Nonlinear Nonautonomous Differential Equations

By Naoki TANAKA (田中直樹)

(Waseda University, Japan)

Introduction.

Let X be a real Banach space with norm $||\cdot||$ and let C = C([-r,0];X), $0 \le r < \infty$, be the Banach space of all continuous functions from [-r,0] into X. We denote the norm of $\phi \in C$ by $||\phi||_C$, i.e., $||\phi||_C = \sup_{\theta \in [-r,0]} ||\phi(\theta)||$.

This paper is concerned with the abstract nonlinear functional differential equation

(FDE;
$$\phi$$
)_s $u'(t) + A(t)u(t) \Rightarrow F(t,u_t), t \in [s,T] (s \ge 0)$
 $u_s = \phi,$

where $u:[-r,T] \to X$ is the unknown function; $\{A(t); t \in [0,T]\}$ is a given family of operators in X; $F:[0,T] \times C \to X$ is a given function; ϕ is given in C. The symbol u_t denotes the function $u_t(\theta) = u(t+\theta)$, $\theta \in [-r,T]$.

We assume that the following conditions (A.1) - (A.4) hold:

- (A.1) There exists a constant α_0 such that for each t ϵ [0,T], A(t) + α_0 is accretive and R(I + λ A(t)) = X for 0 < λ < 1/max(0, α_0).
- (A.2) There are a continuous function $h:[0,T] \to X$ which is of bounded variation on [0,T], and a monotone increasing continuous function $L_1:[0,\infty) \to [0,\infty)$ such that

$$\begin{aligned} & \left\| A_{\lambda}(t)x - A_{\lambda}(\tau)x \right\| \leq \left\| h(t) - h(\tau) \right\| L_{1}(\left\| x \right\|) (1 + \left\| A_{\lambda}(\tau)x \right\|) \\ & \text{for } 0 < \lambda < 1/\text{max}(0,\alpha_{0}), \ t,\tau \in [0,T] \ \text{and} \ x \in X, \ \text{where} \\ & J_{\lambda}(t) = \left(I + \lambda A(t) \right)^{-1} \ \text{and} \ A_{\lambda}(t) = \lambda^{-1} (I - J_{\lambda}(t)). \end{aligned}$$

(A.3) There exists a constant $\beta_0 > 0$ such that for $\phi, \psi \in C$ and $t \in [0,T]$, $||F(t,\phi) - F(t,\psi)|| \leq \beta_0 ||\phi - \psi||_C$.

(A.4) There are a continuous function $k:[0,T] \to X$ which is of bounded variation on [0,T], and a monotone increasing function $L_2:[0,\infty) \to [0,\infty)$ such that for $t,\tau \in [0,T]$ and $\phi \in C$, $||F(t,\phi) - F(\tau,\phi)|| \le ||k(t) - k(\tau)|| L_2(||\phi||_C)$.

The purpose of this paper is to show the existence of a generalized solution of $(FDE;\phi)_s$. In particular, in case X is reflexive, we show that the generalized solution is the strong solution of $(FDE;\phi)_s$.

Recently, Kartsatos [6] has proved the existence of the evolution operator associated with (FDE; ϕ)_s under the following conditions (B.2) and (B.3) instead of (A.2), (A.3) and (A.4).

- (B.2) There exists an increasing continuous function L: $[0,\infty)$ $\rightarrow [0,\infty)$ such that for all $\lambda > 0$, $x_{-\epsilon}X$, $t,\tau \in [0,T]$, $||A_{\lambda}(t)x A_{\lambda}(\tau)x|| \leq |t-\tau| L(||x||)(1+||A_{\lambda}(\tau)x||).$
- (B.3) There exists a positive constant b such that $||F(\tau,f_1) F(t,f_2)|| \le b(|t-\tau| + ||f_1 f_2||_C)$ for every t, $\tau \in [0,T]$, $f_1, f_2 \in C$.

In order to apply the method of successive approximations to $(\text{FDE};\phi)_s$, he essentially used conditions (B.2) and (B.3) which imply that $A_{\lambda}(t)x$ and F(t,f) are Lipschitz continuous in t. However this method does not seem to be directly applicable under (A.1)-(A.4). Also, it has not been proved that the generalized solutions in the sense of Kartsatos are weak solutions, except on a small interval in which they are Lipschitz continuous. (For a refined definition of weak solutions, see Definition 2.)

Now, in order to improve these points, we use the nonlinear evolution operator theory of Crandall and Pazy [2] as the main

tool for solving (FDE; ϕ)_s. Various author have so far considered (FDE; ϕ)_s under different setting in nonlinear operator theory. (For example, see [3,4,10].)

This paper consists of three sections. In section 1, we recall the nonlinear evolution operator theory. In section 2, we show that the existence of generalized solutions of $(FDE;\phi)_S$ and it is represented as the uniform limit of a sequence of strong solutions of the approximating equations for $(FDE;\phi)_S$ involving the Yosida approximations. Finally, in section 3, we investigate some properties of generalized solutions and consider weak solutions and give the existence for strong solutions of $(FDE;\phi)_S$ when X is reflexive.

1. Basic concept of nonlinear evolution operator theory

We discuss briefly some concepts in the nonlinear evolution operator theory. Let Y be a Banach space with $\| \|_{Y}$. A family $\{V(t,s); 0 \le s \le t \le T\}$ of operators $V(t,s): Y \to Y$ is said to be a family of operators, if

V(t,t)y = y for all $y \in Y$ and $t \in [0,T]$,

V(t,r)V(r,s) = V(t,s) for $0 \le s \le r \le t \le T$.

Let $\{V(t,s); 0 \le s \le t \le T\}$ be an evolution operator and define the operator B(t) by

 $D(B(t)) = \{y \in Y; \lim_{h\to 0^+} (1/h) (V(t+h,t)y - y) \text{ exists} \}$

 $-B(t)y = \lim_{h\to 0+} (1/h) (V(t+h,t)y - y) \text{ for } y \in D(B(t)).$

If D(B(t)) is non-empty for each $t \ge 0$, then the family -B(t) is said to be the infinitesimal generator of V(t,s).

Consider the problem (FDE; ϕ)_s. Suppose that for every $\phi \in C$ and $s \ge 0$, (FDE; ϕ)_s has the unique solution $u(s,\phi)(\cdot)$ and that A(t) and F are continuous. Then one can find that the infinitesimal generator of the evolution operator V(t,s), defined by $V(t,s)\phi = u_t(s,\phi)$ is given by

$$D(\hat{A}(t)) = \{ \phi \in C; \ \phi' \in C, \ \phi(0) \in D(A(t)),$$

$$(1.1) \qquad \qquad \phi'(0) + A(t)\phi(0) \ni F(t,\phi) \}$$

$$\hat{A}(t)\phi = -\phi'.$$

Conversely, given the family A(t), we shall prove that under suitable conditions on A(t) and F, A(t) generates an evolution operator V(t,s) such that $V(t,s)\phi$ gives the segments of a solution of $(FDE;\phi)_s$. This will rely on the following result due to Crandall - Pazy [2].

