goooboooogn
O 646 O 19885D2 52-73

Four New Algorithms for Multivariate Polynomial GCD

TERARE

Tateaki Sasaki

HAEE
Masayuki Suzuki

The Institute of Physical and Chemical Research

2-1, Hirosawa, Wako-shi, Saitama 351-01, Japan

ABSTRACT

Four new algorithms for multivariate polynomial GCD (greatest
common divisor) are given. The first is a simple improvement of PRS
(polynomial remainder sequence) algorithms. The second is to calculate
a Groebner basis with a certain term ordering. The third is to calculate
subresultant by treating the coefficients as truncated power series. The
fourth is to calculate PRS by treating the coefficients as truncated poévcr
series. The first and second algorithms are not important practically, but
the third and fourth ones are quite efficient and seem to be useful practi-

cally.

1. Introduction

Study of algorithm for multivariate polynomial GCD (greatest common divisor)

has a long history. The idea of generalizing Euclidean algorithm for integer _GCD to

polynomial GCD has appeared in as early as 16th century. However, Collin’s study
[1] will be the first modern analysis of the Euclidean algorithm for multivariate poly-
nomial GCD. Collin’s algorithm, or the reduced-PRS algorithm, was soon improved
to the subresultant-PRS algon'thm by Brown and Traub [2,3]. Anocther improvement
of the Euclidean algorithm is Hearn’s trial-division algorithm [4] which is practically
efficient. For the GCD computation, modular algorithms are very importan‘t. Brown’s
algorithm [5] will be the first modular GCD algorithm. Subsequently, Moses and Yun
proposed the so-called EZGCD algcsrithm [6,7]. This algorithm utilizes the general-
ized Hensel construction and will be the best algorithm for large multivariate polyno-
mials. For very sparse multivariate polynomials, Zippel’s sparse modular algorithm is
efficient [8]. Yet another modular algorithm has been proposed by Char, Geddes and
Gonnet [9]. This algorithm uses the integer GCD computation. Furthermore, an algo-

rithm using Grobner basis has been proposed by Gianni and Trager [10].

Since the GCD computation is one of the most important operations in computer
algebra, we should search for the most efficient algorithm. In this paper, we propose
four new algorithms for multivariate GCD. These algorithms are based on simple
idcas.r ’Iﬁe first one is a simple improvement of PRS (polynomial remainder sequence)
algorithms. The second one calculates a Grobner basis with a certain term ordering,
but it is different from Gianni-Trager’s algorithm. In the third and fourth algorithms,
we treat the coefficients of polynomials as truncated power series. This device allows
us to develop veryk efficient GCD algorithms for multivariate polynomials. Since the
underlying ideas and the algorithms are very simple, we think that algorithms using

truncated power series will quite useful in actual computation.

We use the following notations in this paper.

deg(P) : degree (w.r.t. variable x) of polynomial P;

Ie(P) : leading coefficient (w.r.t. variable x) of P;

53

o4

pp(P) : primitive part (w.r.t. variable x) of P;
cont(P) : GCD of the coefficients (w.r.t. variable x) of P;
Py, Py : polynomials in K [x,y,...,z] with K a number field, ;

we assume that P, and P, are primitive.

2. An improvement of PRS algorithms

Let Py and P, be primitive polynomials in K[x, ¥,..,, z], with the main-variable

x, and represent them as

Pi=a,x™ +a, x" '+ - - +ag a,#0,
1
Pay=pb,x" +b,_x" 1+ --+ +bhy 570, (?

where we assume m2n. We define the polynomial SU) as
s =Dj(i)xj+ng2xj‘l+ oo +D§), ‘ ‘ 2)

where D;¥), i=j,j—1,...,0, are the following determinants:

| V |
4 %m Gpa T T T @i Giyjilon |
: Gn G- "0 0T @2ja3n Gigjizen : N3 rous
I ‘ ‘ |
l a L] a. a l
: m +1 i

D)= | - | 3
1o bpg oo 0t bojua g bijam 1S
I : \ S
| by by 0 bojuzom Disjaam | |
l . |J

Here, we mean g; = b; =0 if i<0. The S is the j-th order subresultant of P; and
P,, and deg(S U)) is usually j. |
Theorem 1. Let deg(GCD(P,, P5)) =d and g = GCD(Ic(P), 1c(P3)). Then,

g | D, i=j-1,..0, |)
DM/ g1|D@®, i=d-1,.0. ®)

Proof: Expanding the determinant in Eq.(3) w.ur.t. the first column, we see

GCD(a,,, b,)!D;Y). This proves (4). Next, we note that S/ is a multiple of

G = GCD(P, P,) (see, for example, [2]). Sinée 1c(G)]‘g, [g /1c(G)HIG is a multi-

ple of G and S@ /DS 1 g1 =g /1c(G))G. vThis proves (5). O |
Every PRS algorithm for GCD calculates a PRS

‘(Pl’ Pz, ey Pk:—‘O, Pk+1=0)‘ (6)

Then, pp(Py) = GCD(P, P,). The sizes of coefficients of P, will often very large
and computation of pp(P;) is time-consuming. The algorithm to be given in this sec-
tion is a device to calculate pp(P,) efficiently.

