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Nonlinear Nonautonomous Differential Equations
By Naoki TANAKA (H & #E & )
( Waseda University, Japan )
Introduction.

Let X be a real Banach space with norm |[|.|| and let C =
C([-r,0]:;X), 0<r<«x, be the Banach space of all continuous func-
tions from .[-r,0] into X. We denote the norm of ¢ ¢C by ||¢ HC’
ice, |loll ¢ = supg [y gyl 0@l -

This paper is concerned with the abstract nonlinear functional
differential equation

u'(t) + A(t)u(t) » F(t,ut), t e[s,T] (s=0)
(FDE3¢) ¢

u, = ¢,
where u:[-r,T] »X is the unknown function; {A(t); t ¢[0,T]} is a
given family of operators in X; F:[0,T] xC~+»X is a given function;

¢ is given in C. The symbol u, denotes the function ut(e) =

t
u(t+e), 6 e[-1,T].

We assume that the following conditions (A.l) — (A.4) hold:

(A.1) There exists a constant o, such that for each t ¢[0,T],

0

A(t) + a, is accretive and R(I + MA(t)) = X for 0« x<:1/max(0,a0).

0
(A.2) There are a continuous function h:[0,T] - X which is of
bounded variation on [0,T], and a monotone increasing continuous

function le[o,w)-+[o,m) such that
HAk(t)x - AA(T)XH < ||h(t) - R[] L ClIx]} )@ +|'AA(T)X1|)

for 0< X< 1/max(0,a0), t,t €e[0,T] and x ¢X, where

1

J, () = (I +AA(£))™" and A (1) = A - g ().

(A.3) There exists a constant Bo> 0 such that for ¢,y €C

and t € [0,T], |[F(t,¢) - F(t,0)| sByll ¢~ vl -
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(A.4) There are a continuous function k:[0,T] + X which is of
pounded variation on [0,T], and a monotone increasing function
Lz:[O,m)-+(0,m) such that for t,t é[O,T] and ¢leC,

IF(ts0) = F(,0) ]| < [IK(t) - k(|| L, [lo]] o)

The,purpose of this paper is to show the existence of a gene-
ralized solution of (FDE;¢)S. In particular, in case X’is reflexive,
we show that the generalized solution is the strong solution)of
(FDE;¢)S.

/ Recently, Kartsatos [6] has proved the existence of the evo-
lution operator associated with (FDE;¢)S under the following con-

ditions (B.2) and (B.3) instead of (A.2); (A.3) and (A.4).

(B.2) There exists an increasing continuous function L:[0,»)
+ [0,2) such that for all A>0, x.eX, t,t e[O,Tl,‘
HAA(t)x f‘Ak(T)xlls |t -] LC|x]})@ + || AK(T)XlI)-

(B.3) There exists a positive constant b such that

“F(Tsfl) - F(t:f’z)” < b([t-t] + ||f~1 - fz” C)

for every t,t €[0,T], £1,£, «C.

In order to apply the method of sﬁccessive approximations td
(FDE;¢)S, he essentially used conditiohs'(B.Z) and (B.3) which
imply that Ax(t)x and F(t,f)‘are Lipschitz continuous in t. How-
ever this method does not seém to be directly applicable uhder
(A1) — (A.4). Also, it has not been proved that the generélized-
solutions in the sense of Kartsatos are weak solutions, except
on a small interval in which they are Lipschitz Cbntinuous. (For
a refined definition of weak solutions, see Definition 2.)

Now, in order to improve these points, we use the nonlinear

evolution operator theory of Crandall and Pazy [2] as the main
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tool for solving (FDE;¢)S. Various author have so far considered
(FDE;¢)S underdiffefent setting in nonlinear operator theory,.
(For example, see [3,4,10].)

This paper consists of three sections. In section 1, we recall
the nonlinear evolution operator theory. In section 2, we show
that the existence of generalized solutions of (FDE;¢)s and it is
represented as the uniform limit of a sequence of strong solutibns
of the approximating equations for (FDE;q))S involving the Yosida
approximations., Finally, in section 3, we investigate.some pro- .. .
perties of generalized solutions and consider weak solutions and
give the exiétencé for strong solutions of (FDE;¢)S when X is

reflexive. .

1. Basic concept of nonlinear evolution operator theory

We discuss briefly some concepts in the nonlinear evolution
operator theory. Let Y be a.Banach space with || [|y. A family
{V(t,s); 0<s<t<T} of operators Vtt,s): Y+Y is said to be a family
of operators, if |

V(t,t)y = y for ail y €Y and t € [0,T],

V(t,r)V(r,s) = V(t,s) for 0<s<r=<t=<T,.