A subset B of Y × Y is in class $\bigstar(\omega)$ if for each $\lambda > 0$ such that $\lambda \omega > 1$ and each pair $[y_i, z_i] \in B$, i=1,2, we have

(1.2)
$$||(y_1 + \lambda z_1) - (y_2 + \lambda z_2)||_Y \ge (1 - \lambda \omega)||y_1 - y_2||_Y$$
. B is called accretive if $B \in A(0)$. Also, (1.2) implies that $(I + \lambda B)^{-1}$ exists on $R(I + \lambda B)$ and is a Lipschitzian with constant $(1 - \lambda \omega)^{-1}$. Let $B \in A(\omega)$ and $R(I + \lambda B) = Y$ for all $0 < \lambda \le \lambda_0$. Define $|By|$ by $|By| = \lim_{\lambda \to 0+} ||B_{\lambda}y||_Y$, where $J_{\lambda} = (I + \lambda B)^{-1}$ and $J_{\lambda} = \lambda^{-1}(I - J_{\lambda})$. (Note that this limit exists, although it may be infinite.) For such B we define $J(B) = \{y \in Y; |By| < \infty\}$ which is called a generalized domain of B.

Theorem 1 (Crandall-Pazy). Let T>0 and ω be real number and assume that B(t) satisfies the following conditions:

(C.1) B(t)
$$\in A(\omega)$$
 for $0 \le t \le T$,

(C.2) R(I + λ B(t)) = Y for $0 \le t \le T$ and $0 < \lambda < \lambda_0$, where $\lambda_0 > 0$ and $\lambda_0 \omega < 1$,

(C.3) There are a continuous function $f:[0,T] \to Y$ which is of bounded variation on [0,T], and a monotone increasing function L: $[0,\infty) \to [0,\infty)$ such that

 $\|B_{\lambda}(t)y - B_{\lambda}(\tau)y\|_{Y} \le \|f(t) - f(\tau)\|_{Y}L(\|y\|_{Y})(1 + \|B_{\lambda}(\tau)y\|_{Y})$ for $0 < \lambda < \lambda_{0}$, $0 \le t$, $\tau \le T$ and $y \in Y$.

Then

 $(1.3) \quad V(t,s)y = \lim_{n\to\infty} \prod_{i=1}^n (I + (\frac{t-s}{n})B(s+i(\frac{t-s}{n})))^{-1}y$ exists for $y \in \overline{D(B(t))}$ and $0 \le s < t \le T$. The V(t,s) defined by (1.3) for $0 \le s < t \le T$ and by V(t,t) = I for $0 \le t \le T$ is an evolution operator on $\overline{D(B(t))}$.

2. On the existence of generalized solutions of $(FDE;\phi)_S$ We define for each $t \in [0,T]$ an operator $\hat{A}(t):D(\hat{A}(t)) \subset C \to C$ by (1.1).

Proposition 1. Suppose that conditions (A.1)-(A.4) hold. If $\{\hat{A}(t); t \in [0,T]\}$ is the family of operators defined in C by (1.1), then there exists a family of nonlinear evolution operators $V(t,s): D(\hat{A}(t)) \in C \to C$ such that for all $\phi \in D(\hat{A}(t))$

$$(2.1) \quad V(t,s)\phi = \begin{cases} \lim_{n \to \infty} \prod_{i=1}^{n} (I + (\frac{t-s}{n}) \hat{A}(s + i(\frac{t-s}{n})))^{-1} \phi \\ 0 \le s < t \le T, \\ \phi & 0 \le s = t \le T. \end{cases}$$

Proof. We are going to apply Theorem 1 for B(t) = $\hat{A}(t)$ and Y = C. Under assumptions (A.1) and (A.3) we can apply [11, Proposition 1] to show that $\hat{A}(t) \in \hat{A}(\omega_0)$ for $t \in [0,T]$ and R(I + $\lambda \hat{A}(t)$) = C for $0 < \lambda < 1/\omega_0$, where $\omega_0 = \max(0,\alpha_0 + \beta_0)$. Thus

conditions (C.1) and (C.2) hold for $\hat{A}(t)$. Next, by using the same argument as in [4, Theorems 12 and 13] and the inequality $||h(t) - h(\tau)|| + ||k(t) - k(\tau)|| \le |g(t) - g(\tau)|, \text{ where } g(t) =$ Var([0,t];h) + Var([0,t];k) and Var([0,t];h) denotes the total variation of h on [0,t], we will show that $\hat{A}(t)$ satisfies (C.3) with $B(t) = \hat{A}(t)$ and f(t) = g(t)I, where I denotes the identity in X. To this end, set $\phi(t, \cdot) = (I + \lambda A(t))^{-1} \psi, \psi \in C$. Then we have $\phi(t,\theta) = e^{\theta/\lambda}\phi(t,0) + \int_{0}^{0} \frac{1}{\lambda} e^{-(s-\theta)/\lambda}\psi(s) ds$, and by $\phi(t,\cdot) \in$ $D(\hat{A}(t))$, we have $\phi(t,0) = \psi(0) + \lambda \phi'(t,0) = \psi(0) - \lambda A(t) \phi(t,0)$ + $\lambda F(t, \phi(t, \cdot))$, i.e., $\phi(t, 0) = (I + \lambda A(t))^{-1} (\psi(0) + \lambda F(t, \phi(t, \cdot)))$. Now, for $0 < \lambda < 1$ with $\lambda \omega_0 < 1/2$, $\| \phi_i(t, \cdot) - \phi(\tau, \cdot) \|_C = \| \phi(t, 0) - \phi(\tau, 0) \|_{L^{\infty}}$ $= || (I + \lambda A(t))^{-1} (\psi(0) + \lambda F(t, \phi(t, \cdot)))|$ - $(I + \lambda A(\tau))^{-1}(\psi(0) + \lambda F(\tau, \phi(\tau, \cdot)))$ $\leq \lambda (1 - \lambda \alpha_0)^{-1} ||F(t,\phi(t,\cdot)) - F(\tau,\phi(\tau,\cdot))||$ + $\lambda || h(t) - h(\tau) || L_1(||\psi(0) + \lambda F(\tau, \phi(\tau, \cdot)) ||)$ × $(1 + ||A_{\lambda}(\tau)(\psi(0) + \lambda F(\tau, \phi(\tau, \cdot)))||)$. But, $\|A_{\lambda}(\tau)(\psi(0) + \lambda F(\tau,\phi(\tau,\cdot))\|$ $= \lambda^{-1} \| \psi(0) + \lambda F(\tau, \phi(\tau, \cdot)) - J_{\lambda}(\tau) (\psi(0) + \lambda F(\tau, \phi(\tau, \cdot)) \|$ $\leq \|\hat{A}_{\lambda}(\tau)\psi\|_{C} + \|F(\tau,\phi(\tau,\cdot))\|_{\sigma}$ which implies that $\|\phi(t,\cdot) - \phi(\tau,\cdot)\|_{\mathcal{C}}$ $\leq \lambda (1 - \lambda \alpha_0)^{-1} [\beta_0 || \phi(t, \cdot) - \phi(\tau, \cdot) ||_C$ + $\|k(t) - k(\tau)\| L_2(\|\phi(\tau, \cdot)\|_C)$] +

