
52

Four New Algorithms for Multivariate Polynomial GCD

佐々木建昭
Tateaki Sasaki

鈴木正幸
Masayuki Suzuki

The Institute of Physical and Chemical Research

2-1, Hirosawa, Wako-shi, Saitama 351-01, Japan

ABSTRACT

Four new algorithms for multivariate polynomial GCD (greatest

common divisor) are given. The first is a simple improvement of PRS

(polynomial remainder sequence) algorithms. The second is to calculate

a Groebner basis with a certain term ordering. The third is to calculate

subresultant by treating the coefficients as truncated power series. The

fourth is to calculate PRS by treating the coefficients as truncated power

series. The first and second algorithms are not important practically, but

the third and fourth ones are quite efficient and seem to be useful practi-

cally.

1. Introduction

Study of algorithm for multivariate polynomial GCD (greatest common divisor)

has a long history. The idea of generalizing Euclidean algorithm for integer GCD to

/

数理解析研究所講究録
第 646巻 1988年 52-73

53

polynomial GCD has appeared in as early as 16th century. However, Collin’s study

[1] will be the first modem analysis of the Euclidean algorithm for $\infty iultivariate$ poly-

romial GCD. Collin’s algorithm, or the reduced-PRS algorithm, was soon improved

to the $subresu_{\wedge t}^{1\sim}a_{1}^{\eta_{1}}t$-PRS algorithm by Brown and TraUb $[2, 3]$. Another improvement

of the Euc]$idean$ algorithm is Hearn’s trial-divisicn algorithm [4] which is practicaliy

efficient. For the GCD computation, modUlar algorithms are very $ixnpol1_{-\ }\urcorner t$. Brown’s

algorithm [5] will be the first modular GCD algorithm. $s_{ub_{Seq\underline{:\tau}}ently}$, MMoses and Yun

proposed the so-called EZGCD algorithm $[6, 7]$. This $algo_{\overline{11}}\ddagger hmu\ddagger i1_{\wedge}izes\hat{u}^{L}1e$ general-

ized Hensel consffuction and will be the best algorithm for large multivariate polyno-

mials. For very sparse multivariate polynomials, Zippel’s sparse modular $algorir\dot{!}1\infty$ is

efficient [8]. Yet another modular algorithm has been proposed by Char, Geddes and

Gonnet [9]. This algorithm uses the integer GCD computation. Furthermore, an algo-

rithm using Grobner basis has been proposed by Gianni and Trager [10].

Since the GCD computation is one of the most important operations in computer

algebra, we should search for the most efficient algorithm. In this paper, we propose

four new algorithms for multivariate GCD. These algorithms are based on simple

ideas. The first one is a simple improvement of PRS (polynomial remainder sequence)

algorithms. The second one calculates a Grobner basis with a certain term ordering,

but it is different from Gianni-Trager’s algorithm. In the third and fourth algorithms,

we treat the coefficients of polynomials as truncated power series. This device allows

us to develop very efficient GCD algorithms for multivariate polynomials. Since the

underlying ideas and the algorithms are very simple, we think that algorithms using

truncated power series will quite useful in actual computation.

We use the following notations in this paper.

$\deg(P)$: degree (w.r.t . variable x) of polynomial P ;

$1c(P)$: leading coefficient (w.r. t . variable x) of P ;

2

54

$pp(P)$: primitive part (w.r. t. variable x) of P ;

cont(P) : GCD of the coefficients(w.r. t . variable x) ofP ;

$P{}_{1}P_{2}$: polynomials in $K[x,y,\ldots,z]$ with K a number field,

we assume that P_{1} and P_{2} are primitive.

2. An improvement of PRS algorithms

Let P_{1} and P_{2} be primitive polynomiais in $K[x, y,\ldots, z]$, with the main-vat abie

x , and represent them as

$\{P_{2}=P_{1=}a_{n}X^{m}+a_{m-\iota_{n-1^{-1}}}b^{m}x^{n}+b_{n-1}x^{x^{m}}+^{+}\cdot$

. . $+b_{0}+a_{0}$

,
$b_{n}^{m}\neq O^{\}}a4$

,
(1)

where we assume $m\geq n$. We define the polynomial S Ci) as

$S^{[j)}=D_{j^{(i)}}x^{j}+D_{j-}^{Ci}\}x^{j-1}+$ $+D \oint$) (2)

where $D_{i^{(j)}},$ $i=j,j-1,\ldots,0$, are the following determinants:

$1^{O_{m}}|||||a_{m-1}a_{m}a_{m-1}$

a_{m}

. . . $a_{2j+2-n}a_{2j+3-n}a_{j+1}$
$a_{i+j\sim 1,.-n}a_{i+j+2-n}a_{i}|_{1}|||i|\}\mathfrak{n}-\prime \mathfrak{z}$

rcv s

$D_{j}^{(i)}\backslash =$
$|b_{n}$

b_{n-1}
(3)

1

1

b_{n}

$b_{n.-1}$

b_{n} . . .

$b_{2j+3-m}^{2j\neq 2-m}bb_{j+1}$ $b_{i+,.j+2.-m_{1}}^{1}b_{i+j.I}b_{i_{1}}^{+1-m_{I}}|\}vn-\prime 3ro\backslash s$

J

1

1

1

Here, we mean $a_{j}=b_{j}=0$ if $i<0$. The $S^{(j)}\backslash$ is the j-th order subresultant of P_{1} and

P_{2} , and $\deg(S^{(i)})$ is usually j .

Theorem 1. Let $\deg(GCD(P{}_{1}P_{2}))=d$ and $g=GCD(1c(P_{1}), 1c(P_{2}))$. Then,

$g|D_{j}^{(i)}\backslash ,$ $i=j-1,\ldots,0$, (4)

$[D_{d^{(d)}}/g]|D_{j}^{(d)},$ $i=d-1,\ldots,0$. (5)

J

55

Proof: Expanding the deteminant in Eq.(3) w.r. t . the first column, we see
$GCD(a_{m}, b_{n})ID_{i^{[\dot{\oint})}}$. This proves (4). Next, we note that $S_{d^{(d)}}$ is a multiple of

$G=GCD(P{}_{1}P_{2})$ (see, for example, [2]). Since $1c(G)|g,$ $[g/1c(G)]\cdot G$ is a multi-

ple of G and $S^{(d)}/[D\}^{d)}/g]=[g/1c(G)]\cdot G$. This proves (5). \square

Every PRS algorithm for GCD calculates a PRS

$(P{}_{1}P_{2}, P_{k}\neq 0, P_{k+i}4)$. (\’o’)

Then, $pp(P_{k})=GCD(P{}_{1}P_{2})$. The sizes of $coef_{\overline{1}1C_{\wedge}^{i}e}’n^{f}.s$ of $P_{k}w\ovalbox{\tt\small REJECT}$ often very large

and computation of $pp(P_{k})$ is time-consuming. Tne $algorit\dot{\Gamma}_{1}In$ to be given $\dot{h}^{v}1$ this sec-

tion is a device to calculate $pp(P_{k})$ efficiently.