Let {V(t,s); 0<s<t<T} be an evolution operator and define the
operator B(t) by |

D(B(t)) = {y €Y; 1lim (1/h) (V(t+h,t)y - ¥) exists}

h~>0+
~-B(t)y = limh*0+(l/h)(V(t+h,t)y - y) for y €D(B(t)).
If D(B(t)) is non-empty for each t= 0, then the family -B(t) is

said to be the infinitesimal generator of V(t,s).
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Consider the problem (FDE;¢)S. Suppose that for every ¢ eC

and sz 0, (FDE;¢)S has the unique solution u(s,¢)(+) and that
A(t) and F are continuous. Then one can find that the infinitesi-

mal generator of the evolution operator V(t,s), defined by

V(t,s)¢ = u.(s,¢) is given by

D(A(t)) = {6 <C; ¢' C, ¢(0) eD(A(L)),
(1.1) 9" (0) + A(t)¢(0) » F(t,9)}

o

A(t)y = -¢'.

Conversely, given the family A(t), we shall prove that under
suitable conditions on A(t) and F, A(t) generates'an evolution
operator V(t,s) such thaf V(t,s)é gives the segments of a solution
of (FDE;¢)S. This will rely on the following result due to
Crandall — Pazy [2]. |

A subset B of YXY is in class A(w) if for eaéh A >0 such that
\w>1 and each pair [y;,z;] €B, i=1,2, we have
(1.2) [l Gy + Azq) - gy * Az) lly2 (X - 2 [ yy = vyll ye
B is called accretive if B €A(0). Also, (1.2j_impiies that
(I + >\B)'—l exists on R(I +'AB) and is a Lipschitz;an,with constant
(1 - 20)™. Let B €A(w) and R(I + AB) = Y for all 0<X s A,.
Define |By| by |By| = limx+0+[IBxyH y» Wwhere J, = (I + )\B)_1
and B, = A"1(I - J,). (Note that this limit exists, although it
may be infinite.) For such B we define B(B) = {y €Y; |By| <=}
which is called a generalized domain of B.

Theorem 1. (Crandall-Pazy). Let T>0 and w be real number and

assume that B(t) satisfies the following conditions:

(C.1) B(t) eA(w) for 0<t<T,
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(C.2) R(I + 2AB(t)) =Y for 0<t<T and 0< ) < Ago where Ao > 0
and }\Ou)< 1,

(C.3) There are a continuous function £:[0,T] Y which is of
bounded variation on [0,T], and a monotone increasing function L:

[0,0) ~ [0,o) such that

IA

1B, (©)y - By (1)y [ly = [[£(6) - £Co) [[yLC[¥][ ) L + [[B, (0¥ y)

for 0< )< Ap? O0<t,t<T and y €Y.
Then

n t - s t - s.y4-1
(1.3) V(t,s)y = lim 1T (I + (=5—=)B(s + i(=x—))) 7y

n>eo i=1
exists for y eD(B(t)) and 0<s<t<T. The V(t,s) defined by (1.3)

for 0<s<t<T and by V(t,t) = I for 0<t<T is an evolution ope-

rator on D(B(t)).

2. On the existence of generalized solutions of (FDE;¢)S

We define for each t ¢[0,T] an operator K(t):D(R(t))c:C-*C by
(1.1).

Proposition 1. Suppose that conditions (A.1)-(A.4) hold. If
{K(t); t €e[0,T]} is the family of operators defined in C by (1.1),
then there exists a family of nonlinear evolution operators

V(t,s): D(A(t)) < C+C such that for all ¢ eD(A(t))

n A
lim T (I + (2=S)aes + i(=—3)"%
nre i=1 n n
(2.1) V(t,s)e = | 0<s<tsT,
L ) 0<s=t=<T.