42
+
$$\lambda \| h(t) - h(\tau) \| L_1(\| \psi(0) \| + \lambda \| F(\tau, \phi(\tau, \cdot)) \|)$$

 $\times (1 + \| \hat{A}_{\lambda}(\tau) \psi \|_{C} + \| F(\tau, \phi(\tau, \cdot)) \|).$

Thus there exists a constant \mathbf{K}_1 such that

(2.2)
$$\|\phi(t,\cdot) - \phi(\tau,\cdot)\|_{C}$$

$$\leq K_{1}\lambda |g(t) - g(\tau)|[1 + ||\hat{A}_{\lambda}(\tau)\psi||_{C}][L_{2}(||\phi(\tau, \cdot)||_{C})$$

$$+ (1 + ||F(\tau, \phi(\tau, \cdot))||_{C})||_{L_{1}}(||\psi(0)||_{C} + \lambda ||F(\tau, \phi(\tau, \cdot))||_{C})].$$

Suppose that $\chi \in C$ and $\phi_0 \in D(\hat{A}(0))$. Then $||F(\tau,\chi)|| \le$

$$\beta_{0}[\ || \chi || \ _{C} \ ^{+} \ || \ _{\varphi_{0}} || \ _{C}] \ ^{+} \ || \ _{k(\tau)} \ ^{-} \ _{k(0)} || \ _{L_{2}} (\ || \ _{\varphi_{0}} || \ _{C}) \ ^{+} \ || \ _{F(0,\varphi_{0})} ||$$

and hence $||F(\tau,\chi)||$ is bounded by an increasing function of $||\chi||_{C}$. It remains to prove that $||\phi(\tau, \cdot)||_{C} \le L_{3}(||\psi||_{C})$ for

some monotone increasing function L₃. From (2.2), $|| \phi(\tau, \cdot) ||_{C} \le$

$$\leq \| \phi(0,\cdot) \|_{C} + K_{1} \lambda \| g(\tau) - g(0) \| [1 + \| \hat{A}_{\lambda}(0) \psi \|_{C}] \times$$

$$\times [L_2(||\phi(0,\cdot)||_C) +$$

+
$$(1 + || F(0,\phi(0,\cdot))||)L_1(|| \psi(0)|| + \lambda || F(0,\phi(0,\cdot))||)].$$

However $\lambda \mid \mid \hat{A}_{\lambda}(0)\psi \mid \mid_{C} = \mid \mid \psi - \hat{J}_{\lambda}(0)\psi \mid \mid_{C} \leq \mid \mid \psi \mid \mid_{C} + \mid \mid_{\varphi}(0, \cdot) \mid \mid_{C}$ and if $\phi_0 \in D(\hat{A}(0))$ then

$$\| \phi(0,\cdot) \|_{C} = \| (1 + \lambda \hat{A}(0))^{-1} \psi \|_{C}$$

$$\leq \left(1-\lambda\omega_{0}\right)^{-1}[\left|\left|\psi-\phi_{0}\right|\right|_{C}+\lambda\left|\left|\hat{\mathbf{A}}(0)\phi_{0}\right|\right|_{C}]+\left|\left|\phi_{0}\right|\right|_{C}$$

$$\leq K_{2}[||\psi||_{C} + ||\phi_{0}||_{C} + ||\hat{A}(0)\phi_{0}||_{C}]$$
 for some K_{2} ,

which implies that

 $||\phi(0,\cdot)||_{C}$ is bounded by a monotone increasing function of $\|\psi\|_{C}$. Thus $\hat{A}(t)$ satisfies (C.3) with $B(t) = \hat{A}(t)$ and $f(t) = \hat{A}(t)$ g(t)I. Therefore, the conclusion of the proposition follows from Q.E.D. Theorem 1.

Note that, as was proved in [5], $\hat{D}(\hat{A}(t))$ is independent of t because $\hat{A}(t)$ satisfies (C.3) and also $\hat{D}(A(t))$ is independent of t because of (A.2). In what follows, \hat{D}_0 and \hat{D} stand for a generalized domain of $\hat{A}(0)$ and A(0), respectively.

As in [3, Proposition 1], we have the following Proposition 2. Suppose that conditions (A.1)-(A.4) hold. If $u(s,\phi)(\cdot)$ for each $\phi \in \hat{D}_0$ and $s \ge 0$ is defined by

(2.3)
$$u(s,\phi)(t) = \begin{cases} \phi(t-s) & s-r \le t \le s, \\ (V(t,s)\phi)(0) & s \le t \le T, \end{cases}$$

where V(t,s) is as constructed by Proposition 1, then $u(s,\phi)(\cdot) \in C([s-r,T];X)$ and $V(t,s)\phi = u_t(s,\phi)$ for $t \in [s,T]$.

Remark. We introduce the following stronger conditions than (A.1) and (A.2):

- (A.1)' There exists a constant $\alpha_1 > 0$ such that for x,y \in X, $|| \ A(t)x A(t)y || \le \alpha_1 || \ x y || \ .$
- (A.2)' There are a continuous function $h:[0,T]\to X$ which is of bounded variation on [0,T] and a monotone increasing continuous function $L_4:[0,\infty)\to[0,\infty)$ such that

 $|| A(t)x - A(\tau)x || \le || h(t) - h(\tau) || L_4(||x||)(1 + || A(\tau)x ||)$ for all $t, \tau \in [0,T]$ and $x \in X$.

Since (A.1)' and (A.2)' imply (A.1) and (A.2), Propositions 1 and 2 hold, although (A.1) and (A.2) are replaced by (A.1)' and (A.2)'.

Next, we recall the following expression for $\hat{\mathbf{D}}_0$.

Lemma 1 ([4, Theorem 10]). Let A(t) and F(t, ϕ) satisfy conditions (A.1) and (A.3). Then $\hat{D}_0 = \{ \phi \in C; \ \phi \text{ is Lipschitz continuous function and } \phi(0) \in \hat{D} \}.$

Remark. If ϕ is Lipschitz continuous function and $\phi(0) \in \widehat{\mathbb{D}}$, then the function defined by (2.3) is a Lipschitzian. In fact, for such ϕ , by [2, Proposition 2.3] and Lemma 1, there exists a constant K such that for $0 \le s \le t, \tau \le T$, $||V(t,s)\phi - V(\tau,s)\phi||_C \le K|t-\tau|$. So that our assertion holds.