When P_{k} is equal to or a multiple of subresultant $S^{(d)}$, Theorem 1 tels that we

can remove the factor $1c(P_{k})/g$ from P_{k} . The resulting polynomial

$\tilde{P}=P_{k}/[1c(P_{k})/g]$ (7)

will have the coefficients of much smaller sizes than those of P_{k} because $1c(\overline{P})=g$.

This device is applicable to reduced-PRS algorithm [1] and subresultant-PRS algorithm

[3]. When P_{k} is not equal to or multiple of $S^{(d)}$, we can calculate \overline{P} by the formula

$\tilde{P}=gP_{k}/1c(P_{k})$. (8)

This device is applicable, for example, to the trial-division algorithm [4]. Note that

the \tilde{P} ’s defined by Eqs.(7) and (8) are the same. Tlnus, we have the following algo-

rithm which is applicable to any PRS algorithm.

Algorithm 1 (improvement of PRS algorithms).

Step 1. Calculate a PRS $(P{}_{1}P_{2}, P_{k}\neq 0, P_{k+1}=0)$ and

if $\deg(P_{k})=0$ then retum 1;

Step 2. Calculate $g=GCD(1c(P_{1}), 1c(P_{2}))$ and

if $gIlc(P_{k})$ then $\tilde{P}arrow P_{k}/[1c(P_{k})/g]$ else $\tilde{P}arrow gP_{k}/1c(P_{k})$;

$\#$

56

Step 3. Return $pp(\tilde{P})$. \square

Although this algorithm is rather trivial, we have described it because it plays some

roles in cther algorithms given in this paper.

Let us briefly mention about the computation of $pp(P_{k}),$ $P_{k}=\vee^{\sim}\prime d^{\chi^{d}}-C_{d-1^{\wedge}}^{\vee}d-1$

$+$ $\perp C_{0}$, where C_{d} , $C_{0}k^{r}e$ large-sized polynomials. Suppose $\check{\check{w}}\hat{c}$ caiculate

cont(P_{k}) as

cont$(P_{k})=GCD(C_{0}, GCD(\cdot. , GCD(C_{d-1}, C_{d})\cdot.))$.

Then, if cont$(\prime P_{k})=C_{d}$ or cont$(P_{k})=C_{d-1}$, we can calculate cont(P_{k}) easily by per-

forrning the trial-division of C by D in the calculation of $GCD(C, D)$. in such cases,

our device in Algorithm 1 is not useful. However, if cont$(P_{k})=$ $C_{d}/\tilde{C}_{d}=$

C_{d-1}/\tilde{C}_{d-1} , with $\tilde{C}_{d}\neq 1$ and $\tilde{C}_{d-1}\neq 1$, then Algorithm 1 improves ary PRS algo-

rithms except for the primitive PRS algorithm, so long as the computation of g is not

costly. When the PRS is already primitive, the above Steps 2 and 3 are unnecessary

and we had better apply our device to construct the primitive PRS. That is, after cal-

culating \tilde{P}_{i+1} as the $pseudo- rerI_{\wedge}^{1}a_{\wedge}^{i}nder$ of P_{i-1} and P_{i} , we make the trial-division of

$g\tilde{P}_{i+1}$ by $1c(\tilde{P}_{i+1})$ and if the division succeeds then we calculate P_{i+1} as

$P_{i+1}=pp(g\tilde{P}_{i+1}/1c(\tilde{P}_{i+1}))$.

3. Gr\"Obner basis method

Gianni and Trager proposed a method of using Grobner basis for multivariate

GCD computation [10]. For Grobner basis, see [11]. We propose another algorithm in

this section. Our algorithm calculates a Grobner basis of the ideal $(P{}_{1}P_{2})$ in

$K[y,\ldots,z][x]$, i.e., we regard P_{1} and P_{2} as polynomials in variable x with coefficients

in $K[y,\ldots,z]$. (The Grobner basis in $K[y,\ldots,z][x]$ is equivalent to Grobner basis in

$K[x, y,\ldots,z]$ with the variable ordering $x>y,$ z . The tern ordering in $K[y, \ldots,z\int$

may be arbitrary.)

5

57

Theorem 2. Let a Grobner basis of the ideal $(P{}_{1}P_{2})$ in $K[y,\ldots,z][x]$ be

$\Gamma=\{P{}_{1}P_{2}, P_{s}\}$. Let $\deg(P_{i})=d_{i},$ $i=1,\ldots,s$, and d_{k} be the minimum value

among $\{d_{1}, d_{2}, d_{s}\}$. Then, there exists a polynomial $C,$ $C\in K\lceil y,\ldots,z$]. such that

$P_{k}=C\cdot GCD(P{}_{1}P_{2})$.

Proof: Put $G=GCD(P{}_{1}P_{2})$. Tne i\^ueal $(P{}_{1}P_{2})$, in $K(y,\ldots,z)_{l}^{r}\sim x$] is a principal ideal

(G) . Since [ideal $(P{}_{1}P_{2})$ in $K[y,\ldots,z][x]$] \subseteq [ideal $\langle P{}_{1}P_{2})$ in $K(y,\ldots,z)_{L}’x$]] $=(G)$,

there exists a polynomial $C,$ $C\in K\lceil y,\ldots,z$] $[x]$, such that $P_{k}=CG$. On the $othe_{\wedge}^{t}$

hand, there exist polynorrials A and B , $A,$ $B\in K(y,\ldots,z)[x]$, such that $G=_{l}s_{4}q_{1}^{D}+BP_{2}$.

Multiplying $\tilde{C}=LCM$($deno\mathfrak{Q}l\dot{L}tators$ of A and B) to this equation, we see that

$\tilde{C}G\in[ideal(P{}_{i}P_{2})$ in $K[y,\ldots,z][x]_{J}^{\rceil}$. $Si_{\wedge}n_{\wedge}ce\deg(\tilde{C}G)=\deg(G)$ and $\tilde{C}G$ must be M-

reduced to0by $\Gamma,$ $\deg(P_{k})\leq\deg(\tilde{C}G)=\deg(G)$. $Hence,$ $C\in K[y,\ldots,z]$. \square

The above theorem gives us the foiiowing GCD algorirhm.