Proof. We are going to apply Theorem 1 for B(t) = A(t) and
Y = C. Under assumptions (A.1l) and (A.3) we can apply [11l, Pro-
position 1] to show that A(t) eA(wO) for t [0,T] and

R(I + AA(t)) = C for 0<A< l/wo, where wg = max(O,aO+80). Thus
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;onditions (C.1) and (C.2) hold for R(t). Next, by using the same
érgument as in [4, Theorems 12 and 13] and the inequality

|h(t) = h(z)|| + ||k(t) - k()| < |g(t) - glr)|, where g(t) =
var ([0,t];h) + Var([0,t];k) and Var([0,t];h) denotes the total
variation of h on [0,t], we will show that K(t) satisfies (C.3)
with B(t) = K(t) and f(t) = g(t)I, where I denotes the identity

in X. To this end, set ¢(t,+) = (I + A(t)) Ty,» eC. Then we have

0

o (t,8) = e 2g(x,0) + f e (578N (s) ds, and by ¢(t,-) <

5]
D(A(t)), we have ¢(t,0) = y(0) + a¢'(t,0) = p(0) - AA(t)¢(t,0)

+ AF(t,0(t,+)), i.e., ¢(t,0) = (I + AA(t))-l(W(O) + AF(t,9(ts+))).
Now, for 0<X <1 with Awg < 1/2,
Il 9(t,0) = ¢(T,0)]|

ll ¢(t")’- ¢(T")IIC

+

1T+ AA(e)) "h(p(0) + AF(t,4(t,)))

(I + AA(0)) T @0 + AF(r,0(r, NI

N

AL - aag) HIF(t,6(t,0)) - F(t,0(t,)) ]
+ 2 |[h(t) = h(e) || L C[w0) *+ AF(t,0(t,+)) )
x (1+ [JA (@) + AF(t,0(t,-))) ][ ).

But,

A () W(0) *+ AF (T, (t, D) ]|
=27 [900) + AF(r,6(t,0)) - I, (1) (6(0) + AF(T,6(r,+)) |
s 1A @l g+ IFFGLetn N0
which implies that
o (t,+) - o) ]| ¢

S VCRE T Rl I FYCRS B CA I [
+ “k(t) = k(T)Ile( H¢(T")llc)] +
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A flh(e) - h() [ Ly Cp O] + A ||F(ts9(t,-0)]] )

x 1+ |IA (@]l g+ lIFe,)])-

Thus there exists a constant K1 such that

(2.2) ,lf¢(t,-) - o(t,°)]] ¢

< Kps®) - g [+ IR (0]l L, ()|

oy (e ()] ILyClwO) ]| + A ||Flrse (x>0 D1,

. Suppose that y ¢C and bg ED(K(O)). Then ||F(t,x)|| =

Bol lIxll ¢ * Il ogll ¢I * k() = kCOY|| LyClogll ) + 1IFC0,00) ]

and hence TIF(T’X)II is bounded by an increasing function of

| x|l ¢+ It remains to prove that || ¢(t,+)|| o sLs(|| || ) for

some monotone increasing function L;. From (2.2), || ¢(t,*)|[ o=
< 11000, )| ¢ * Kpalgle) = g0 |11 + [|A, (0]l (] =
L e 9 ¢

£ [ EQ,800,m ) [ 1 ([ 9 (O] *+ A F(0,6(0,+)[] )]-
However Al| R (vl ¢ = [l = 3,0l ¢ <llwll ¢ * Il 6C05 ) ¢

and if ¢, eD(A(0)) then
1600, ) |l ¢ = Il (@ + xR0 Yyl ¢

A

(1 - 2w W - ogll g * AILRegl ¢ * 1l ool ¢

IA

KU wll ¢+ 1l egll ¢ * I A(0ggll (] for some Ky,

which implies that

]]¢(O,-)||C is bounded by a monotone increasing function of

| | g~ Thus A(t) satisfies (C.3) with B(t) = A(t) and £(t) =
g(t)I. Therefore, the conclusion of the pfoposition follows from

Theorem 1. ’ Q.E.D.



Note that, as was proved in [5], 5(R(t)) is independent of t
 pecause R(t) satisfies (C.3) and also 5(A(t)) is independent of
t because of (A.2). In what follows, ﬁO

and D stand for a genera-
1ized domain of K(O)‘and A(0), respectively. |

As in [3, Proposition 1], we have the following
Proposition 2, Suppose that conditions (A.1)-(A.4) hold.
If u(s,9) (") for each ¢ 550 and s> 0 is defined by
(2.3) u(s,s) (t) = ¢ (t-s) s-r<tc<s,
(V(t,s)¢)(0) s<ts<T,

where V(t,s) is as constructed by Proposition 1, then

u(s,0) (+) eC([s-r,T];X) and V(t,s)¢ = u,(s,¢) for t e[s,T].