Definition 1. A function $u(s,\phi)(\cdot) \in C([-r,T];X)$ is said to be a strong solution of $(FDE;\phi)_s$ if it is an absolutely continuous function is which differentiable a.e. on [s,T] and satisfies $(FDE;\phi)_s$ a.e. on [s,T].

We shall first prove the following uniqueness result for strong solutions of $(FDE;\phi)_c$.

Proposition 3. Assume that $\{A(t); t \in [0,T]\}$ and $F:[0,T] \times C$ \rightarrow X satisfy conditions (A.1) and (A.3). Then there exists at most one strong solution of $(FDE;\phi)_s$.

Proof. Let $u(s,\phi)(t)$ and $v(s,\phi)(t)$ be two strong solutions of $(FDE;\phi)_s$. Then $||u(s,\phi)(t) - v(s,\phi)(t)||$ is differentiable a.e.t and $(d/dt) ||u(s,\phi)(t) - v(s,\phi)(t)||$

=
$$[u(s,\phi)(t) - v(s,\phi)(t),u'(s,\phi)(t) - v'(s,\phi)(t)]_{}$$

$$\leq [u(s,\phi)(t) - v(s,\phi)(t),F(t,u_t(s,\phi)) - F(t,v_t(s,\phi))]_+$$

-
$$[u(s,\phi)(t) - v(s,\phi)(t),F(t,u_t(s,\phi)) - u'(s,\phi)(t)$$

-
$$F(t,v_t(s,\phi)) + v'(s,\phi)(t)]_+$$
.

By $A(t) \in A(\alpha_0)$ and (A.3), we obtain that $(d/dt) ||u(s,\phi)(t) - v(s,\phi)(t)||$

$$\leq (\alpha_0 + \beta_0) || u_t(s,\phi) - v_t(s,\phi) ||_C$$
 a.e.t ϵ [s,T],

which yields that for $t \in [s,T]$,

$$\sup_{\theta \in [s-r,t]} || u(s,\phi)(\theta) - v(s,\phi)(\theta) ||$$

$$\leq \begin{cases} (\alpha_0 + \beta_0) \int_0^t \sup_{\theta \in [s-r,\tau]} ||u(s,\phi)(\theta) - v(s,\phi)(\theta)|| & d\tau \\ & \text{if } \alpha_0 + \beta_0 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

By Grownwall's inequality, we have that

$$\sup_{\theta \in [s-r,T]} ||u(s,\phi)(\theta) - v(s,\phi)(\theta)|| = 0, i.e., u(s,\phi) = v(s,\phi).$$
Q.E.D.

We next prove the existence of strong solutions to (FDE; ϕ)_S under stronger conditions than those in Propositions 1 and 2.

Proposition 4. Suppose that conditions (A.1)', (A.2)', (A.3) and (A.4) hold. If $u(s,\phi)(\cdot)$ is the function defined by (2.3), then $u(s,\phi)(\cdot) \in C^1([s-r,T];X)$ and satisfies

(2.4)
$$u'(s,\phi)(t) + A(t)(u(s,\phi)(t)) = F(t,u_{t}(s,\phi))$$

for $t \in [s,T]$ and for all $\phi \in Lip \equiv \{\phi \in C; \phi \text{ is Lipschitz continuous}\}$.

Proof. By Remark after Proposition 2, $\{V(t,s); 0 \le s \le t \le T\}$ defined by (2.1) is an evolution operator. We approximate V(t,s) by the evolution operator $V_{\lambda}(t,s)$ generated by $\hat{A}_{\lambda}(t) = \hat{A}(t)\hat{J}_{\lambda}(t)$ = $\lambda^{-1}(I - \hat{J}_{\lambda}(t))$. From [2, Lemma 4.2], we see that for $\phi \in \overline{D}_{0}$, $\lim_{\lambda \to 0+} V_{\lambda}(t,s)\phi = V(t,s)\phi$ uniformly in $t \in [s,T]$.

Also, the approximate problem

$$u'(t) + \hat{A}_{\lambda}(t)u_{\lambda}(t) = 0, t \in [s,T], u_{\lambda}(s) = \phi,$$

has a unique continuously differentiable solution $u_{\lambda}(t) = V_{\lambda}(t,s)\phi$. Hence, we have that

$$V_{\lambda}(t,s)\phi = \phi - \int_{s}^{t} \hat{A}_{\lambda}(\tau)V_{\lambda}(\tau,s)\phi \ d\tau = \phi - \int_{s}^{t} \hat{A}(\tau)\hat{J}_{\lambda}(\tau)V_{\lambda}(\tau,s)\phi \ d\tau.$$

Taking account of the definition of $D(\hat{A}(\tau))$, we obtain that

(2.5)
$$(V_{\lambda}(t,s)\phi)(0) = \phi(0)$$

$$- \int_{s}^{t} [A(\tau)(\hat{J}_{\lambda}(\tau)V_{\lambda}(\tau,s)\phi)(0) - F(\tau,\hat{J}_{\lambda}(\tau)V_{\lambda}(\tau,s)\phi)] d\tau.$$

Now, by (A.1)' and (A.3), we see that

$$I_{1} = \int_{s}^{t} || A(\tau) (\hat{J}_{\lambda}(\tau) V_{\lambda}(\tau, s) \phi) (0) - A(\tau) (V(\tau, s) \phi) (0) || d\tau$$

$$\leq \alpha_{1} \int_{s}^{t} || \hat{J}_{\lambda}(\tau) V_{\lambda}(\tau, s) \phi - V(\tau, s) \phi ||_{C} d\tau$$

and

$$I_{2} = \int_{s}^{t} ||F(\tau, \hat{J}_{\lambda}(\tau)V_{\lambda}(\tau, s)\phi - F(\tau, V(\tau, s)\phi)|| d\tau$$

$$\leq \beta_{0} \int_{s}^{t} ||\hat{J}_{\lambda}(\tau)V_{\lambda}(\tau, s)\phi - V(\tau, s)\phi||_{C} d\tau.$$

Let $\phi \in \hat{D}_0$; note here that $\phi \in \text{Lip}$ by D(A(t)) = X and Lemma 1. For each $\tau \in [s,T]$, we have for λ with $\lambda \omega_1 < 1$,

$$\begin{split} \mathbf{I}_{3} &= \left| \left| \hat{\mathbf{J}}_{\lambda}(\tau) \mathbf{V}_{\lambda}(\tau, s) \phi - \mathbf{V}(\tau, s) \phi \right| \right|_{C} \\ &\leq \left(1 - \lambda \omega_{1} \right)^{-1} \left| \left| \mathbf{V}_{\lambda}(\tau, s) \phi - \mathbf{V}(\tau, s) \phi \right| \right|_{C} \\ &+ \left| \left| \hat{\mathbf{J}}_{\lambda}(\tau) \mathbf{V}(\tau, s) \phi - \mathbf{V}(\tau, s) \phi \right| \right|_{C} , \text{ where } \omega_{1} = \alpha_{1} + \beta_{0}. \end{split}$$

By [2, Proposition 2.4], $V(\tau,s)\phi \in \hat{D}_0$ for $\phi \in \hat{D}_0$. This implies that the second term of the above inequality tends to zero as $\lambda \to 0+$. Hence $I_3 \to 0$ as $\lambda \to 0+$.