- When P, is equal to or a multiple of subresultant S@ Theorem 1 tells that we

can remove the factor lc(P;) / g from P. The resulting polynomial
P =P, I[lcP)/g] : ‘ (7

will have the coefficients of much smaller sizes than those of P, because lc(P) =g.
This device is applicable to feduced—PRS algoﬁthm [1] and subresultant-PRS algorithm

[3]. When P, is not equal to or multipie of §@), we c’an calculate P by the formula
P =gP, I 1c(Py). ' (8)
This device is applicable, for example, to the trial-division algorithm [4]. Note that

the P’s defined by Eqgs.(7) and (8) are the same. Thus, we have the following algo-

rithm which is applicable to any PRS algorithm.

Algorithm 1 (improvement of PRS a;goﬁdlms). _
Step 1. Calculate a PRS (P, Py, ..., P20, P;1=0) and
if deg(P,) = O then return 1;

Step 2. Calculate g = GCD(Ic(P), 1c(P3)) and-
if g llc(Py) then P « P, /[lc(P,)/ g]else P « gP; I Ic(Py);

3

56

Step 3. Return pp(f’). O
Although this algorithm is rather trivial, we have described it because it plays some
roles in other algorithms given in this paper. |

Let us briefly mention abdut the computation of pp(P,), Py = Cyx?¢ + C,_yx?7!
+ -+ +Cy where Cy, .., Cy are large-sized polynomials. Suppose we calculate

cont(P,) as
cont(P;) = GCD(Cy, GCD(- - -, GCD(Cy_y, Cy) = -+).

Then, if cont(P;) = C,; or cont(Pk) = C4_1, we can calculate cont(P,) easily by per-
forming the trial-division of C by D in the éalculation of GCD(C, D). In such cases,
our device in Algorithm 1 is not useful. However, if cont(P,)= C,/ C; =
Cyq!Cyq, with C; #1 and C,_; # 1, then Algorithm 1 improves any PRS algo-
rithms except for the primitive PRS algorithm, so long as the computation of g is not

costly. When the PRS is already primitive, the above Steps 2 and 3 are unnecessary

‘and we had better apply our device to construct the primitive PRS. That is, after cal-

culating P;,, as the pseudo-remainder of P;_; and P;, we make the trial-division of
gP;,; by lc(P;,;) and if the division succeeds then we calculate P, as

Piy = pP(gPisy 1 1c(Py).

3. Grobner basis method

Gianni and Trager proposed a method of using Grobner basis for multivariate
GCD computation [10]. For Grobner basis, see [11]. We propose another algorithm in
this section. Our algorithm calculatesv a Grobner basis of the ideal (P, P, in
Kly,...z][x], i.e.,, we regard P, and P, és polynomials in variable x with coefficients
in K[y,.,z]. (The Grobner basis in K[y,....z][x] is equivalent to Grobner basis in
Kl[x,y,..z] with the variable ordering x >y, .., z. The term ordering in K{[y,...,z]

may be arbitrary.)

Theorem 2. Let a Grobner basis of the ideal (P, P;) in K[y,...z][x] be
I'={P, Py ..,P}. Let deg(P;)=d;,i =1,..,s, and d;, be the minimum value
among {d;, d,, ..., d;}. Then, there exists a polynomial C, CeK[y,...,z], such that
P, = C-GCD(P,, P.). | | |
Proof: Put G = GCD(P,, P,). The ideal (P,, Pz)v'm K(y,...,z)[x] is a principal ideal
(G). Since [ideal (P, Py in K[y,...z][x]] c [ideal(P,, P,) in K(¥,....2)[x]] = (G),
there exists a polynomial C,C € K [y,.‘..,z]{x}, such that Pk = CG. On the other
hand, there exist polynomials A and B, A, BeK(y,...,)[x], such that G = AP +BP,,.
Multiplying C = LCM(denominators of A and B) to this equation, we see that
CGelideal Py, Py) in K[y,..,z][x]]. Since deg(CG) = deg(G) and CG must be M-
reduced to O by I", deg(P;) < deg(CG) = deg(G). Hence, CeK[y,...,z]. D

The above theorem gives us the following GCD algorithm.