Remark. We introduce the following'strqnger conditions than
(A.1)-and (A.2):

(A.1)'" There exists a constant ag > 0 such that for x,y €X,

|| ACt)x - A(t)y]| 51x1H x - y|

(A.2)' There are a continuous function h:[0,T] » X which is

of bounded variation on [0,T] and a monotone increasing continuous

function L4:[O,w)—>[0,w) such that
I A()x - ACOx]| < [[R(t) - h() ]| L Cllx]] )@ + || A(x]] )
for all t,T ¢ [0,T] and x eX. | |

Since (A.1)' and (A.Z)'/imply (A.1) and (A.2), Propositions 1 and

43

2 hdld, although (A.1) and (A.2) are replaced by (A.1)' and (A.2)'.:

Next, we recall the following expression for DO'
Lemma 1 ([4, Theorem 10]). Let A(t) and F(t,¢)‘satisfy
conditions (A.1) and (A.3). Then

A

Do = {¢ €C; ¢ is Lipschitz continuous function .and ¢ (0) €D}.
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Remark, If ¢ is Lipschitz continuous function and ¢(0) €D,

then the function defined by (2.3) is a Lipschitzian. In fact,
for such ¢, by [2, Proposition 2.3] and Lemma 1, there exists a

constant K such that for 0<ss<t,t<T, V(t,s)e - V(r,s)¢|]c <

< K|t - 1|. So that our assertion holds.

Definition 1. A function u(s,¢)(+) ¢C([-r,T];X) is said to be
a strong solution of (FDE;¢)S if it is an absolutely continuous
function is which differentiable a.e. on [s,T] and satisfies

(FDE;¢)S a.e. on [s,T].

We shall first prove the following uniqueness result for
strong sqlutions of (FDE;¢)S.

Proposition}SF TAsSume that {A(tj;.t e[O;T]}vand F:[O,T]><C
> X‘sat%sfy conditions (A.1)-and (A.3). Then there exists at most

one strong solution ofv(FDE;¢)s.

Proof., Let u(s,¢)(t) and v(s,9)(t) be two strong solutionék
of (FDE;¢)_. Then [lu(s,4)(t) - v(s,0)(t)|| is differentiable
a.e.t and (d/dt)llu(5,¢)(t)b‘ V(3,¢)(t)1| - |

[uls,¢) (t) - v(s,0) (t),u'(s,4)(t) - v'(s,¢)(t)]_

A

[uCs,¢) () - v(s,9)(t),F(t,u . (s,¢)) - F(t,v (s,4))],
- [u(5,¢)(t) = V(S’¢) (t),F(t,ut(s,¢)) B U.'(S,d))(t)
- F(t,v,(5,0)) *+ v'(s5,0) (8],

By A(t) sAQxO) and (A.3), we obtain that
(d/dt) |{u(s,¢)(t) - V(s,¢)(t)H

< (ao + BO)H ut(s,¢) - vt(s,¢)llc a.e.t €[s,T],
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supg [s-r, 7]l 8520 (8) - v(s,0) ()]

<

{'(uo * BO)JE SUPg s-1,7] 18(5,4).(8) - v(s,0)(8) ] dr
if ag * By > 0,
[ 0 B otherwise.
By Grownwall's inequality, we have that |
SUPg [s-1,T] [U(5:9)(8) - v(s,9)(8)]| = 0, i.e., uls,0) = v(s,9).
Q.E.D.

We next prove the existence of strong solutions to (FDE;¢)S
under stronger conditions than those in Propositions 1and 2.

Proposition 4. Supposé that conditions (A.1)',(A.2)', (A.3)
and (A.4) hold. If u(s,¢)( ) is the functlon defined by (2. 3),

then u(s,o) () eC ([s-r,T]; X) and satisfies

(2:4)  u'(5,0) (8) *+ ACE) (u(s,8) (£)) = F(t,u,(s,9))"

for t ¢ [s,T] and for all ¢ eLip={¢ ¢C; ¢ is LipschitZ'continuous}.

rProof. By Remark after Proposition 2, {V(t,s); Oss<t<T}
defined by (2.1) isﬁan.evoiution-6perétor. We apﬁroximate V(t,s)
by the evolution operator VA(t;s)‘géneratéd by Rx(t) = R(t)SA(fj
1(I - 3 (t)). From [2, Lemma 4.2], we see that forﬁ¢ eﬁo,
1i m o+ A(t s)¢ = V(t,s)? uniformly in t e [s,T].
Also, the approximate problem | '
ut(t) + A (D, (£) = 0, t e[s,T], u,(s) = ¢,
has a unique continuously differentiable solution u, (t) = v, (t,s)9.

