

rational $a/b$, however, if $ub\equiv a$ (mod m) then we can recover $a/b$ from $u$ so far as $m$ is

sufficiently large.

Note 2. The iteration search in $(R3)$ step can be performed efficiently if we utilize a binary

splitting of the quotient $q$ .

6
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3.4. Unlucky primes

If a rational $a/b$ is such that $p_{i}$ divides $b$ then there is no image of $a/b$ in $Z/(p_{1}\cdots p_{i}\cdots p_{k})$ .

Therefore, if a numeric coefficient $a/b$ in a Gr\"obner basis over $Q$ is such that $p_{i}$ divides $b$

then the prime $p_{i}$ is not adequate as a modulus. We call such a prime unlucky. Since initial

polynomials are in $Z[x_{1}, \ldots, x_{n}]$ , the denominators of the coefficients in the Gr\"obner basis are

only factors of products of head coefficients of S-polynomials constructed (cf. Eq.(l). The

$M$-reduction does not introduce new denominator factors.) Hence, if the prime $p_{i}$ does

not divide the head coefficient of every S-polynomial constructed, then it is an adequate

modulus. We use word-size primes as $p_{1},p_{2},$ $\ldots$ , hence we encounter unlucky primes very

rarely.

3.5. History of basis construction process

In the actual computation of a Gr\"obner basis over $Z/(p)$ , we cannot see whether the head

term of an S-polynomial vanishes, so long as we compute the basis independently from other

basis over $Z/(p’),$ $p’\neq p$ . Therefore, we preserve the history of basis construction process.

The history is the following list:

HIST: $=((\# 11\neq 12ht(Spol(F_{\# 11}, F_{\# 12})))$ ,

$(\neq 21\neq 22ht(Spol(F_{\# 21}, F_{\# 22})))$ ,

$)$ . (6)

Here, Spol$(F_{\# 11}, F_{\# 12})$ is a non-zero S-polynomial constructed first, Spol$(F_{\# 21}, F_{\# 22})$ is a

non-zero S-polynomial constructed second, and so on.

The HIST is used as follows. We initialize HIST by the Gr\"obner basis construction for

the first prime $p_{1}$ . Next, consider the basis construction for the i-th prime $p_{i}$ , and suppose

we calculate $Sp^{(i,j)}=Spol(F_{\# j1}, F_{\# j2})$ , which is a non-zero S-polynomial constructed j-

th. Let $Sp^{(*,j)}=Spol(F_{\# j1}, F_{\# j2})$ saved in HIST. If $ht(Sp^{(i,j)})\triangleleft ht(Sp^{(*,j)})$ then $p_{i}$ is

an unlucky prime hence we discard the $p_{i}$ . If $ht(Sp^{(i,j)})\triangleright ht(Sp^{(*,j)})$ then all the primes

$p_{1},$ $\ldots,p_{i-1}$ are unlucky and we initialize HIST by the basis construction for the prime $p_{i}$ .

7
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3.6. Avoiding zero-reduced S-polynomial construction

As we have mentioned in \S 1, in the construction of Gr\"obner basis of many elements, most

computation time is spent to construct S-polynomials which are reduced to zero immediately.

Using the HIST defined above, we can avoid such zero-reduced S-polynomial construction

for many primes, reducing the computation time largely.

The method is as follows. We construct HIST by the basis construction process for the

first several primes, say $p_{1},$ $p_{2}$ and $p_{3}.\cdot$ The HIST thus constructed will be almost valid and,

for the rest primes ($p_{4},$ $p_{5},$ $\ldots$ , in this case), we construct only the S-polynomials registered

in HIST sequentially.

3.7. Correctness check in $Q[x_{1}, \ldots, x_{n}]$

The correctness check of the basis constructed ( $i.e.$ , Step 4 of the gross algorithm in \S 2) is

performed by showing that Spol$(G_{i}, G_{j})$ is M-reduced to $0$ by $\Gamma_{(p_{1}\cdots p_{k})}$ for any pair $(G_{i}, G_{j})$

in $\Gamma_{(p_{1}\cdots p_{k})}$ , and that each $F_{*}$. in (2) is M-reduced to $0$ by $\Gamma_{(p_{1}\cdots p_{k})}$ . This check is not always

done quickly because we must handle the large-sized coefficients exactly. Fortunately, the

Gr\"obner basis we are calculating is of the form (3’) or similar to (3’), and the basis elements

are quite suited for performing the check quickly. For example, if $GCD(ht(G_{i}), ht(G_{j}))=1$

(or a number) then we may skip the check for Spol$(G_{i}, G_{j})$ .