Algorithm 2 (Grobner basis method).

Step 1. Calculate a Grobner basis I' = {Py, P, ..., Py} of the ideal (P, P;) in
Kly,..z1[x]; | |

Step2. Let P, bea rmmmum degree element, w.r.t. x, of I and

if deg(P;) = O then return 1 else return pp(Py). O

(Note) In the calculation of pp(P;) in Step 2, we can use the method given in the pre-
vious section. |

Example 1.

Pi=(-y +2z)((2y +z)x —y2+2y —32),
Py=(x —y +22) ((y +22)x — 3y +2z2).

The Grobner basis of (P, Po) in Q[y, z][x], with term-degree order for terms in

Qly, z], is calculated as {P3, P{ — 2P,, P,}, where

Py=03+2y% - 8y? + dyz2 - 4yz + 223 + 622

57

58

+ (—y4 + 8y3 - 12y22 + 6yz3 - 14yz2 +4z% + 1223).
The lowest degree element of the basis is P 3, and we obtain

GCD(P, Py) =pp(P3)=x —y +2z.0
From the viewpoint of variable elimination, the Grobner basis method is similar
to the PRS method: the former applies the head term elimination, and the latter applies
the leading term elimination, see [12]. However, the PRS method causes intermediate
expression growth: in the calculation of the pseudo-remainder, we multiply a power of
leading coefficient of the divisor and we factor out it later. The Grobner basis method
does not cause this kind of expression growth, but it generate a number of polynomials

and the reduction procedure is time-consuming.

The calculation of Grobner basis in Algorithm 2 is averagically most efficient if
we adopt the term-degree order for the terms in K [y,...,z]. Furthermore, if we know
the value of d = deg(GCD(P, P,)) , then we may stop the Grobner basis construction
when a polynomial of degree d is constructed. Thesé: devices will make the Algo-
rithm 2 quite'efﬁcient compared with the original version. However, our experience
shows that the Grobner basis method is quite inefficient when the sizes of P, and P,
are large. This low efficiency can be understood by the fact that the lowest degree
element P, in T is a polynomial of almost the same size as S@)(P,, P,), the subresul-
tant of the d-th order. Hence, the Grobner basis method is not much more efficient

than the subresultant PRS method.

4. Terminology about truncated power series

We use the truncated power series in our third and fourth algorithms, hence we
introduce some terminology about the truncated power series and derive a useful

degree bounds. We denote the power series ring in the variables y, ..,z by

€,

K{y,...z}, where K is a coefficient field. By the term-degree of T = cy® - - 2%,

with ceX, we mean e, + - - +¢,. We impose the reverse term-degree order > for

z*

the terms in the power series. Hence, 1>y > -+ >z >y%2> --+ >yz > -

25935 oo,

>z
The addition and multiplication of truncated power series are the same as those
for polynomials, except for the cutoff of terms whose term-degrees and variable

exponents are higher than some predetermined values. With the reverse term-degree

order >, the division of power series is performed as follows.

Division of power series. LetA,B,C € K{y, --,z}. We express A as

A :A(a)+A(a*1)+A(G+2)+ e

where A@) denotes the terms of term-degree d of A. Similérly, we define B@) and
C@. Let A =B-C, then we calculate the quotient C = C@™®) 4+ Cc@2+h 4 ... py
the power series division of A and B as follows. First, since 4@ = B®IC@D) e
calculate C@~®) by the polynomial division of A@) by B®):
A=C@DB®) L p+h 4 ...
+ [A@H) _ clab)pbi)y | 4@ _ cla-b)p®+d] 4 ...
Second, we calculate C©@2*D by the polynomial division of [A@*D) — Cla=b)gd+ly

by B®), and continue this procedure. O

Definition 1 [exponent range and term-degree range]. Let

C = Y ¢;v®x(monomial not containing v), ¢;€K.
i=1 :

We define the exponent range of the variable v of C, abbreviated to ran, (C), as
ran, (C) = (€ i €max) Where epn = MIN(e; |i=1,2,--+ } and e, =
MAX({e; | i=1,2, - - - }. Similarly, we define the term-degree range of C, abbreviated
to tran(C), as tran(C) = (E nin» Emax) Where E i (E o) is the minimum (maximum)
term-degree of C. O ‘

Example. For C = y+2y+3yz —y3-3yz %43y —4y222+5yz3, we have ran, (C) = (1, 3),
ran, (C) = (0, 3), and tran(C) = (1, 4).