Hence, we have that

t A t A
NS T N O NN TR L I I CONOIN GBS
: S S

- 10 -
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Taking account of the definition of D(A(t)), we obtain that
(2.5)  (V, (t,5)9) (0) = ¢(0)
- jt [A) (3, (1V, (1,5)6) (0) = Flx,J, (1)V, (x,5)¢)] dr.
Now, by (Z.l)' and (A.3), we see that

t A
I = f | A (3, (1)V, (1,5)9) (0) - A7) (V(t,s)9)(0) ]| dr

t A
s o js 13, ()Y, (1,806 - V(t,8)¢]| ¢ du

t ~
2 JSIIF(T’JA(TIV%(T’S)¢ - F(t,V(r,8)¢)|| de

- qt N , .
8, js 13, ()Y, (2,808 = V(x,s)e]l ¢ dr.

A

Let ¢ GBO; note here that ¢ ¢Lip by D(A(t)) = X and Lemma 1.

For each 1 ¢[s,T], we have for ) with Awy < 1,

I

5 = 113, (0)V, (x,808 = Vir,8)e]l ¢

@ = awp) MY, (L8)8 - V(n,8)el

IA

* “SA(T)V(T,S)¢ - V(t,8)0|l o » Where w; = a; *+ B
By [2, Proposition 2.4], Vtr,s)¢ ;50 for 5 EBO' This implies that
the sécondvterm of.tﬁe abovebineqﬁalityytends to zéro as A-+O+.u
Hence I3-+O’as A4¥0+- | |

Next, we note that

(2.6) |13,V (r,9)0]] ¢
< (- MV, (696 - ol ¢+l T, (0]l ¢
Since (C.3) is satisfied with B(t) = A(t) and £(t) = g(t)I,

it follows that

- 11 -
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(2.7 |19, (el ¢

A

13 ol ¢ * Al8G) - 8Ll o]l P+ || & (o]l )

A

VA (el ¢ * ol ¢

*afel) - gL ol A+ || A ()ell )

A

(- awp) RG]+ el ¢
#alg() - SL( o]l O+ (- awp) MRS

Besides, ‘since Limk+o+{supT€[s,T] I VA(T,S)¢ - V(t,s)¢]] C}'= 0,

we see that there exists Al such that if 0< ) < Al’

sup_ e[S;T]“ VA(T’S)¢ - V(t,s)¢]|| c < 1. Thus it follows from (2.6)
and (2.7) that suP0<x<A1(suPTe[s,T] I JR(T)VX(T,S)¢“ C) is
bounded. By the Lebesgue's dominated convergence theorem, we

+0 and I

obtain that I + 0 as A~ 0+. Therefore, letting ) - 0+ in

1 2
(2.5) yields (2.4). | o Q.E.D.

Remark, In general setting u(s,¢)(+) defined by (2.3) neéd
not have a strong derivative. We may have regard the function
u(s,$)(t) as a generalized solqtion'of (FDE;{p)S and investigate
'the meaning of gehefalized solutions, For convenience, the function

u(s,¢)(t) defined by (2.3) is called a generalized solution.

Now, we consider the approximate problem

ul(t) + A, (t)u,(t) = F(t,u, ) t e[s,T]
*ug =0,
Bs
where As(t) is the Yosida approximation of A(t).
We define AP(t): D(AP(t))<C~C by
Af(e)e = -0

DARP()) = (8 €Cs 87 €T, 67(0) + AL(E)6(0) = F(£,0))

- 12 -
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Clearly AB(t) satisfies the conditions of Proposition 4 with

ay = 3-1(1 + (1 - Bao)—l); see [2, Lemma 1.2]. Therefore, there
exists a family of nonlinear evolution operators {Vs(t,s); 0<sx<
t< T} generated by AB(t). If u, (s,4) (+) is defined by

. p(t - s) s-r<tgs,

{ (Vs(t,s)¢)(0) s<tgT,

then u8(5,¢)(t) is the strong solution of (PDE;¢)§ and by Propo-

uB(s,¢)(t) =

sition 2, VB(t,s)¢ = uB (s,¢) for s<t<T and ¢ ¢Lip. By the
t

proof of [2, Lemma 4.2], lim _+0+(1‘+ AAB(t))-lx = (1 + AA(t))—lx

B8 ,
for x ¢X and sufficiently small A. Thus, by [10, Lemma 3.2], we
. . N -1 n -1
obtain that lim, o (1 + MB(£)) Mg = (1 + AA(t)) e for ¢ <C

and small ). Also, it follows from [2, Lemma 4.1] that AB(t)
satisfies (A.1) and (A.2) uniformly in g8, sufficiently small and
hence Kg(t) satisfies (C.1)-(C.3) uniformly in B8, sufficiently
small. (To speak more carefully, by the same way as Proposition 1,
we have thaf
Nog(es) = o 0,0l ¢
< Kpife(t) - gL+ [AE (]l (1ILy(]] 6gCr, )] Q) *