3.8. On the term $order\triangleright$

So far, the $term- order\triangleright is$ assumed to be the lexicographic order. If, however, the reduced

Gr\"obner basis is of the form (3’), we can choose another term-order to perform the basis

construction efficiently (see [8].) The order is as follows:

$\{total$

-degree
$order_{x^{f_{n^{O}}r..x_{2}},x_{2}\triangleright x_{1}^{x_{n}}}.$

’

In the actual implementation of the modular Gr\"obner basis method, we had better

test this order first. If we find that the basis is not of the form (3’) then we apply the

lexicographic order.

8
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3.9. Algorithm

Summarizing the above discussions, we have the following algorithm.

Modular Grobner basis construction [in a elaborated form].

Input: a set of polynomials $\mathcal{F}=\{F_{1}, \ldots, F_{r}\}\in Z[x_{1}, \ldots, x_{n}]$ ;

a set of distinct primes $\mathcal{P}$ ;

Output: a Gr\"obner basis $\Gamma=\{G_{1}, \ldots, G_{s}\}$ of $(F_{1}, \ldots, F_{r})$ ;

(T1) take out a prime from $\mathcal{P}$ and set it to $p_{1}$ ;

(T2) calculate a reduced Grobner basis over $Z/(p_{1})$ and set it to $\Gamma^{(1)}$ and $\Gamma^{(0)}$ ,
and make $a$ HIST newly;

(T3) convert coefficients of $\Gamma^{(0)}$ to rationals by algorithm $CONV:INT2RAT$

and set the result to $\Gamma_{(p_{1})}$ ;

(T4) $i:=2$ ;

(T5) take out a prime from $\mathcal{P}$ and set it to $p_{i}$ ;

(T6) calculate a reduced Grobner basis over $Z/(p_{i})$ and set it to $\Gamma^{(i)}$

comparing calculated S-polynomials with HIST,

when comparing S-polynomials with HIST,

if $ht(Sp^{(i,j)})\triangleleft(Sp^{(*,j)})$

then {quit calculation of $\Gamma^{(i)}$ ; goto (T5)};

if $ht(Sp^{(i,j)})\triangleright(Sp^{(*,j)})$

then {continue calculation of $\Gamma^{(i)}$ ; renew HIST henceforce;
$\Gamma^{(1)}:=\Gamma^{(i)}$ ; $p_{1}:=p_{i};i:=2$ ; goto (T5)};

(T7) construct new $\Gamma^{(0)}$ from $\Gamma^{(i)}$ and old $\Gamma^{(0)}$

by Newton interpolation algorithm;

(T8) convert coefficients of $\Gamma^{(0)}$ to rationals by algorithm $CONV:INT2RAT$

and set the result to $\Gamma_{(p_{1}\cdots p:)}$ ;

(T9) if $\Gamma_{(p_{1}\cdots p:)}\neq\Gamma_{(\cdots)}p_{1P:-1}c$ then { $i:=i+1$ ; goto (T5)};

if $\Gamma_{(p_{1}\cdots p_{*}\cdot)}$ is really a Grobner basis over $Q[x_{1}, \ldots, x_{n}]$

then return$(\Gamma_{(p_{1}\cdots p)}:)$

else { $i:=i+1$ ; goto (T5)};

9



16

\S 4. Empirical study

We have inplemented the above-mentioned algorithm on the algebra system GAL and stud-

ied the effectiveness of the algorithm by the following three examples.