59

60

Lemma 1. For polynomials/finite power series C; and C,, we have

ran, (Cy, Cp) =ran,(C;) + ran, (C,),

wan(Cy, Co) = tran(C) + tan(C), ©
where we define the addition of numeric lists as (mq, ny)+Hmg, ny) =
(my+mo, nytny).

Proof: Obvious. O

Definition 2 ([significant terms}. Let CeK {y,..,z} and tan(C) = (E, some). We
define (E, &,, ..., &,) significant terms of C to be the terms of C such that the term-
degree is in the range (E, E+E) and, for each variable v € {y,.., z }, the v-exponent
is in the range (0, E+é&,). We use the same terminology for P € K {y, ..., z }[x] also,

where tran and ran are defined for the coefficients of P. O

Example. For C = y+2y2+3yz—y3-3yz243y3:4y?%; 245y23, the (2,1, 2) significant

terms of C are
y + 2y? + 3yz — 3yz2.0

(Note) Among the bounds (E, €ys s €,), the term-degree bound E is the strongest
because we assumed the reverse term-degree order. Hence, if &, = E then we may

omit the exponent bound for the variable v.

Lemma2. Let Cy, C,, D be in K{y,.,z} and satisfy C;=C,D. Let
tran(D) = (E;, E,) and ran, (D) = (some, e,), v =Y, .., z. Then, in order to calcu:
late D from C; and C, by the power series division, we need only the
(Ey —Ej, ey —E ," -, e, — Ep) significant terms of C;, i=1,2.

Proof: Obvious from the above division operation for power series. O

Lemma 3. For P, and P, in K {y, ..., z}[x], put G = GCD(P,, P,). Let

E = maximum term—degree of the coefficient terms of G,

E; = maximum term—degree of the coefficient terms of P;
E,-' = maximum term—degree of the terms of lc(P;),
E" = maximum term—degree of the terms of 1c(G).

Furthermore, for each variable v in {y, .., z}, let

e, = maximum v —exponent of the coefficient terms of G,
e,; = maximum v—exponent of the coefficient terms of P;
ev} = maximum v—exponent of the terms of lc(P;),
e, = maximum v—exponent of the terms of 1c(G).

Then, we have

E < MIN{E;-E;+E " | i=1,2}, (10)
e, < NHN{evi—ev;"*'evH | i=1,2}. (11)

Proof: Let the maximum term-degree of the terms of lc(P; / G) =1c(P;) / 1c(G) be
E;, then E; = E;—E". Since

[term—degree of G] = [term—degree of P;] — [term—degree of (P; / G)]
< E; — [term—degree of Ic(P; / G)],

we obtain (10). Similarly, we can derive an.o

Note that Lemma 3 is useless in actual GCD computation because we do not

know Ic(G) in advance. However, the following Lemma 4 is useful.

Lemma 4. For P; and P, in K{y,.,z}[x}, put G =GCD(P, Py), g =
GCD(Ic(P), le(Pp), Y=g /1¢(G), and P =17G. Let

E = maximum term—degree of the coefficient terms of P,

E; = maximum term—degree of the coef ficient terms of P;

E,-' = maximum term—degree of the terms of Ic(P;),
E” = maximum termi—degree of the terms of g.

Furthermore, for each variable v in {y, ..., z}, let

e, = maximum v —exponent of the coefficient terms of P,
e,; = maximum v—exponent of the coefficient terms of P;

61

62

e,; = maximum v—exponent of the terms of lc(P;),

e, = maximum v—exponent of the terms of g.

Then, we have

E < MIN(E;-E;+E | i=1,2}, (12)
e, < MIN{e,;—e,.+e, |i=1,2}. (13)

Proof: Let the maximum term-degrees of the terms of ¥ and lc(y P; / P) be & and E;,
respectively. Then E; =& + E;' = E because Ic(yP; / P) =y 1c(P;)/ g. Since
[term—degree of yP;] = [term—degree of Pl+ [term—degree of YP; / 15]
> E + [term—degree of Ic(yP; / P)]
=FE +E;,
we obtain &€ + E; 2 E +E; =E +& + E; —E_. This proves (12). Similarly, we can
derive (13). 0 |
Our algorithms require only rational arithmetic of power series. We have no
problem in the multiplication and division of power series, but the addition and sub-
traction may cause a problem which we call "accuracy decreasing problem". Suppose
we add power series P; and P, such that tran(P) = tran(P,) = (E;, E;) and obtain
the result P = P;+P, such that ran(?) = (E;+1, E,). Then, we cannot use P any

more for the calculation up to (E,—E;, - - -) significant terms.