Algorithm 2 (Grobner basis method).

Step 1. Calculate a Grobner basis $\Gamma=\{P{}_{1}P_{2}, P_{s}\}$ of the ideal $(P{}_{1}P_{2})$ in

$K\lceil y,\ldots,z][x]$;

Step 2. Let P_{k} be a minimum degree element, w.r. t . x , of Γ and

if $\deg(P_{k})=0$ then retum 1 else retum $pp(P_{k})$. \square

(Note) In the calculation of $pp(P_{k})$ in Step 2, we can use the method given in the pre-

vious section.

Example 1.

$P_{1}=(x-y+2z)((2y+z)x-y^{2}+2y-3z)$,

$P_{2}=(x-y+2z)((y+2z)x-3y+2z^{2})$.

The Grobner basis of $(P{}_{1}P_{2})$ in $Q[y, z][x]$, with tern-degree order for temls in

$Q[y, z]$, is calculated as $\{P_{3}, P_{1}-2P_{2}, P_{2}\}$, where

$P_{3}=(y^{3}+2y^{2_{Z}}-8y^{2}+4yz^{2}-4yz+2z^{3}+6z^{2})x$

l

58

$+(-y^{4}+8y^{3}-12y^{2}z+6yz^{3}-14yz^{2}+4z^{4}+12z^{3})$.

The lowest degree element of the basis is P_{3} , and we obtain

$GCD(P{}_{t}P_{2})=pp(P_{3})=x-y+2z$. \square

From the viewpoint of variable elimination, the Grobner basis $r_{A^{\wedge}}1ethod$ is similar

to the PRS method: \^uhe former applies the head term elimination, and the latter applies

the leading term $e \lim\dot{n}atior_{1}$. see [12]. However, the PRS method causes intermediate

expression growth: in the caiculation of the pseudo-remairder, we multiply a power of

leading coefficient of the divisor and we factor out it later. The Grobner basis method

does not cause this kind of expression growth, but it generate a number of polynomials

and the reduction $P^{r\propto ed}1$ is time-consuining.

The calculation of Grobner basis in Algorithm 2 is averagically most efficient if

we adopt the term-degree order for the terms in $K[y,\ldots,z]$. Furthermore, if we know

the value of $d=\deg(GCD(P{}_{1}P_{2}))$, then we may stop the Grobner basis construction

when a polynomial of degree d is constructed. These devices will make the Algo-

rithm 2 quite efficient compared with the original version. However, our experience

shows that the Grobner basis method is quite inefficient when the sizes of P_{1} and P_{2}

are large. This low efficiency can be understood by the fact that the lowest degree

element P_{k} in Γ is a polynomial of almost the same size as $S^{(d)}(P{}_{1}P_{2})$, the subresul-

tant of the d-th order. Hence, the Grobner basis method is not much more efficient

than the subresultant PRS method.

4. Terminology about truncated power series

We use the truncated power series in our third and fourth algorithms, hence we

introduce some terminology about the truncated power series and derive a useful

degree bounds. We denote the power series ring in the variables $y,$ z by

$K\{y,\ldots,z\}$, where K is a coefficient field. By the term-degree of $T=cy^{e_{y}}\cdots z^{e_{l}}$,

with $c\in K$, we mean $e_{y}+$
\cdot . . $+e_{z}$. We impose the reverse term-degree order $>for$

7

59

the terms in the power series. Hence, $1>y>$. . . $>Z>y^{2}>$ $>yz>$

$>z^{2}>y^{3}>$. . .

The addition and multiplication of ouncated power series are the same as those

for polynomials, except for the cutoff of $te s$ whose $teml$-degrees and variable

exponents are higher than some $predete\frac{1}{}$ined values. With the reverse $te\cap 11-de_{-}\overline{-1}ee$

order $>$, the division of power senes is performed as follows.

Division of power series. Let $A,$ $B,$ $C\in K\{y, z\}$. We express A as

$A=A^{(a)}+A^{(a+1)}+A^{(a\perp 2)}+$ \cdot . . ,

where $A^{(d)}$ denores the terms of term-degree d of A . Similarly, we define $B^{(d)}$ and

$C^{(d)}$. Let $A=B\cdot C$, then we calculate the quotient $C=C^{(a-b)}+C^{(a-b+1)}+$ by

the power series divisicn of A $a_{\wedge A}^{n}dB$ as follows. First, $s_{\Delta\Delta}^{i}$)$ceA^{(a)}=B^{(b)}C^{(a-b)},$ $\backslash \lambda’e$

calculate $C^{(a-b)}$ by the polynomial division of $A^{(a)}$ by $B^{(b)}$:

$A=C^{(a-b)}[B^{(b)}+B^{(b+1)}+ \cdot. .]$

$+[A^{(a+1)}-C^{(a-b)}B^{(b+1)}]+[A^{(a+2)}-C^{(a-b)}B^{(b+2)}]+$ \cdot . .

Second, we calculate $C^{(a-b+1)}$ by the polynomial division of $[A^{(a+1)}-C^{(a-b)}B^{(b+1)}]$

by $B^{(b)}$, and continue this procedure. \square

Definition 1 [exponent range and $term- de_{\epsilon}ree$ range]. Let

$C= \sum_{i=1}c_{j}v^{e_{i}}\cross$
(monomial not containing v), $c_{j}\in K$.

We define the exponent range of the variable v of C , abbreviated to $ran_{v}(C)$, as

$ran_{v}(C)=(e_{m\dot{m}}, e_{\max})$ where $e_{m}jn=$ $MIN\{e_{i}|i=1,2, \cdot. \}$ and $e_{rnax}=$

$MAX\{e_{i}|i=1,2, \cdot\cdot. \}$. Similarly, we define the term-degree range of C , abbreviated

to tran(C) , as tran$(C)=(E_{\min}, E_{\max})$ where $E_{\min}(E_{\max})$ is the minimum (maximum)

term-degree of C. \square

Example. For $C=y+2y^{2}+3yz-y^{3}-3yz^{2}+3y^{3}z-4y^{2}z^{2}+5yz^{3}$, we have $ran_{y}(C)=(1,3)$,

$ran_{z}(C)=(0,3)$, and tran$(C)=(1,4)$.