Next, we note that

$$(2.6) \quad ||\hat{J}_{\lambda}(\tau)V_{\lambda}(\tau,s)\phi||_{C} \\ \leq (1 - \lambda\omega_{1})^{-1}||V_{\lambda}(\tau,s)\phi - \phi||_{C} + ||\hat{J}_{\lambda}(\tau)\phi||_{C}.$$

Since (C.3) is satisfied with $B(t) = \hat{A}(t)$ and f(t) = g(t)I, it follows that

we see that there exists λ_1 such that if $0 < \lambda \le \lambda_1$, $\sup_{\tau \in [s,T]} \| V_{\lambda}(\tau,s)\phi - V(\tau,s)\phi \|_C < 1$. Thus it follows from (2.6) and (2.7) that $\sup_{0 < \lambda < \lambda_1} (\sup_{\tau \in [s,T]} \| \hat{J}_{\lambda}(\tau)V_{\lambda}(\tau,s)\phi \|_C)$ is bounded. By the Lebesgue's dominated convergence theorem, we obtain that $I_1 \to 0$ and $I_2 \to 0$ as $\lambda \to 0+$. Therefore, letting $\lambda \to 0+$ in (2.5) yields (2.4).

Remark. In general setting $u(s,\phi)(\cdot)$ defined by (2.3) need not have a strong derivative. We may have regard the function $u(s,\phi)(t)$ as a generalized solution of (FDE; ϕ)_s and investigate the meaning of generalized solutions. For convenience, the function $u(s,\phi)(t)$ defined by (2.3) is called a generalized solution.

Now, we consider the approximate problem

$$(FDE;\phi)_{s}^{\beta} \quad u_{\beta}^{\dagger}(t) + A_{\beta}(t)u_{\beta}(t) = F(t,u_{\beta t}) \quad t \in [s,T]$$

$$u_{\beta s} = \phi,$$

where $A_{\beta}(t)$ is the Yosida approximation of A(t).

We define
$$\hat{A}^{\beta}(t)$$
: $D(\hat{A}^{\beta}(t)) \subset C \rightarrow C$ by

$$\hat{A}^{\beta}(t)_{\phi} = -\phi'$$

$$D(\hat{A}^{\beta}(t)) = \{ \phi \in C; \phi' \in C, \phi'(0) + A_{\beta}(t)\phi(0) = F(t,\phi) \}.$$

Clearly $A_{\beta}(t)$ satisfies the conditions of Proposition 4 with $\alpha_1 = \beta^{-1}(1 + (1 - \beta\alpha_0)^{-1})$; see [2, Lemma 1.2]. Therefore, there exists a family of nonlinear evolution operators $\{V_{\beta}(t,s); 0 \le s \le t \le T\}$ generated by $\hat{A}^{\beta}(t)$. If $u_{\beta}(s,\phi)(\cdot)$ is defined by

$$u_{\beta}(s,\phi)(t) = \begin{cases} \phi(t-s) & s-r \leq t \leq s, \\ (V_{\beta}(t,s)\phi)(0) & s \leq t \leq T, \end{cases}$$

then $u_{\beta}(s,\phi)(t)$ is the strong solution of $(FDE;\phi)_{s}^{\beta}$ and by Proposition 2, $V_{\beta}(t,s)_{\phi} = u_{\beta t}(s,\phi)$ for $s \le t \le T$ and $\phi \in Lip$. By the proof of [2, Lemma 4.2], $\lim_{\beta \to 0+} (1 + \lambda A_{\beta}(t))^{-1}x = (1 + \lambda A(t))^{-1}x$ for $x \in X$ and sufficiently small λ . Thus, by [10, Lemma 3.2], we obtain that $\lim_{\beta \to 0+} (1 + \lambda \hat{A}^{\beta}(t))^{-1}\phi = (1 + \lambda \hat{A}(t))^{-1}\phi$ for $\phi \in C$ and small λ . Also, it follows from [2, Lemma 4.1] that $A_{\beta}(t)$ satisfies (A.1) and (A.2) uniformly in β , sufficiently small and hence $\hat{A}^{\beta}(t)$ satisfies (C.1)-(C.3) uniformly in β , sufficiently small. (To speak more carefully, by the same way as Proposition 1, we have that

 $\|\phi_{\beta}(t,\cdot) - \phi_{\beta}(\tau,\cdot)\|_{C}$

$$\leq K_{3}\lambda |g(t) - g(\tau)|[1 + || \hat{A}_{\lambda}^{\beta}(\tau)\psi||_{C}][L_{2}(|| \phi_{\beta}(\tau, \cdot)||_{C}) +$$

$$+ \ (1 \ + \ || \ F(\tau,\phi_{\beta}(\tau,\cdot)) || \) L_1(|| \ \psi(0) || \ + \ \lambda || \ F(\tau,\phi_{\beta}(\tau,\cdot)) || \)],$$

where $\phi_{\beta}(t, \cdot) = (1 + \lambda \hat{A}^{\beta}(t))^{-1} \psi$, $\psi \in C$,

and if $\chi \in C$ and $\phi_0 \in D(\hat{A}(0))$ then

 $||\ F(\tau,\chi)\,||$ is bounded by an increasing function of $||\ \chi\,||_C$. Now, in this case, we must prove that

(2.8)
$$\|\phi_{\beta}(\tau, \cdot)\|_{C} \leq L_{5}(\|\psi\|_{C})$$

for some monotone increasing function L_5 . However, since $\lim_{\beta \to 0^+} (1 + \lambda \hat{A}^{\beta}(t))^{-1} \phi = (1 + \lambda \hat{A}(t))^{-1} \phi \quad \text{for all } \phi \in C,$ $||\phi_{\beta}(\tau, \cdot)||_{C} \leq ||\phi(\tau, \cdot)||_{C} + 1 \quad \text{for all small } \beta. \text{ Therefore,}$

using $\|\phi(\tau,\cdot)\|_{C} \le L_3(\|\psi\|_{C})$ (see, Proposition 1), (2.8) is proved and hence $\hat{A}^{\beta}(t)$ satisfies (C.3) uniformly in β .) We can apply the Crandall-Pazy approximation theorem [2, Theorem 4.1] to give $\lim_{\beta \to 0^+} V_{\beta}(t,s) \phi = V(t,s) \phi$ for all $\phi \in \hat{D}_0$. Therefore, by Proposition 2 and Lemma 1, we have that