5. Subresultant method with power series coefficient

Suppose we know the value of 4 = deg(GCD(P, P,)). We can use a modular
algorithm to calculate d cheaply: calculate GCD(P(x, ny, ..., n,), Py(x, Ny, oeos n,))
for several sets of numbers (ny, ..., n,) and set d to the lowest degree of the GCD’s
calculated.) Then, we can construct the subresultant S, see Egs.(2) and (3), by cal-
culating the determinants D‘-(d), i=d,d-1,...,0, defined by Eq.(3), and we can obtain
G = GCD(P,, P,) as G = pp(S)). This method has been known for long years, but

it is practically not efficient.

In 2, we have seen that g = GCD(lc(P,), Ic(P,)) divides (S @) and
P =59/ s/ g] (14

is a multiple of G, hence G = pp(P). Representing P as

P o=gux@+g x@7 - gy, (15)

we see that (for D;U) below, see Egs.(2) and (3))
g84=8, 8 =D/ [D /gl i=d-1,.0. (16)

Egs.(15) and (16) show that what we need are g, and g;, i=d-1,..,0, and not Df}d)
and D;®) themselves. The sizes of g;, i=d,...,0, are usually much smaller than those
of D4 and D). The calculation of g; by Eq.(16) does not require all the terms of
D® and D/’ but we need only some higher exponent terms (or lower exponent
terms). Exploiting this fact, we may discard the unnecessary terms in the calculation
of determinants D /%) and D4, which will make the calculation fairly efficient. We
discard the unnecessary terms systematically by treating the coefficients of P; and P,

as truncated power series.

Let E, €y5 s € be defined as in Lemma 4. Lemma 2 and 4 show that, in order
to calculate P, we have only to calculate the determinants D;), i=d,d-1,...,0, up to

(E, €ys s e,) significant terms. Note that, since P, and P, are primitive, we have

ran, (P;) = (0, some), i=12,
ran, (G) = (0, some), a7

for each variable v € {y, ..., z}. Thus, we obtain the following algorithm.

Algorithm 3 (subresultant method with power series coefficient).

Step 1. Estimate d = deg(GCD(P,, P,)) by a modular method (hence, the estimated
value is an upper bound);
Ifd =0 then return 1

else g «GCD(c(P 1), Ic(P,)),

72

63

64

E «MIN(E;-E; +E | i=12},
e, ~MIN(e;—e +e, |i=12}, v € {y, ...z},
where E; etc. are defined in Lemma 4;
Step 2. Construct determinants D;(d), i=d,d-1,..,0, of the d-th order subresultant
S@ cf. Eqgs.(2) and (3), and calculate the determinants D,-(d) up to the

(E, ey, .., €;) significant terms for (y, ..., 2);

- d
Step 3. Calculate P = Ex‘D,-(“') I DS/ g] up to the (E, ey, ..., ;) significant
i=0

terms, and G « pp(ﬁ);
Step4. If G |P, and G | P, then return G

else d < d-1, and goto Step 2. O

(Note) In Appendix A, we give a method for calculating the determinants D).
Example 2.

Py=yx*+ (=y%yz + 2y+z)x® + (292 = 2yz — 2% +y + 2)x?
+ (y3 + yzz - y2 - 22)x + (yz""+z3 —- 29,

Py=zx*+ (=yz =22+ z = 3)x> + (dy + 3z — 3)x?
(2 —yz +2y —z)x + (2 + 22 +y - 2).
We see g = GCD(c(P,), le(P,)) = GCD(y, z) = 1. Furthermore, ran, Pp=(,3),
ranz(Pl) = (Oa 3)’ m(Pl) = (1, 3)’ ra-ny (PZ) = (0’ 2)’ ranz(PQ = (O? 2): tran(PZJ =
(0, 2). Hence,
ey =MIN{3-1+4+0,2-0+0} =2,
e, =MIN{3-0+0,2-1+0} =1,
E=MIN{3-1+4+0,2-1+0}=1.
Therefore, we have only to calculate the subresultant up to (1, 1, 1) significant terms.
Suppose we found that deg(G) = 1 by a modular method, so we calculate D {) and

Dél) up to (1, 1, 1) significant terms. The result is

65

DY =3y’ - 24y3z + 48yz%)
+ (-3y*? - 8y2z* + 16yz> + 1629)
+ (terms of term—degree=7),

DV = (3y° - 24y32% + 48yz%)
+ (=3y% — 3y°z + 21y%z2 + 24y323 - 56y%z* - 32;2 + 16z 6)
+ (terms of term—degree>7).