γ

60

Lemma 1. For polynomials/finite power series C_{1} and C_{2} , we have

$\{\begin{array}{l}ran_{v}(C{}_{l}C_{2})=ran_{\nu}(C_{l})+ran_{v}(C_{2})\sigma an(C{}_{l}C_{2})a_{\wedge\wedge}(C_{1})\perp\sigma an(C_{2})\end{array}$ (9)

where we define the $addi_{\overline{L1}}on$ of numeric lists as $(m_{i}, n_{1})\perp(m_{2}, n_{2})=$

$(m_{\iota^{\perp}}m_{2}, n_{1}+n_{2})$.

Proof: Obvious. \square

Definition 2 [significant terms]. Let $C\in K\{y,\ldots,z\}$ and $\sigma an(C)=$ (E , some). We

define $(\tilde{E},\overline{e}_{y} , \overline{e}_{z})$ significant terms of C to be the terms of C such that the term-

degree is in the range $(E, E+\overline{E})$ and, for each $variab$]$ev\in\{y,\ldots, z\}$, the v-exponent

is in the range $(0, E+\tilde{e}_{v})$. We use the same terminology for $P\in K\{y, z\}[x]$ also,

where tran and ran are defined for the coefficients of P. \square

Example. For $C=y+2y^{2}+3yz-y^{3}-3yz^{2}+3y^{3_{z\triangleleft}}y^{2}z^{2}+5yz^{3}$, the (2, 1, 2) significant

terms of C are

$y+2y^{2}+3yz-3yz^{2}$. \square

(Note) Among the bounds $(\tilde{E},\overline{e}_{y}, \ldots,\tilde{e}_{z})$, the term-degree bound \tilde{E} is the strongest

because we assumed the reverse $term- de_{\Leftrightarrow}\sigma ree$ order. Hence, if $\tilde{e}_{v}\geq\tilde{E}$ then we may

omit the exponent bound for the variable v .

Lemma 2. Let C_{1} , C_{2} , D be in $K\{y,\ldots,z\}$ and satisfy $C_{1}=C_{2}D$. Let

tran$(D)=(E_{l} , E_{h})$ and $ran_{\nu}(D)=(some, e_{v}),$ $v=y,$ z . Then, in order to calcu-

late D from C_{1} and C_{2} by the power series division, we need only the

$(E_{h}-E_{l}, e_{y}-E_{l}, , e_{z}-E_{l})$ significant terms of $C_{i},$ $i=1,2$.

Proof: Obvious from the above division operation for power series. \square

Lemma 3. For P_{1} and P_{2} in $K\{y, \ldots, z\}[x]$, put $G=GCD(P{}_{1}P_{2})$. Let

$E=maximum$ term-degree of the coefficient tems of G ,

γ

61

$E_{i}=maximum$ term-degree of the coefficient terms of P_{j} .
$E_{i’}=maximum$ term-degree of the terms $of’1c(P_{i})$,
$E=maximum\prime\prime$ term-degree of the tems of $1c(G)$.

Furthermore, for each variable v in $\{y, z\}$, let

$e_{\nu}=maximum$ v-exponent of the coefficient terms of G ,

$e_{\nu i}=maximum$ v-exponent of the coefficient terms of P_{i} .
$e_{vi}=maximum$ v-exponent of the terms of $1c(P_{j})$,

$e_{v}=maximnm$ v-exponent of the $term\sigma’$ of $:c(G)$.

Then, we have

$E\leq MIN\{E_{i}-E_{i’}’-E |i=1,2\}$, (10)
”

$e_{v}\leq MIN\{e_{vi}-e_{vi}+e_{v}|i=1,2\}$. (11)

Proof: Let the maximum term-degree of the terms of $1c(P_{i}/G)=1c(P_{j})/1c(G)$ be

\tilde{E}_{i} , then $\tilde{E}_{i}=E_{j}^{l}-E^{\wedge\prime}$ Since

[$term-degree$ of G] $=$ [$term$-degree of P_{i}] $-$ [$term$-degree of (P_{j}/G)]

$\leq E_{i}-$ [$term$-degree of $1c(P_{i}/G)$],

we obtain (10). Similarly, we can derive (11). \square

Note that Lemma 3 is useless in actual GCD computation because we do not

know $1c(G)$ in advance. However, the following Lemma 4 is useful.

Lemma 4. For P_{1} and P_{2} in $K\{y,\ldots, z\}[x]$, put $G=GCD(P{}_{1}P_{2})$, $g=$

$GCD(1c(P_{1}), 1c(P_{2})),$ $\gamma=g/1c(G)$, and $\tilde{P}=\gamma G$. Let

$E=ma\chi imum$ tem-degree of the coefficient tems of \tilde{P} ,

$E_{j}=maximum$ term-degree of the coefficient terms of P_{i} .
$E_{i}^{J}=maximum$ tem-degree of the terms of $1c(P_{j})$,

$E”=maximum$ term-degree of the terms of g .

Furthermore, for each variable v in $\{y, z\}$, let

$e_{v}=maximum$ v-exponent of the coefficient terms of \tilde{P} ,

$e_{\nu i}=m$ ximum v-exponent of the coefficient terms of P_{i} .

$/0^{r}$

62

$e_{vi}=maximnm$ v-exponent of the terms of $1c(P_{i})$,

$e_{v}=rrAximum$ v-exponerxt of the terms of g .

Then, we have

$E\leq MN\perp\{E_{i}-E_{j}^{J}+E^{JJ}|i=1,2\}$, (12)
”

$e_{v}\leq\overline{\perp}\backslash II\perp V\{e_{vi}-e_{vi}+e_{v}|i=1,2\}$. (13)

Proof: Let the maximum term-degrees of the terms of γ and $1c(\gamma P_{i}/\tilde{P})$ be \overline{e} and \tilde{E}_{i} .

respectively. Then $\overline{E}_{i}=\overline{e}+E_{j}-E^{J\prime}$

’

because $1c_{\backslash }^{(}vP_{j}/\overline{P}$) $=\gamma 1c(P_{j})/g$. Since

[$term-de_{o}\sigma ree$ of γP_{i}] $=$ [$teIn1-de_{e}ree$ of \tilde{P}] $+$ [$te_{\perp}^{\vee}m$-degree of $\gamma P_{j}/\tilde{P}$]

$\geq E+$ [$term$-degree of $1c(\gamma P_{i}/\tilde{P})$]

$=E+\tilde{E}_{j}$,

we obtain $\tilde{e}+E_{i}\geq E+\tilde{E}_{i}=E+\tilde{e}+E_{i}-E\prime\prime\prime$ This proves (12). Similarly, we can

deriv$e(13)$. \square

Our algorithms require only rational arithmetic of power series. We have no

problem in the multiplication and division of power series, but the addition and sub-

traction may cause a problem which we call “accuracy decreasing problem“. Suppose

we add power series P_{1} and P_{2} such that tran$(P_{1})=tran(P_{2})=(E_{i}, E_{h})$ and obtain

the result $P=P_{1}+P_{2}$ such that tran$(P)=(E_{l}+1, E_{h})$. Tnen, we cannot use P any

more for the calculation up to $(E_{h}-E_{l},)$ significant terms.