(1 || F(sog (e DL (w0 ][+ Al Flro,(t, D)),
where ¢ (t,+) = (1 + AB () Ly, v ec,
and if y ¢C and %0 eD(A(0)) then
|| F(t,x)|| 1is bounded by an increasing function of || x||..

Now, in this case, we must prove that

(z.8) l‘¢80r")H C < Ls(llwllc)
for some monotone increasing function LS' However, since

Ling | g, (1 *+ AMB(t)) 1y = (1 + AA(E)) Te for all ¢ eC,

l|¢B(T,')H c < oG, )]l o+ 1 for all small g, Therefore,

- 13 -
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using ||¢(T’°)!l(;5 Ls(llelcj (see, Proposition 1), (2.8)‘is
proved and hence AB(t) satisfies (C.3) uniformly in g.) We can
apply the Crandall-Pazy approximation theorem [2, Theorem 4.1]
to give 1im6_>0+V8(t}s)¢ = V(t,s)¢ for all ¢ eDO. Therefore, by

proposition 2 and Lemma 1, we have that

Theorem 2. Let ¢ eLip with ¢ (0) {B. Suppose that {A(t); t e
[0,T]} and F:[0,T] x C+X satisfy conditions (A.1)-(A.4). If
u(s,9) () is a generalized solution of (PDE;q;)s then
u(s,¢)(t) = limB_+O+uB(s,¢)(t) uniformly in t e[s,T], where

uB(s,¢)(-) is the strong solution of (FDE;¢)§.

3. Properties for generalized solutions and existence of

weak solutions and strong solutions.

Our first result in this section is on the comparision of

two generalized solutions.

Theorem 3. Let ¢, eLip with ¢.(0) €D for i= 1,2. If
u(s,¢i)(-) is a generalized solution of (FDE;¢i)S, then we have
’-aot'
(3.1) e ° Jluls,67)(£) = u(s,e,) (£)]]
=0T

~e O luls,e) (1) - uls,e,) (D

t  -a,g : - ' o :
s [ e Culs,8)) (@) - uls,0,) (6),F(E,ug(5,07)) - E(E,ug(5,00)], ¢
T | T \

for s<t<ts<T, where the symbol [x,y], is defined by

: ) -1 ~—
[x,y], = lim o A72CHx + Ayl - [Ix]]) for x,y eX.

Proof. Let uB(s,¢i)(t) be the strong solution of (FED;¢i)§

such that lim8->0+u8(s’¢i)(t) = u(s,¢i)(t) uniformly for t e[s,T].

- 14 -
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Then || uB(s,¢11(t) - uB(s,¢2)(t)H is differentiable a.e.t ¢ [s,T]
and (d/dt)|| UB(5,¢1)(t) - UB(S,¢2)(t)H

= [og (5,6 (8) - 0 (5,050 (€, ~Ag(8) (ug (5,6 1) (8] *+ F(,uy (5,91))

A (E) (ug (sy9,) (1)) - F(t’uﬁt(s’¢2))]-*

where [x,y]_ = -[x,-y],.

. -1 .
Since [x - y,AB(t)x - As(t)y]+ < -uo(l - Bao) | x - ¥y]l ,» it
follows that

(d/dt)” u8(57¢1) (t) - u8(5’¢2) (t)H
< ag(l = Bug) I ug(5,6) (1) - ug(s,0,) ()]
* g (5,01) (8) = up (5,0 (€),F(E,up (5,81)) = E(t,ug (5,8,))],
Integrating the above inequality, we have for s<t=<t=<T,
I ug (5560 (1) = ug(s,0) ()1 = ] ug(s,67) (1) = ug(s,6,) (M|
< ay(l - ag "t ftH U (s,61) (8) - uy(s,9,)(E)]] de
0 0 < g 7271 BrT’T2

t
(e @) - (0 ©),F Gy (5,00)) - F(Esug (5,0,0)), &,
Letting B~ 0+ in this inequality, we see that for sst=<t=<T,

(3.2) [l uls,6)(t) - u(s,0,) ()] - |[uls,0;)(x) - uls,0,) ()|

t
s ap | a6 @) - uls,e) @1 de
T
t
- jT [u(s,07) (E) = u(s,6,) (6),F(5,u,(5,67)) - F(E,u (s,6,))], dE.