Calculating DV /DM up to (1, 1, 1) significant terms, we find
D IDM =1 -y —~z) + (terms of term—degree>2).
'i‘herefore, we have P = 1x + (1 —y ~ z) as a multiple of GCD. Since P is already
primitive, we have
G=ppP)=x+(1-y—2z).0
Example 3.

Py=y—-y+1,z-z -1](P,in Example 1),
Py =[y-y +1,z-z — 1] (P, in Example 1).

In this case also, we have only to calculate the subresultant up to (1, 1, 1) significant
terms, but the calculation is much simpler than that in Example 1 because each

coefficient of P, and P, contains a constant term. We have

DY =23 -38y — 149z + (terms of term—degree>2),
D§V =23 - 61y — 172z + (terms of term—degree>2).

After the power-series division of Dél) by D 1(1) , we have
D§V Dl(l‘) =(1 ;\y —z) + (terms of ferm—dégrec22).
Therefore, we have |
P=1lx+(1-y-2).0

(No'te)‘If we calculatc the determinénts D 10) and Dél) fully, we obtain the polynomi-

4__a‘ls of terms 21 and 38, respectively, for P, and P, in Example 2 and polynomials of

66

terms 45 and 57, respectively, for P, and P, in Example 3. Therefore, if we use the
subresultant GCD algorithm with x as the main variable, we will face a large expres-

sion growth in the above examples.

It is important to note that, although Examples 2 and 3 are éssentially the same,
the computational efﬁciencyis considerably different in Examples 2 and 3. This is
due to a simple fact on power series: the more the term-degree is, the more different
terms we have. For example, in Q {y, z}, we have three different terms y2, yz, 22 of
term-degree = 2, Whilé we have five different terms y*, y3z, y%2, yz3, z* of term-
degree = 4. Although we calculate power series up to (1, 1, 1) significant terms in
both Examples 2 and 3, we must handle more terms in Example 2 than in Example 3.
This shows that, although we may choose higher degree terms as necessary terms in
calculating GCD, we had better handle lower degree terms. This is the reason why we
utilize truncated power series for discarding unnecessary terms. Furthermore, it indi-
cates the importance of preprocessing which generates many constants in the

coefficients of P, and P,.

6. PRS method with power series coefficient

As we have seen in 5, when we calculate a small-sized polynomial by applying
rational operations to large polynomials, we can often obtain the answer efficiently by
treating the polynomials. as power series and cutting off the higher degree terms.» We

can apply this idea to PRS algorithms also.

Let E, €y, s € be defined as in Lemma 4. If we calculate the PRS
Py, Py, ..., P#0, Py 1=0) ug; to (E, ey, .., e) significant terms, and calculate
P =gP, /1c(P) up to (E, ey, ..., €,) significant terms, then Lemma 2 means that P
is a polynomial such that P =yG where G =GCD(Py,P,) and y=
GCD(Ic(Py), 1c(P5)) / 1c(G). The PRS can be calculated by the vconventional'fbrmula:

{ BiPiyy =Py — Qi P,

(18
o; =1c(P;)®*), 8 = deg(P;_,) — deg(P;), "

-

/5

where "=" means the equality up to the (E, e,, ..., ¢,) significant terms. One may
think that, since the higher degree terms are discarded, we may choose B; = 1 without
causing the expression growth. However, this is not true as we have mentioned in 5.

In the actual computation of PRS, we must be careful in the "accuracy decreas-

ing", as we have mentioned in 4. Let us clarify the meaning of accuracy decreasing

for the case of PRS calculation. First, we note that what we need is P (the final ele-

ment of the PRS). In order to preserve the accuracy of Py, it is enough that some
coefficients of P;, preserve the accuracy for each i=3,...,k, so long as B; in Eq.(18) is
a number. Next, since We calculate P = Py [[Ic(Py) / g1, we require Ic(P,) to
preserve the accuracy. Finally, we must check the termination of PRS. This check is
not trivial because there may happen a case that all the significant terms of P;;, i <k,
vanish hence P;,, =0. We can discriminaie this case by the trial-division of P; and
P, by pp(P;): if P; # P, then the trial-division fails because deg(P;) > deg(G).
Therefore, for the case B; = a number, i=2,...,k, we say the accuracy is decreased if

either of the following is satisfied:

(1) Al the coefficients of P; lose the accuracy for some i, 3$i <k;

(2) Ic(Py) loses the accuracy.