5. Subresultant method with power series coefficient

Suppose we know the value of $d=\deg(GCD(P{}_{1}P_{2}))$. We can use a modular

algorithm to calculate d cheaply: calculate $GCD(P_{1}(x, n_{y} , n_{z}), P_{2}(x, n_{y} , n_{z}))$

for several sets of numbers (n_{y} , n_{z}) and set d to the lowest degree of the GCD’s

calculated.) Then, we can construct the subresultant $S^{(d)}$, see Eqs.(2) and (3), by cal-

culating the determinants $D_{i^{(d)}},$ $i=d,d-1,\ldots,0$, defined by Eq.(3), and we can obtain

$G=GCD(P{}_{1}P_{2})$ as $G=pp(S^{(d)})$. This method has been known for long years, but

it is practically not efficient.

”

63

In 2, we have seen that $g=GCD(1c(P_{1}), 1c(P_{2}))$ divides $1c(S^{(d)})$ and

$\tilde{P}=S^{(d)}/[1c_{\backslash }^{(}S^{(d)})/g]$ (14)

is a multiple of G , hence $G=pp(\tilde{P})$. $Represent\dot{u}^{-}’.g\tilde{P}$ as

$\overline{P}=g_{d}x^{d_{\dot{\tau}}}\cdot g_{d-1^{X^{d-:_{+}}}}\cdot$
$\tau’- g_{0}$, (15)

we see that (for $D_{j}^{O)}$ below, see Eqs.(2) and (3))

$g_{d}=g,$ $g_{i}=D_{j}^{(d)}/[D_{d^{(d)}}/g]$, $i=d-1,\ldots,0$. (16)

Eqs.(15) and (16) show that what we need are g_{d} and $g_{i},$
$j\underline{-A}-1,\ldots,0$, and not $D4^{d)}$

and $D_{i}^{(d)}$ themselves. The sizes of $g_{i},$ $i=d,\ldots,O$, are usually much srrsaller than those

of $D4^{d)}$ and $D_{j}^{(d)}$. The calculation of g_{j} by Eq.(16) does not require all the terms of

$D4^{d)}$ and $D_{i}^{(d)}$ but we need only some higher exponent terms (or lower exponent

terms). Exploiting this fact, we may discard the unnecessary terms in the calculation

of determnants $D4^{d)}$ and $D_{i}^{(d)}$, which will make the calculation fairly efficient. We

discard the unnecessary terms systematically by treating the coefficients of P_{1} and P_{2}

as truncated power series.

Let $E,$
e_{y} , e_{z} be defined as in Lemma 4. Lemma 2 and 4 show that, in order

to calculate \tilde{P} , we have only to calculate the determinants $D_{i^{(d)}},$ $i=d,d-1,\ldots,0$, up to

(E, e_{y} , e_{z}) significant terms. Note that, since P_{1} and P_{2} are primitive, we have

$\{\begin{array}{l}ran_{v}(P_{i})=(0,some),i=1,2ran_{v}(G)=(0,some)\end{array}$ (17)

for each variable $v\in\{y, z\}$. Thus, we obtain the following algorithm.

Algorithm 3 (subresultant method with power series coefficient).

Step 1. Estimate $d=\deg(GCD(P{}_{1}P_{2}))$ by a modular method (hence, the estimated

value is an upper bound);

If $d=0$ then retum 1

else $garrow GCD(1c(P_{1}), 1c(P_{2}))$,

/1

64

$Earrow MIN\{E_{j}-E_{i}^{J}+E^{\wedge\wedge}|i=1,2\}$,

$e_{\nu}arrow MIN\{e_{vti}-e_{v’}+e_{v’’}|i=1,2\},$ $v\in\{y, \ldots, z\}$,

where $E_{:}$. etc. are defined in Lemma 4;

Step 2. Construct deteminants $D_{j}^{(d)},$ $i=d,d-1,\ldots,0$, of the d-th order subresultant

$S^{(d)}$, cf. Eqs.(2) and (3), and calculate the determinants $D_{i^{(d)}}$ up to the

$(E, e_{y} . e_{z})$ significant terms for (y, z) ;

Step 3. Calculate $\tilde{P}=\sum_{i-\triangleleft}^{d}x^{j}D_{i^{(d)}}/[D4^{d)}/g]$ up to the (E , e_{y} , e_{z}) significant

terms, and $Garrow pp(\tilde{P})$;

Step 4. If $G|P_{1}$ and $G|P_{2}$ then retum G

else $darrow d-1$, and go to Step 2. \square

(Note) In Appendix A , we give a method for calculating the determinants $D_{i^{(d)}}$.

Example 2.

$P_{1}=yx^{4}+(-y^{2}-yz+2y_{\mathcal{T}}’z)x^{3}+(-2y^{2}-2yz-z^{2}+y+z)x^{2}$

$+(y^{3}+y^{2_{Z}}-y^{2}-z^{2})x+(yz^{2}+z^{3}-z^{2})$,

$P_{2}=zx^{4}+(-yz-z^{2}+z-3)x^{3}+(4y+3z-3)x^{2}$

$+(-y^{2}-yz+2y-z)x+(-y^{2}+z^{2}+y-z)$.

We see $g=GCD(1c(P_{1}), 1c(P_{2}))=GCD(y, z)=1$. Furthermore, $ran_{y}(P_{1})=(0,3)$,

$ran_{z}(P_{1})=(0,3),$ $\sigma an(P_{1})=(1,3),$ $ran_{y}(P_{2})=(0,2),$ $ran_{z}(P_{2})=(0,2),$ $\alpha an(P_{2}\rangle$ $=$

$(0,2)$. Hence,

$e_{y}=MIN\{3-1+0,2-0+0\}=2$,

$e_{z}=MIN\{3-0+0,2-1+0\}=1$,

$E=MIN\{3-1+0,2-1+0\}=1$.

Therefore, we have only to calculate the subresultant up to (1, 1, 1) significant terms.