By the standard argument one can prove that (3.2) implies (3.1).

(For example, see [9].) Q.E.D.

The following theorem gives the existence of integral solutions.

- 15 -
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Theorem 4. Let u(s,¢)(*) be a'generalized solution of (PDE;¢)S.

Then the following inequality holds:

-O.I'Ot "QLO'[ . '
(3.4) e || u(s,9)(t) - x|| ~e = | u(5,¢)(r) - x|

ft et
) j e TIu(s,0) () - x, F(g,u(s,0)) - Y1, * 0(g,1)} de

T
for sst<t, [X,Y] EA(r)’ r 5[03T]’
where 6 (£,7) = Ly (|| x|| ) [[h(g) - h(x)|] (L + [[¥]])-

Proof. Let u(s,$)(?) be a generalized solution of (FDE;¢)S.
By Theorem 2, limB_*0+uB(s,¢)(t) f u(s,¢)(t) wuniformly for t «
[s,T], where uB(s,¢)(t) is the strong solution of (FDE;¢)§. Let'
[x,y] €A(r) and set Xg = X *+ gy. Note that x = JB(r)xB and y =
AB(r)xB, where JB(r) and AB(r) are the. resolvent . and the Yosida

approximation of A(r), respectively. Then

(d/de) [lug(s,9) (£) - x|

[ug(5,0) (£) = X, = Ag(£) (ug(5,6) (£)) + F(t,ug (5,001

1

A

[ug (5,0) () = Xg, -Ag(£) (ug(s,0) () + ¥]_

* [U-B(s,d))(t)' - XB’ F(t,usf(s’¢)) - Y]_,_

IN

871 (lug (5,00 (1) = xg + B(-A (2) (ug(5,6) (£)) + Y|

HuB(s,¢)(t) - XB“ ) + [u5(5,¢)(t) - XB; F(t,u8£(§,¢)) - yl,

1

57110, (6) (g (5,0) (80) = Ty ()xgll - llug(s,0)(8) = xgll)

+

[ug(s,6) (£) - xp, Ft,ug (5,0)) - ¥l,

LyClixgll ) [IR(e) - B 2+ iyll)

<4

ag(l - Bag) ™ llug(s,0) (1) - xgll

+

[ug (5,6 (8) - xg, F(t,ug (s,0)) = ¥, by A(t) eflap) and (A.2).

- 16 -
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;ntegrating these inequality over [t,t]c< [s,T],

g (556 (&) = x| = Jlug(s,0) () - x

Il ol

t . : : ‘ _
RN EN B RIG IR YOI PP
T

*ag(l = gog) T [uy (s,6) @) - x|

+ [uB(s,¢)(£) - x,, F(g,u g(s,cp)) - yl,} dg.

B’ B

Letting g+ 0+, we see that for s<t=<t=<T,

(3.5)  JluCs,$) () - x|} - ||u(s,¢)(x) - x||

t “ _
< [ ([u(s,6) (6) - X, Fle,u,(s,0)) - ¥], * 0(c,0)} de

T
t - ,
rag [ lluts,e) @) - x|l de,
T -

which yields (3.4). Q.E.D

Next, we recall the definition of weak solutions in the sense
of Kartsatos and Parfott [6,7] aﬁd consider fhe existence of weak
solutions of (FDE;¢)0.

Definition 2. A function u(t) €eC([-r,T];X) is said to be a
weak solution of (FDE;¢), if u(t) = ¢(t) for t e [-r,0] and
vi(t) + A(t)v(t) 5 F(t,ut), t €[0,T]

v(0) = ¢(0)

(DE)

has a solution v(t) in the sense of Evans [5] such that

v(t) = u(t) for t €[0,T].

Remark. By definition and [5, Theorem 3], there exists at
most one weak solution of (FDE;¢)O. Indeed, if ul(t) and uz(t)

are two weak solutions, they satisfy the integral inequality

- 17-.
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Jup(®) = w1 < [ [[Feu
0 T

Thus, by (A.3) and the Grownwall inequality, ul(t) = uz(t) for

te[0,T].

Theorem 5. Suppose that {A(t); t e[O,T]}‘Satisfy (A.1) with
ag = 0 and (A.2) and F:[0,T] x C+» X satisfy (A.3) and (A.4). If
¢ € Lip and ¢ (0) eﬁ, then (FDE;¢)0 has a unique weak solution.