When P; is also a power series calculated from leading coefficients, we say the accu-

racy is decreased if the following condition is satisfied:
(3) lc(P;) loses the accuracy for some i, 3<i<k.

Note that the check of accuracy decreasing is quite simple when both P, and P, con-
tain constant terms: we have only to check the existence of constant terms in the

coefficients of P;.

There are many solutions to the "accuracy decreasing problem”, and our solution

7€

67

68
is as follows:
(1) Continue the PRS construction even if the accuracy decreased;
(2) After calculating the PRS, apply the correctness check.

This method will be reasonable because the degree bounds of, Eqs;(12) and (13), are

. usually over-estimates and we can often calculate the correct GCD even if the accu-

racy decreases.

Thus, we obtain the following algorithm.

Algorithm 4 (PRS method with power series coefficient).
Step 1. FLAG«NO; .
'8 «GCD(c(P), Ic(Po));
EMIN(E;-E;+E " |i=1.2};
e, «~MIN{e ;e +e, |i=12},ve(y, ...z };
(E; etc. are defined in Lemma 3.)
Step 2. Calculate PRS (P, Py, ..., P;#0, Py 1=0) up to (E, ey, .., ;) significant
terms. (This means only formally, that is, we regard the lowest degree terms
.as nonvanished even if their coéfﬁcients are 0);
If the accuracy decreases then FLAG «YES;
Step 3. If deg(P;)=0 then return 1 else G «pp(gP; / lc(Pk));
IfG|Pyand G |Pythenrenrn G |
else if FLAG =YES then (E«E+1; ey ey tl; - e, e,+1)
else (E«2xE; e, <—2xey;~'- ce e, e2xe,);
FLAG «NO; goto Step 2. OO
As we have mentioned in 5, computation will often be made efﬁcicﬁt by preprocessing
which generates as many constants as possible in the coefficients of P, and P2 | The

preprocessing may include the replacement vk — V if both P, and P, are polynomi-

l£7

k

als in v¥. Furthermore, cheap test of relative primality of P; and P, is also quite use-

ful. The actual implementation of Algorithm 4 (and 3) will include these devices.
Example 4. P, and P, given in Exarknples 3, that is

Pi=(1+ w4+ A4y -y 2—-yz %3 + (~1=y 4z 2y2-2yz—z?%)x?
+ (2-y 324y M2z -2 2y 2)x + (<14y+32-2yz -3z %4y2%423)

P, = (1+2)x* + (~44y+2zyz 223 + (-2+4y +32)x?
+ 34y —2z-y2-yz)x + 2-y-3z-yZz?).

" Lemma 4 gives (E, ey, €,) = (1, 2,)—=(1, 1, 1). Hence, we calculate a PRS by han-
dling only constants, constantxy terms, and constantxz terms. We use the formula

(18) with B; = 1 for simplicity..

P3=(=1+z)P; - (14y)P,
= (3+2y-z)x3 + 3=y -5z)x2 + (-1-3y -3z)x + (-1-2y-z),

P,y=(3+2y-z)*Py — Q3(x)P3
= (6+10y—17z)x? + (15+4y 60z)x + (9-9y—462),

Ps = (6+10y—17z)*P3 — Q4(x)-P,
= 3{(~69+22y +631z)x + (~69+91y+700z)},

Pg= (—69+22yk+6312)2-P.4 ~ Q5(x)Ps/3 = 0.
Since g=GCD(1c(P D» le(P) = 1, we calculate P as
P =P5/l(Ps)=1x + (1 -y -2).
Sincé there is no accuracy decreasing, we obtain G =x + (1 -y —z).0
(Note) Since degrees of P, and P, w.r.t. y or z are smaller than deg(P,) and deg(P,)
in the above example, many GCD programs will calculate GCD(P,, P,) by treating y

or z as main variable. The above example shows that our algorithm does not cause

expression growth even if the PRS becomes a long sequence.

288

63

10

Compared with the conventional PRS algorithms, say the subresultant PRS 'algo—

rithm, the improvement in the above computation is drastic. . Hence, we think our

Algorithms 3 and 4 are quite useful. The computing time analysis and comparison

with other algorithms are now going.

Appendix A

In {13], a method of reducing the determinants of the form in Eq.(3) was

described. Since the paper has not been published, we describe the method below.

The determinant D,;¥) in Eq.(3) is of order m + n — 2j, and the method reduces it to a

determinant of order m — j (note thatm 2 n).