Suppose we found that $\deg(G)=1$ by a modular method, so we calculate $D_{1}^{(1)}$ and

$Dd^{1)}$ up to (1, 1, 1) significant terms. The result is

$/_{\vee}$?

65

$D_{1}^{(1)}=(3y^{5}-24y^{3}z^{2}+48yz^{4})$

$+(-3y^{4}z^{2}-8y^{2}z^{4}+16\}z^{5}+16z^{6})$

$+$ (terms of term-degree≥ 7),

$Dd^{1)}=(3y^{5}-24y^{3}z^{2}+48yz^{4})$

$+(-3y^{6}-3y^{5}z+21y^{4}z^{2}+24y^{3}z^{3}-56y^{2}z^{4}-32yz^{5}+1\acute{o}_{\sim}^{\sim^{6}})$

$+$ (terms of $term-\triangleleft e_{\Leftrightarrow}\sigma ree\geq 7$).

Calculating $D6^{\iota)}/D_{1}^{(1)}$ up to (1, 1, 1) significant terms, we fnd

$Di^{1)}/D_{1}^{(1)}=(1-y-z)+$ ($terms$ of term-degree≥ 2).

Therefore, we have $\tilde{P}=1\cdot x\perp(1-y-z)$ as a multiple of GCD. Since \overline{P} is already

primitive, we have

$G=pp(\tilde{P})=x+(1-y-z)$. \square

Example 3.

$P_{1}=[yarrow y+1, zarrow z-1]$ (P_{1} in Example 1),

$P_{2}=[yarrow y+1, zarrow z-1]$ (P_{2} in Example 1).

In this case also, we have only to calculate the subresultant up to (1, 1, 1) significant

terms, but the calculation is much simpler than that in Example 1 because each

coefficient of P_{1} and P_{2} contains a constant term. We have

$D_{1}^{(1)}=23-38y-149z+$ (terms of $term-degree\geq 2$),

$Dl^{1)}=23-61y-172z+$ (terms of $term-de$gree≥ 2).

After the power-series division of $Db^{1)}$ by $D_{1}^{(1)}$, we have

$Dl^{1)}/D_{1^{(1)}}=(1-y-z)+$ ($terms$ of term-degree≥ 2).

Therefore, we have

$\tilde{P}=1\cdot x+(1-y-z)$. \square

(Note) If we calculate the deteminants $D_{1}^{(1)}$ and $D6^{1)}$ fully, we obtain the polynomi-

als of terns 21 and 38, respectively, for P_{1} and P_{2} in Example 2 and polynomials of

/4

66

terms 45 and 57, respectively, for P_{1} and P_{2} in Example 3. Therefore, if we use the

subresultant GCD algorithm with x as the main variable, we will face a large expres-

sion growth in the above examples.

It is important to note that, although Examples 2 and 3 are essentially the same,

the computational efficiency is consider\^ably different in Examples 2 and 3. Tnis is

due to a simple fact on power series: the more the term-degree is, the more different

terms we have. For example, in $Q\{y, z\}$, we have three different terms $y^{2},$
$y\approx,$

z^{2} of

tern-degree $=2$, while we have five different terms $y^{4},$ $y^{3}z,$ $y^{2}z^{2},$ $yz^{3},$ z^{4} of $te\ulcorner_{11}1-$

degree $=4$. Although we calculate power series up to (1, 1, 1) significant terms in

both Examples 2 and 3, we must handle more terms in Example 2 than in Exarnple 3.

This shows that, although we may choose higher degree terms as necessary terms in

calculating GCD, we had better $ha\underline{1}1\wedge d_{\wedge}1e$ lower $de_{o}ree$ term. Th-s is the reason why we

utilize truncated power series for discarding unnecessary terms. Furthermore, it indi-

cates the importance of preprocessing which generates many constants in the

coefficients of P_{1} and P_{2} .

6. PRS method with power series coefficient

As we have seen in 5, when we calculate a small-sized polynomial by applying

rational operations to large polynomials, we can often obtain the answer efficiently by

treating the polynomials as power series and cutting off the higher degree terms. h We

can apply this idea to PRS algorithms also.

Let $E,$
e_{y} , e_{z} be defined as in Lemma 4. If we calculate the PRS

$(P{}_{1}P_{2}, P_{k}\neq 0, P_{k+1}=0)$ up to (E, e_{y} , e_{z}) significant terms, and calculate

$\tilde{P}=gP_{k}/1c(P_{k})$ up to $(E, e_{y}, \ldots, e_{z})$ significant terms, then Lemma 2 means that \tilde{P}

is a polynomial such that $\tilde{P}=\uparrow G$ where $G=GCD(P{}_{1}P_{2})$ and $\gamma=$

$GCD(1c(P_{1}), 1c(P_{2}))/1c(G)$. The PRS can be calculated by the conventional formula:

$\{\begin{array}{l}\beta_{ii+l^{-}}P\sim\alpha_{i}P_{i-l}-Q_{i}P_{i}a_{i}=lc(P_{i})^{\delta+l},6=deg(P_{i-l})-deg(P_{i})\end{array}$ (i8)

$/\Delta^{-}$

67

where $\approx’’$ means the equality up to the (E, e_{y} , e_{z}) significant terms. One may

think that, since the higher degree terms are discarded, we may choose $\beta_{i}=1$ without

causing the expression growth. However, this is not true as we have mentioned in 5.

In the actual computation of PRS, we must be careful in the “accuracy decreas-

ing”, as we have mentioned in 4 . Let us clarify the meaning of accuracy decreasing

for the case of PRS calculation. First, we note that what we need is P_{k} (the final ele-

ment of the PRS). In order to preserve the accuracy of P_{k} , it is enough that $so_{11s}^{\neg}e$

coefficients of P_{i} , preserve the accuracy for each $i=3,\ldots,k$, so long as β_{i} in Eq.(18) is

a number. Next, since we calculate $\tilde{P}=P_{k}/[ic(P_{k})/g]$, we require $1c(P_{k})$ to

preserve the accuracy. Finally, we must check the termination of PRS. This check is

not trivial because there may happen a case that all the significant terms of $P_{i+1},$ $i<k$,

$va_{\wedge}^{\mathfrak{n}_{\wedge A}}’ sh$ hence $P_{i+1}=0$. We cari $d_{1}^{:_{S}:-a_{\iota}e}\overline{1i}\overline{11}D1i\wedge\dot{\iota}1i\prime_{\sim}is$ case by the trial-division of P_{1} and

P_{2} by $pp(P_{i})$: if $P_{i}\neq P_{k}$ then the trial-division fails because $\deg(P_{j})>\deg(G)$.
Therefore, for the case $\beta_{i}=a$ number, $i=2,\ldots,k$, we say the accuracy is decreased if

either of the following is satisfied:

(1) All the coefficients of P_{i} lose the accuracy for some $i,$ $3\leq i\leq k$;

(2) $1c(P_{k})$ loses the accuracy.