Theorem 2. Let $\phi \in \text{Lip}$ with $\phi(0) \in \widehat{D}$. Suppose that $\{A(t); t \in [0,T]\}$ and $F:[0,T] \times C \to X$ satisfy conditions (A.1)-(A.4). If $u(s,\phi)(\cdot)$ is a generalized solution of $(FDE;\phi)_s$ then $u(s,\phi)(t) = \lim_{\beta \to 0+} u_{\beta}(s,\phi)(t)$ uniformly in $t \in [s,T]$, where $u_{\beta}(s,\phi)(\cdot)$ is the strong solution of $(FDE;\phi)_s^{\beta}$.

3. Properties for generalized solutions and existence of weak solutions and strong solutions.

Our first result in this section is on the comparision of two generalized solutions.

Theorem 3. Let $\phi_i \in \text{Lip}$ with $\phi_i(0) \in \widehat{D}$ for i = 1, 2. If $u(s, \phi_i)(\cdot)$ is a generalized solution of $(FDE; \phi_i)_s$, then we have

(3.1)
$$e^{-\alpha_0 t} \| u(s,\phi_1)(t) - u(s,\phi_2)(t) \|$$

$$- e^{-\alpha_0 \tau} \| u(s,\phi_1)(\tau) - u(s,\phi_2)(\tau) \|$$

Proof. Let $u_{\beta}(s,\phi_{i})(t)$ be the strong solution of $(FED;\phi_{i})_{s}^{\beta}$ such that $\lim_{\beta \to 0+} u_{\beta}(s,\phi_{i})(t) = u(s,\phi_{i})(t)$ uniformly for $t \in [s,T]$.

Then
$$\| u_{\beta}(s,\phi_1)(t) - u_{\beta}(s,\phi_2)(t) \|$$
 is differentiable a.e.t $_{\epsilon}[s,T]$ and $(d/dt)\| u_{\beta}(s,\phi_1)(t) - u_{\beta}(s,\phi_2)(t)\|$ = $[u_{\beta}(s,\phi_1)(t) - u_{\beta}(s,\phi_2)(t), -A_{\beta}(t)(u_{\beta}(s,\phi_1)(t)) + F(t,u_{\beta_t}(s,\phi_1)) + A_{\beta}(t)(u_{\beta}(s,\phi_2)(t)) - F(t,u_{\beta_t}(s,\phi_2))]_{-},$ where $[x,y]_{-} = -[x,-y]_{+}.$ Since $[x - y,A_{\beta}(t)x - A_{\beta}(t)y]_{+} \le -\alpha_{0}(1 - \beta\alpha_{0})^{-1}\| x - y\|$, it follows that $(d/dt)\| u_{\beta}(s,\phi_1)(t) - u_{\beta}(s,\phi_2)(t)\|$ $\le \alpha_{0}(1 - \beta\alpha_{0})^{-1}\| u_{\beta}(s,\phi_1)(t) - u_{\beta}(s,\phi_2)(t)\|$ + $[u_{\beta}(s,\phi_1)(t) - u_{\beta}(s,\phi_2)(t),F(t,u_{\beta_t}(s,\phi_1)) - F(t,u_{\beta_t}(s,\phi_2))]_{+}.$ Integrating the above inequality, we have for $s \le \tau \le t \le T$, $\| u_{\beta}(s,\phi_1)(t) - u_{\beta}(s,\phi_2)(t)\| - \| u_{\beta}(s,\phi_1)(\tau) - u_{\beta}(s,\phi_2)(\tau)\|$ $\le \alpha_{0}(1 - \beta\alpha_{0})^{-1}\int_{\tau}^{t}\| u_{\beta}(s,\phi_1)(\xi) - u_{\beta}(s,\phi_2)(\xi)\| d\xi$ + $\int_{\tau}^{t}[u_{\beta}(s,\phi_1)(\xi) - u_{\beta}(s,\phi_2)(\xi),F(\xi,u_{\beta_t}(s,\phi_1)) - F(\xi,u_{\beta_t}(s,\phi_2))]_{+}d\xi.$ Letting $\beta + 0+$ in this inequality, we see that for $s \le \tau \le t \le T$, $(3.2) \| u(s,\phi_1)(t) - u(s,\phi_2)(t)\| - \| u(s,\phi_1)(\tau) - u(s,\phi_2)(\tau)\| \le \alpha_{0}\int_{\tau}^{t}\| u(s,\phi_1)(\xi) - u(s,\phi_2)(\xi)\| d\xi$ + $\int_{\tau}^{t}[u(s,\phi_1)(\xi) - u(s,\phi_2)(\xi),F(\xi,u_{\xi}(s,\phi_1)) - F(\xi,u_{\xi}(s,\phi_2))]_{+}d\xi.$ By the standard argument one can prove that (3.2) implies (3.1) .

The following theorem gives the existence of integral solutions.

Q.E.D.

(For example, see [9].)

Theorem 4. Let $u(s,\phi)(\cdot)$ be a generalized solution of (FDE; ϕ)_s. Then the following inequality holds:

(3.4)
$$e^{-\alpha_0 t} \| u(s,\phi)(t) - x \| - e^{-\alpha_0 t} \| u(s,\phi)(\tau) - x \|$$

$$\leq \int_{\tau}^{t} e^{-\alpha_0 \xi} \{ [u(s,\phi)(\xi) - x, F(\xi,u_{\xi}(s,\phi)) - y]_{+} + \theta(\xi,r) \} d\xi$$
for $s \leq \tau \leq t$, $[x,y] \in A(r)$, $r \in [0,T]$,
where $\theta(\xi,r) = L_1(\|x\|) \| h(\xi) - h(r) \| (1 + \|y\|)$.