At the first step of the reduction, the determinant in Eq.(3) is modified as

1 |
M-N rows
1 J
Gy Qp-1 Q2i42—n Qitj4i-n
} N-3 roWS(A 1y
Q. Git1 a;
0 0 b, b,y brjtz-m dirjt1-m o
} Mm-3 rows
bn bj+1 bi j

At the second step, we move the bottom m — n rows of (Al) to the middle:

1
1
am Omtj+1-n
am
0
0
bn bisa
b,

Writing this determinant as

} mon
Am+j—n a2j4+2-n Qitjti-n
"3
_ Qm-1 aj41 a; } C
bn bj+2-—m+n bi+1—m+n (AZ)
‘ ' m—n
bn b]+1 b,‘
b] vee . ses b2j+2—m b£+j+1—-m
n-3
bn—l bj+1—m+n bi—-m-}-n

24

71

where M;;,i=12, j=1,2, are (m—j)x(m-j) square matrices, we see

MM,y =M, My, Hence, Schur’s theorem leads us to the last step of the reduction:
D) = (1) D | MMy - MMy 1. - (A3

This is our reduction formula. Below, we rewrite (A3) slightly. We define matrices

Mll’ MIZ’ sz Mz'_)_ as follows:

A9n Au-1 """ Gpijiln
M., =
i an G-y ’
an,
b, b,y - bj+1
M, =
2z bn bn—l ’
L b" J
Gpijon """ T 0242 n Givjrln
My, = ’
am_l . o = ‘ o = aj+l ai
bj Tt b2j+2—m bj+l—m+n
My = ‘
bn—l oot bi+j+1—m bi—m-!-n
b -

The Mll’ MIZ’ M21, Mzz are submatrices of Mu, M12’ M21, M22, TCSPCCﬁVCI)’- Then,

the determinant in (A3) can be written as

noccc st bj+2—m+n bi+1—m+n

b - b b:
n j+1 i (A4)

— . — — — — — — ———— o
—— - o — pu—n w— — — f— f—
.

12

References

10.

11.

Collins, G.E., ‘Subresultants and Reduced Polynomial Remainder Sequences,” J.

ACM, vol. 14, p. 128, 1967.

Brown, W.S. and Traﬁb, JF.,, “On Euclid’s‘ Algorithm and the Thcory of
Subresultants,” J. ACM, vol. 18, p. 505, 1971. -

Brown, W.S., ‘“The Subresultant PRS Algorithm,”” ACM Trans. Math. Soft., vol.
4, p. 237, 1978.

Hearn, A.C., ‘‘Non-modular Computation of Polynomial GCDs Using Trial Divi-
sion,”’ in Lecture Notes in Comp. Sci.‘(Proc. of EUROSAM’79), vol. 72, p. 227,
1979. '

Brown, W.S,, ‘“On Euclid’s Algorithm and the Computation of Polynomial
Greatest Common Divisor,” J. ACM, vol. 1:8, p. 478, 1971.

Moses, J. and Yun, D.Y.Y,, “The EZ GCD Algorithm,”” in Proceedings of
ACM’73, p. 159, 1973.

Wang, P., ““The EEZ-GCD Algorithm,” SIGSAM Bulletin, vol. 14, p. 50, 1980.

* Zippel, R., ‘‘Probabilistic Algorithms for Sparse Polynomials,”’ in Lecture Notes

in Comp. Sci. (Proc. of EUROSAM’79), vol. 72, p. 216, 1979.

Char, B.W., Geddes, K.O., and Gonnet, G.H., ‘“‘GCDHEU: Heuristic Polynomigl
GCD Algorithm Based on Integer GCD Computation,”’ in Lecture Notes in

Comp. Sci. (Proc. of EUROSAM'84), vol. 174, p. 285, 1984.

Gianni, P. and Trager, B., ““GCD’s and Factoring Multivariate Polynomials Using
Grobner Bases,”’ in Lecture Notes in Comp. Sci. (Proc. of EUROCAL’85), vol.
204, p. 409, 1985.

Buchberger, B., ‘“‘Grobner Bases: An Algorithmic Method in Polynomial Idel
Theory,” in Multidimensional Systems Theory, ed. Bose, R., Reidel Publishing,
1985. Ch.6.

A 8]
S

12.

13.

Sasaki, T., ‘‘Some Algebraic Algorithms Based on Head Term Elimination over

Polynomial Rings,”’ paper presented at EUROCAL’ 87, Leipzig, June 1987,

Sasaki, T., ‘‘Extended Euclidean Algorithm and Determinants,”” preprin: of ICPR

(unpublished), 24 pages, 1982.

t
I

73