When β_{i} is also a power series calculated from leading coefficients, we say the accu-

racy is decreased if the following condition is satisfied:

(3) $1c(P_{j})$ loses the accuracy for some $i,$ $3\leq i\leq k$.

Note that the check of accuracy decreasing is quite simple when both P_{1} and P_{2} con-

tain constant terms: we have only to check the existence of constant terms in the

coefficients of P_{i} .

There are many solutions to the tlaccuracy decreasing problem“, and our solution

$/\zeta$

68

is as follows:

(1) Continue the PRS construction even if the accuracy decreased;

(2) After calculating the PRS, apply the correctness check.

This method will be reasonable because the degree bounds of, Eqs.(12) $a^{n}.d(13)$, are

usually over-estimates and we can often calculate the correct GCD even if the accu-

racy decreases.

Thus, we obtain the following algorithm.

Algorithm 4 (PRS method with power series coefficient).

Step 1. $FLAGarrow NO$;

$garrow GCD(1c(P_{1}), 1c(P_{2}))$;

$Barrow bnh^{T}\{E_{i}-E_{i’}+E^{\wedge a} | i=1,2\}$;

$e_{vi}arrow MIN\{e_{vi}-e_{v’}+e_{v’’}|i=1,2\},$ $v\in\{y,$
$\ldots,$

$z1$;

(E_{i} etc. are defined in Lemma 3.)

Step 2. Calculate PRS $(P{}_{1}P_{2}, \ldots, P_{k}\neq 0, P_{k+1}4)$ up to $(E, e_{y}, \ldots, e_{z})si_{\epsilon}nificant$

terms. (This means only formally, that is, we regard the lowest degree terns

as nonvanished even if their coefficients are 0);

If the accuracy decreases then $FLAGarrow YES$;

Step 3. If $\deg(P_{k})4$ then retum 1 else $Garrow pp(gP_{k}/1c(P_{k}))$;

If $G|P_{1}$ and $G|P_{2}$ then retum G

else if $FLAG=YES$ then $(Earrow E+1;e_{y}arrow e_{y}+1; ; e_{z}arrow e_{z}+1)$

else $(Earrow 2\cross E;e_{y}arrow 2\cross e_{y} ; ; e_{z}arrow 2\cross e_{z})$;

$FLAGarrow NO$; go to Step 2. \square

As we have mentioned in 5, computation will often be made efficient by preprocessing

which generates as many constants as possible in the coefficients of P_{1} and P_{2}. The

preprocessing may include the replacement $v^{k}arrow V$ if both P_{1} and P_{2} are polynomi-

/7

69

als in v^{k} . $Funhenr_{1}ore$, cheap test of relative primality of P_{1} and P_{2} is also quite use-

ful. The actual implementation of Algorithm 4 (and 3) will include these devices.

Example 4. P_{1} and P_{2} given in Example 3. that is

$P_{1}=(1+\mathcal{Y})x^{4}+(1\perp y-\}^{2_{-}}yz)x^{3}+(-1-y+z-2_{\mathcal{Y}^{2}\sim}-0_{yz-z^{2})x^{2}}$

$\div(-2-y+3z+y^{2}+2yz-z^{2_{\dot{\tau}}}y^{3}+y^{2}z)x+(-1+y+3z-2yz-3z^{2}+yz^{2}+z^{3})$

$P_{2}=(-1+z)x^{4}+(-4+y\cdot+2z-yz-z^{2})x^{3}+(-2+4y+3z)x^{2}$

$+(3+y-2z-y^{2}-yz)x+(2-y-3z-y^{2}+z^{2})$.

LeIrma 4 gives $(E, e_{y}, e_{z})=(1,2,1)arrow(1,1,1)$. Hence, we calculate a PRS by han-

dling only constants, constant $\cross y$ terms, and corstant $\cross z$ terms. We use the formula

(18) with $\beta_{j}=1$ for simplicity.

$P_{3}=(-1+z)\cdot P_{1}-(1+y)\cdot P_{2}$

$\approx(3+2y-z)x^{3}+(3-y-5z)x^{2}+(-1-3y-3z)x+(-1-2y-z)$,

$P_{4}=(3+2y-z)^{2}\cdot P_{2}-Q_{3}(x)\cdot P_{3}$

$\simeq(6+10y-17z)x^{2}+(15+4y-60z)x+(9-9y-46z)$,

$P_{5}=(6+1\Phi-17z)^{2}\cdot P_{3}-Q_{4}(x)\cdot P_{4}$

$=3\{(-69+22y+631z)x+(-69+91y+700z)\}$,

$P_{6}=(-69+22y+631z)^{2}\cdot P_{4}-Q_{5}(x)\cdot P_{5}/3=0$.

Since $g=GCD(1c(P_{1}), 1c(P_{2}))=1$, we calculate \tilde{P} as

$\tilde{P}=P_{5}/1c(P_{5})=1\cdot x+(1-y-z)$.

Since there is no accuracy decreasing, we obtain $G=x+(1-y-z)$. \square

(Note) Since degrees of P_{1} and P_{2} w.r.t. y or z are smaller than $\deg(P_{1})$ and $\deg(P_{2})$

in the above example, many GCD programs will calculate $GCD(P{}_{1}P_{2})\backslash by$ treating y

or z as main variable. The above example shows that our algorithm does not cause

expression growth even if the PRS becomes a long sequence.

$/5^{\nu}$

70

Compared with the conventional PRS algorithms, say the subresultant PRS algo-

rithm, the improvement in the above computation is drastic. Hence, we think our

Algorithms 3 and 4 are quite useful. The computing time analysis and comparison

with other algorithms are now going.

Appendix A

In [13], a method of reducing the determimants of the form in Eq.(3) was

described. Since the paper has not been published, we describe the method below.

The deterrninant $D_{j}^{\prime_{\backslash }1)}$ in Eq.(3) is of order $m+n-2j$, and the method reduces it to a

determinant of order $m-j$ (note that $m\geq n$).