Proof. Let $u(s,\phi)(;)$ be a generalized solution of (FDE; ϕ)_s. By Theorem 2, $\lim_{\beta \to 0^+} u_{\beta}(s,\phi)(t) = u(s,\phi)(t)$ uniformly for t ϵ [s,T], where $u_{\beta}(s,\phi)(t)$ is the strong solution of (FDE; ϕ) $_{s}^{\beta}$. Let $[x,y] \in A(r)$ and set $x_{\beta} = x + \beta y$. Note that $x = J_{\beta}(r)x_{\beta}$ and $y = A_{\beta}(r)x_{\beta}$, where $J_{\beta}(r)$ and $A_{\beta}(r)$ are the resolvent and the Yosida approximation of A(r), respectively. Then

$$(d/dt) || u_{\beta}(s,\phi)(t) - x_{\beta}||$$

=
$$[u_{\beta}(s,\phi)(t) - x_{\beta}, - A_{\beta}(t)(u_{\beta}(s,\phi)(t)) + F(t,u_{\beta t}(s,\phi))]_{-}$$

$$\leq [u_{\beta}(s,\phi)(t) - x_{\beta}, -A_{\beta}(t)(u_{\beta}(s,\phi)(t)) + y]_{-}$$

+
$$[u_{\beta}(s,\phi)(t) - x_{\beta}, F(t,u_{\beta+}(s,\phi)) - y]_{+}$$

$$\leq \beta^{-1}(\|u_{\beta}(s,\phi)(t) - x_{\beta} + \beta(-A_{\beta}(t)(u_{\beta}(s,\phi)(t)) + y)\|$$

-
$$\|u_{\beta}(s,\phi)(t) - x_{\beta}\|$$
) + $[u_{\beta}(s,\phi)(t) - x_{\beta}, F(t,u_{\beta t}(s,\phi)) - y]_{+}$

$$= \beta^{-1}(\|J_{\beta}(t)(u_{\beta}(s,\phi)(t)) - J_{\beta}(r)x_{\beta}\| - \|u_{\beta}(s,\phi)(t) - x_{\beta}\|)$$

+
$$[u_{\beta}(s,\phi)(t) - x_{\beta}, F(t,u_{\beta}(s,\phi)) - y]_{+}$$

$$\leq L_1(||x_g||)||h(t) - h(r)||(1 + ||y||)$$

+
$$\alpha_0 (1 - \beta \alpha_0)^{-1} || u_{\beta}(s, \phi)(t) - x_{\beta} ||$$

+
$$[u_{\beta}(s,\phi)(t) - x_{\beta}, F(t,u_{\beta t}(s,\phi)) - y]_{+}$$
 by $A(t) \in A(\alpha_{0})$ and $(A.2)$.

Integrating these inequality over $[\tau,t] \subset [s,T]$,

$$\begin{split} &\|u_{\beta}(s,\phi)(t)-x_{\beta}\|-\|u_{\beta}(s,\phi)(\tau)-x_{\beta}\|\\ &\leq \int_{\tau}^{t} \{L_{1}(\|x_{\beta}\|)\|h(\xi)-h(r)\|(1+\|y\|)\\ &+\alpha_{0}(1-\beta\alpha_{0})^{-1}\|u_{\beta}(s,\phi)(\xi)-x_{\beta}\|\\ &+[u_{\beta}(s,\phi)(\xi)-x_{\beta},\,F(\xi,u_{\beta_{\xi}}(s,\phi))-y]_{+}\}\,\,d\xi\,. \end{split}$$

Letting $\beta \rightarrow 0+$, we see that for $s \le \tau \le t \le T$,

$$(3.5) \quad ||u(s,\phi)(t) - x|| - ||u(s,\phi)(\tau) - x||$$

$$\leq \int_{\tau}^{t} \{ [u(s,\phi)(\xi) - x, F(\xi, u_{\xi}(s,\phi)) - y]_{+} + \theta(\xi,r) \} d\xi$$

$$+ \alpha_{0} \int_{\tau}^{t} ||u(s,\phi)(\xi) - x|| d\xi,$$

which yields (3.4).

O.E.D

Next, we recall the definition of weak solutions in the sense of Kartsatos and Parrott [6,7] and consider the existence of weak solutions of (FDE; ϕ)₀.

Definition 2. A function $u(t) \in C([-r,T];X)$ is said to be a weak solution of $(FDE;\phi)_0$ if $u(t) = \phi(t)$ for $t \in [-r,0]$ and

(DE)
$$v'(t) + A(t)v(t) \Rightarrow F(t,u_t), t \in [0,T]$$

 $v(0) = \phi(0)$

has a solution v(t) in the sense of Evans [5] such that v(t) = u(t) for $t \in [0,T]$.

Remark. By definition and [5, Theorem 3], there exists at most one weak solution of $(FDE;\phi)_0$. Indeed, if $u_1(t)$ and $u_2(t)$ are two weak solutions, they satisfy the integral inequality

 $\|u_1(t) - u_2(t)\| \le \int_0^t \|F(\tau, u_{1_{\tau}}) - F(\tau, u_{2_{\tau}})\| d\tau$. (See [5, (8.3)].) Thus, by (A.3) and the Grownwall inequality, $u_1(t) = u_2(t)$ for $t \in [0,T]$.

Theorem 5. Suppose that $\{A(t); t \in [0,T]\}$ satisfy (A.1) with $\alpha_0 = 0$ and (A.2) and $F:[0,T] \times C \rightarrow X$ satisfy (A.3) and (A.4). If $\phi \in \text{Lip}$ and $\phi(0) \in \hat{D}$, then $(FDE;\phi)_0$ has a unique weak solution.

Proof. It suffices to show a generalized solution $u(0,\phi)(t)$ of $(FDE;\phi)_0$ is a weak solution. Note that $t \to F(t,u_t(0,\phi))$ is of bounded variation by (A.3) and (A.4) because $u(0,\phi)(t)$ is Lipschitz continuous. Then (DE) has a solution v(t) in the sense of Evans, i.e., there exist sequence $\{t_k^n\}$ and $\{u_k^n\}$ such that

i)
$$\frac{u_k^n - u_{k-1}^n}{h_k^n} + A(t_k^n)u_k^n \Rightarrow F(t_k^n, u_{t_k^n}(0, \phi))$$
, where $h_k^n = t_k^n - t_{k-1}^n$,

ii) the step functions $v^n(t)$ ($\equiv u^n_k$ on $(t^n_{k-1}, t^n_k]$) converge uniformly on [0,T] to v(t).

Note here that

$$M = \max \{ \sup ||u_k^n||, \sup ||\frac{u_k^n - u_{k-1}^n}{h_k^n} - F(t_k^n, u_{t_k^n}(0, \phi))|| \} < \infty.$$

(See [5, Proof of Theorem 2].)