Proof. It suffices to show a generalized solution u(0,¢) (t)
of (FDE;¢), is a weak solution. Note that ta-F(t,ut(O,¢)) is of
bounded variation by (A.3) and (A.4) because u(0,¢)(t) is Lipsch-
itz continuous. Then (DE) has a solution v(t) in the sense of
Evans, i.e., there exist sequence {ti} and {uﬁ} such that

n n

Ug =~ Ugq
n

hy

+ A(ti)ui 5 F(tﬁ,u 1(0,4)), where hi = th -t g
t ‘ .

k

i)

n

ii) the step functions Vn(t) (=zu, on (tn ,tn]) converge uniformly
Tk k-1°"k'7. 77

on [0,T] to v(t).

Note here that
n n
n Ux 7 Uk-1 n v
M =max {sup ||ug|l , sup]|| —a F(ty,u (0,0))]] } < =

K | tx
(See [5, Proof of Theorem 2].)

Let vi eA(tﬁ)ui. By (3.5) we see that

lu(o,6) (t) = wpll - |lu(0,6)(x) - uf]
t , ~ : . :
< [, @ - FEug0,0)) - Vi, e (Est)
T . . :

t
+ aojT lu(0,¢) (&) - ulll g,

- 18 -

) - F(r,u, )|| dr. (See [5, (8.3)].)
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where Ql(g,r)‘= MlHFh(g) - h(r) || and M, = Ll(M)(l + M).
Since M [u(0,4)(g) - up, F(E,u.(0,4)) - vil,
< JJu04) (&) - we_g |l - Jul0,0) (&) - upl]

P, (0,0)) - Flegu (0,00

ty
it follows by the standard argument that
0 ‘ ,
fti C(u(0,0) (8 = Vi)l - [[u(0,6) @) - Vi) ) dn
| t n, n., ’ n
s [T Al e - EDI - uoe)E) - b)) &
T. K . :

t? ot |
* J ﬁ[ lag lu(0,6)€) - vl +o7E.n)
J : ‘
| P&,y (0,6)) - FP()|[ ) & dn,

where e?'and Fn are functions defined by

81Em) =6,(E,t) forn e(ty q,ty]

and

Fnﬁq) = F(tk,u (0,0)) for n e(ti_l,ti], respectively.
Ty : ' - :

Letting t?-+t', t?+Jr' as n+o~ and applying [8, Proposition 2.5]

we obtain that u(0,0)(t) = v(t) for t ¢[0,T]. : Q.E.D.

Finally, we consider the existence of strong solutions of

(FDE; ¢) -

Corollary 1. Let ¢ eLip with ¢ (0) eBQ Assume that {A(t); t e
[0,T]} and F:[0,T] x C+ X satisfy conditions (A.1)-(A.4). If X is
reflexive, or, more generally, X satisfies the Radon-Nikodym

property, then (FDE;¢)S has a unique strong solution.

- 19 -
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Proof. By virtue of TheoremAZ,vthere exists a generalized
solution u(s,¢)(t) and by the Remark after Lemma 1, u(s,¢)(t) is
Lipschitz continuous and hence u(s,¢)(t) is differentiable a.e.t ¢
[s,T]. Now, let h> 0 andvto‘be any inntbat which u(s,¢) () is |

differentiable. Putting t = r = t, and t = t, + h in (3.5), we

0 0
see that
luss9) (g * h) - x|| - [lu(s,6)(ty) - x|
' td+h o , ) o |
s [0 (s @) - x, Fle,u(5,00) - ], ¢ et} &
t P ) |
0

t,+h : L _
o] O luGs,0)(8) - x| de for [x,y] cAlty).
t 0 | .
Dividing the above inequality by h and letting hy 0, it follows

[uls,4) (tg) - x, u'(s,¢)(t)],
S [ls:0) (tg) - x, Flrgouy (5,00) = vl * ag [[u(s,0) (tg) - x|l ,
ice., for [x,y] eA(ty)
(3.6 [a(s,9) (tg) = x, ~u'(s,8)(80) * F(t05u£0cs;¢); |
+ aoﬁcs,¢)ct0).- (aoxl+ Y)i+2 o.

By condition (A.1), it is easy'td see that A(tO) *lag is
m-accfetive. Therefore; by (3.6), we see that
u'(s,0) (ty) + A(ty) (uls,8) (tg)) » Flty, ug (559))-

. | | 'Q.E.D.
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