At the first step of the reduction, the determinant in Eq.(3) is modified as

$\ovalbox{\tt\small REJECT} 01$ $01a_{b_{n}^{m}}$

$a_{b_{n-1}^{m-1}}$

$a_{b_{n}^{m}}$

\ldots

$a_{2j}b^{2j+2-n}a_{j+1}b_{j+1}^{+.2-m}$ $b_{i+j+_{i}^{i^{1-n}}}a_{i+j_{C}}b^{+_{1-m}}$

$! \iota\int\}\}\eta-\overline{\mathfrak{z}}_{\acute{3}}^{\backslash }\mathfrak{m}-1\mathfrak{n}\backslash -r_{r^{0}c^{\backslash }\backslash \cdot,s}^{r0\iota_{i}0_{s_{(A1)}^{\acute{3}}}}$

At the second step, we move the bottom $m-n$ rows of (A1) to the middle:

$|\begin{array}{llllllll}l l a_{m} a_{m+j+1-n} a_{m+j-n} a_{2j+2-n} a_{i+j+1-n}\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots a_{m} a_{m-1} \cdots a_{j+1} a.\cdot 0 b_{n} b_{j+2-m+n} b_{i+1-m+n}\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots 0 b_{n} b_{j+1} b.\cdot b_{n} b_{j+1} b_{j} b_{2j+2-m} b_{i+j+1-m}\cdots \cdots \cdots b_{n} b_{n-1} \cdots b_{j+1-m+n} b_{i-m+n}\end{array}|\}_{n_{Yt-}^{(A^{-}2^{\backslash })}}^{i}\}_{\mathfrak{n}_{\backslash -n}^{\mathfrak{n}_{-\vec{b}_{\vec{f}}^{Y}}}}\}\}$

Writing this determnant as

$/f$

71

$||_{M_{11}}M_{2\iota_{1}^{1}}$

$|M_{12}M_{22}|$

where $M_{ij},i=1,2,$ $j=1,2$, are $(m-j)\cross(m-j)$ square matrices, we see

$M_{11}M_{21}=M_{21}M_{11}$. Hence, Schur’s theorem leads us $*\iota O$ the last step of the reduction:

$D_{i^{\backslash }}^{(i)}=(-1)^{(m-n)(narrow)}$ | $M_{11}M_{22}-M_{21}M_{12}|$. (A3)

This is our reduction formula. Below, we rewrite (A3) slightly. We define matrices

$\tilde{M}_{11},\tilde{M}_{12},\tilde{M}_{21},\tilde{M}_{22}$ as follows:

$\tilde{M}_{i1}=\{\begin{array}{llll}a_{m} a_{m-l} a_{m+j+l-n}\cdots \cdots \cdots \cdots a_{m} a_{m-1} a_{m}\end{array}\}$,

$\tilde{M}_{21}=\{\begin{array}{llll}b_{n} b_{n-1} b_{j+1}\cdots \cdots \cdots \cdots b_{n} b_{n-1} b_{n}\end{array}\}$,

$\tilde{M}_{12}=[^{a_{a_{m-1}}}m+j-n$. . . $a_{2,.j+2_{1}-n}a_{i+}a_{i+j+1,.-n}a_{i}]$,

$\tilde{M}_{21}=\{\begin{array}{llll}b_{j} b_{2j+2-m} b_{j+l-m} +n\cdots \cdots \cdots \cdots b_{n-l} b_{i+j+l-m} b_{i-m+n}\end{array}\}$.

Th$e\tilde{M}_{11},\tilde{M}_{12},\tilde{M}_{21},\tilde{M}_{22}$ are submatrices of $M_{11},$ $M_{12},$ $M_{21},$ M_{22}, respectively. Then,

the determinant in (A3) can be written as

$||||b_{n}$

.
$b_{j+2.-m+n}$

$b_{i+1-m+n}|_{1}||$

b_{n} . . b_{j+1} b_{i}

1

1 (A4)
1

1

1

1

1
$\tilde{M}_{11}\tilde{M}_{22}-\tilde{M}_{21}\tilde{M}_{12}$ 1

1

1

1

1

$p_{t^{\wedge}}$

72

References

1. Collins, G.E., “Subresultants and Reduced Polynomial Remainder Sequences,” J.

ACM, vol. 14, p. 128, 1967.

2. Brown, W.S. and Traub, J.F., “On Euclid’s Algorithm and the Theory of

Subresultants,” J. ACM, vol. 18, p. 505, 1971.

3. Brown, W.S., “The Subresultant PRS Algorithm,” ACM Trans. Math. Soft., vol.

4, p. 237, 1978.

4. Heam, A.C., “Non-modular Computation of Polynomial GCDs Using Trial Divi-

sion,” in Lec\’iure Notes in Comp. Sci. (Proc. of EUROSAM’79), vol. 72, p. 227,

1979.

5. Brown, W.S., “On Euclid’s Algorithm and the Computation of Polynomial

Greatest Common Divisor,” J. ACM, vol. 18, p. 478, 1971.

6. Moses, J. and Yun, D.Y.Y., “The EZ GCD Algorithm,” in Proceedings of
ACM’73, p. 159, 1973.

7. Wang, P., “The EEZ-GCD Algorithm,” SIGSAM Bulletin, vol. 14, p. 50, 1980.

8. Zippel, R., “Probabilistic Algorithms for Sparse Polynomials,” in Lecture Notes

in Comp. Sci. (Proc. of EUROSAM’79), vol. 72, p. 216, 1979.

9. Char, B.W., Geddes, K.O., and Gonnet, G.H., “GCDHEU: Heuristic Polynomial
\S

GCD Algorithm Based on Integer GCD Computation,” in Lecture Notes in

Comp. Sci. (Proc. of EUROSAM’84), vol. 174, p. 285, 1984.

10. Gianni, P. and Trager, B., “GCD’s and Factoring Multivariate Polynomials Using

Grobner Bases,” in Lecture Notes in Comp. Sci. (Proc. of EUROCAL’85), vol.

204, p. 409, 1985.

11. Buchberger, B., “Grobner Bases: An Algorithmic Method in Polynomial Idel

Theory,” in Multidimensional Systems Theory, ed. Bose, R., Reidel Publishing,

1985. Ch.6.

$d^{\backslash _{-}}/$

73

12. Sasaki, T., “Some Algebraic Algorithms Based on Head Term Elimination over

Polynomial Rings,” paper presented at EUROCAL’87, Leipzig, June 1987.

13. Sasaki, T., “Extended Euclidean Algorithm and Determinants,” preprin\’i of ICPR

(unpublished), 24 pages, 1982.

$\vee\sim_{l}$ a