Let $v_k^n \in A(t_k^n)u_k^n$. By (3.5) we see that

$$\|\mathbf{u}(0,\phi)(t) - \mathbf{u}_k^n\| - \|\mathbf{u}(0,\phi)(\tau) - \mathbf{u}_k^n\|$$

$$\leq \int_{\tau}^{t} \left\{ \left[u(0,\phi)(\xi) - u_{k}^{n}, F(\xi,u_{\xi}(0,\phi)) - v_{k}^{n} \right]_{+} + \theta_{1}(\xi,t_{k}^{n}) \right\} d\xi$$

$$+ \alpha_{0} \int_{\tau}^{t} ||u(0,\phi)(\xi) - u_{k}^{n}|| d\xi,$$

where
$$\theta_1(\xi,r) = M_1 || h(\xi) - h(r) || \text{ and } M_1 = L_1(M)(1 + M).$$

Since $h_k^n[u(0,\phi)(\xi) - u_k^n, F(\xi,u_{\xi}(0,\phi)) - v_k^n]_+$
 $\leq || u(0,\phi)(\xi) - u_{k-1}^n || - || u(0,\phi)(\xi) - u_k^n ||$
 $+ h_k^n || F(\xi,u_{\xi}(0,\phi)) - F(t_k^n,u_{t_k^n}(0,\phi)) || ,$

it follows by the standard argument that

$$\int_{t_{j}^{n}}^{t_{i}^{n}} (\|u(0,\phi)(t) - v^{n}(\eta)\| - \|u(0,\phi)(\tau) - v^{n}(\eta)\|) d\eta$$

$$\leq \int_{\tau}^{t} (\|u(0,\phi)(\xi) - v^{n}(t_{j}^{n})\| - \|u(0,\phi)(\xi) - v^{n}(t_{i}^{n})\|) d\xi$$

$$+ \int_{t_{j}^{n}}^{t_{i}^{n}} \int_{\tau}^{t} \{\alpha_{0} \|u(0,\phi)(\xi) - v^{n}(\eta)\| + \theta_{1}^{n}(\xi,\eta)$$

$$+ \|F(\xi,u_{\xi}(0,\phi)) - F^{n}(\eta)\|\} d\xi d\eta,$$

where θ_1^n and \textbf{F}^n are functions defined by

$$\theta_1^n(\xi,\eta) = \theta_1(\xi,t_k^n) \quad \text{for } \eta \in (t_{k-1}^n,t_k^n]$$

and

$$F^{n}(\eta) = F(t_{k}^{n}, u_{t_{k}^{n}}(0, \phi))$$
 for $\eta \in (t_{k-1}^{n}, t_{k}^{n}]$, respectively.

Letting $t_i^n \to t'$, $t_j^n \to \tau'$ as $n \to \infty$ and applying [8, Proposition 2.5] we obtain that $u(0,\phi)(t) = v(t)$ for $t \in [0,T]$. Q.E.D.

Finally, we consider the existence of strong solutions of $\left(\text{FDE}\,;\varphi\right)_{\text{S}}.$

Corollary 1. Let $\phi \in \text{Lip}$ with $\phi(0) \in \widehat{D}$. Assume that $\{A(t); t \in [0,T]\}$ and $F:[0,T] \times C \to X$ satisfy conditions (A.1)-(A.4). If X is reflexive, or, more generally, X satisfies the Radon-Nikodym property, then $(FDE;\phi)_s$ has a unique strong solution.

Proof. By virtue of Theorem 2, there exists a generalized solution $u(s,\phi)(t)$ and by the Remark after Lemma 1, $u(s,\phi)(t)$ is Lipschitz continuous and hence $u(s,\phi)(t)$ is differentiable a.e.t ϵ [s,T]. Now, let h>0 and t_0 be any point at which $u(s,\phi)(\cdot)$ is differentiable. Putting $\tau=r=t_0$ and $t=t_0+h$ in (3.5), we see that

$$\begin{split} & ||u(s,\phi)(t_0+h)-x|| - ||u(s,\phi)(t_0)-x|| \\ & \leq \int_{t_0}^{t_0+h} \left\{ \left[u(s,\phi)(\xi)-x, \; F(\xi,u_\xi(s,\phi))-y \right]_+ + \theta(\xi,t_0) \right\} \; \mathrm{d}\xi \\ & + \alpha_0 \int_{t_0}^{t_0+h} \; ||u(s,\phi)(\xi)-x|| \; \; \mathrm{d}\xi \; \text{for} \; [x,y] \in A(t_0). \end{split}$$

Dividing the above inequality by h and letting $h \downarrow 0$, it follows $[u(s,\phi)(t_0) - x, u'(s,\phi)(t_0)]_+$

$$\leq$$
 $[u(s,\phi)(t_0) - x, F(t_0,u_{t_0}(s,\phi)) - y]_+ + \alpha_0 ||u(s,\phi)(t_0) - x||,$
i.e., for $[x,y] \in A(t_0)$

(3.6)
$$[u(s,\phi)(t_0) - x, -u'(s,\phi)(t_0) + F(t_0,u_{t_0}(s,\phi)) + \alpha_0 u(s,\phi)(t_0) - (\alpha_0 x + y)]_+ \ge 0.$$

By condition (A.1), it is easy to see that $A(t_0) + \alpha_0$ is m-accretive. Therefore, by (3.6), we see that $u'(s,\phi)(t_0) + A(t_0)(u(s,\phi)(t_0)) \ni F(t_0, u_{t_0}(s,\phi)).$ Q.E.D.

Acknowledgement. I would like to express my thanks to Prof. N. Kenmochi of Chiva University for valuable comments, and to Prof. I. Miyadera for his encouragement.

References

- [1] Crandall M., A generalized domain for semigroup generators, Proc. Am. Math. Soc. 37, (1973) 434 440.
- [2] Crandall M. & Pazy A., Nonlinear evolution equations in Banach spaces, Israel J. Math. 11, (1972) 57 94.
- [3] Dyson J. & Villela Bressan R., Functional differential equations and nonlinear evolution operators, Proc. Roy. Soc. Edinburgh 75 A, (1975/76) 223 234.
- [4] _____, Semigroups of translations associated with functional and functional differential equations, Pro. Roy. Soc.

 Edinburgh 82 A, (1979) 171 188.
- [5] Evans L., Nonlinear evolution equations in an arbitary Banach space, Israel J. Math. 26, (1977) 1-42.
- [6] Kartsatos A. G., A direct method for the existence of evolution operators in general Banach spaces, to appear in Funkcialaj Ekvacioj.
- [7] Kartsatos A. G. & Parrott M. E., A simplified approach to the existence and stability problem of a functional evolution equation in a general Banach space., Lecture Notes in Math., 1076, Springer-Verlag, Berlin, 1984.
- [8] Kobayasi K., Kobayashi Y. & Oharu S., Nonlinear evolution operators in Banach spaces, Osaka J. Math. 21, (1984) 281 310.
- [9] Kobayashi Y., Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semi-groups, J. Math. Soc. Japan 27, (1975), 640 665.
- [10] Parrott M. E., Representation and approximation of generalized solutions of a nonlinear functional differential equation,

 Nonlinear analysis 6, (1982) 307 318.
- [11] Webb G., Asymtotic stability for abstract nonlinear functional differential equations, Proc. Am. Math. Soc. 54, (1976) 225-230.