Example 1. (Klein’s equation)

$P_{1}=(x_{1}^{6}+x_{2}^{6})+522(x_{1}^{5}x_{2}-x_{1}x_{2}^{5})-10005(x_{1}^{4}x_{2}^{2}+x_{1}^{2}x2^{4})-u_{1}=0$,

$P_{2}=-(x_{1}^{4}+x_{2}^{4})+228(x_{1}^{3}x_{2}-x_{1}x_{2}^{3})-494x_{1}^{2}x_{2}^{2}-u_{2}=0$ ,
$P_{3}=x_{1}x_{2}(x_{1}^{2}+11x_{1}x_{2}-x_{2}^{2})^{5}-u_{3}=0$ .

We calculate the reduced Gr\"obner basis of $(P_{1}, P_{2}, P_{3})$ with the ordering $x_{1},$ $x_{2}\triangleright u_{1},$ $u_{2},$ $u_{3}$ ,

where total-degree order is assumed for $\{x_{1}, x_{2}\}$ and $\{u_{1}, u_{2}, u_{3}\}$ , respectively.

Example 2. (Katsura’s equation #3)
$P_{1}=2(x_{4}^{2}+x_{3}^{2}+x_{2}^{2})+x_{1}^{2}-x_{1}=0$,

$P_{2}=2(x_{4}x_{3}+x_{3}x_{2}+x_{2}x_{1})-x_{2}=0$,

$P_{3}=2(x_{4}x_{2}+x_{3}x_{1})+x_{2}^{2}-x_{3}=0$ ,

$P_{4}=2(x_{4}+x_{3}+x_{2})+x_{1}-1=0$ .

We calculate the reduced Gr\"obner basis of $(P_{1}, P_{2}, P_{3}, P_{4})$ with the ordering $x_{4},$ $x_{3},$ $x_{2}\triangleright x_{1}$ ,

where the total-degree order is assumed for $\{x_{2}, x_{3}, x_{4}\}$ . The result is of form (3’).

Example 3. (Katsura’s equation #4)
$P_{1}=2(x_{5}^{2}+x_{4}^{2}+x_{3}^{2}+x_{2}^{2})+x_{1}^{2}-x_{1}=0$ ,

$P_{2}=2(x_{5}x_{4}+x_{4}x_{3}+x_{3}x_{2}+x_{2}x_{1})-x_{2}=0$ ,

$P_{3}=2(x_{5}x_{3}+x_{4}x_{2}+x_{3}x_{1})+x_{2}^{2}-x_{3}=0$ ,

$P_{4}=2(\acute{x}_{5}x_{2}+x_{4}x_{1}+x_{3}x_{2})-x_{4}=0$ ,

$P_{5}=2(x_{5}+x_{4}+x_{3}+x_{2})+x_{1}-1=0$ .

We calculate the reduced Gr\"obner basis of $(P_{1}, \ldots, P_{5})$ similarly as Example 2. The result

is of form (3’).

Table 1 shows a comparison of three algorithms: algorithm $C$ is the conventional one based

on the rational arithmetic; Ml and M2 are modular algorithms, where Ml does not utilize

the HIST while M2 does. We used primes of order $10^{6}$ , and we have encountered no unlucky

primes in our test.

The number for $k$ in Table 1 shows the size of coefficients (rationals in this case) of the

10
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Table 1. Comparison of modular algorithm (Ml &M2) and conventional

algorithm(C). Timing data are in mili-seconds on a FACOM-780

computer. ( $k$ is the number of primes used in each computation.)

basis polynomials obtained. Example 1 is a “small-sized” problem for which the intermediate

coefficient growth is quite weak, and the modular method is not effective for this case.

Example 2 causes a “weak” intermediate coefficient growth, hence the modular method is not

bad compared with the conventional method although the Gr\"obner basis is calculated for five

distinct primes. Example 3 causes a “strong” intermediate coefficient growth, and we find

the modular method is actually quite effective for such problems. Furthermore, comparison

of algorithms Ml and M2 indicates that the most time-consuming part of our algorithm

is not the calculation of many zero-reduced polynomials over $Z/(p)$ but the arithmetic of

long numbers. Hence, any improvement for reducing the size of long numbers handled is

obviously desirable. Our current program is not tuned up yet and we promise particular

improvement shall speed up performance by about three times faster than current timing

data show.

11
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