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Compact group actions on C*-algebras
f’f-ﬁf’/( ﬁ/é/%bt %« ;S ;‘ﬁg 2 (Akitaka Kishimoto)

1. Introduction

The general problem I am concerned with is as follows (cf.[12-15]): For
a given C*—dynamical system (A, G, &), analyze (3, G, a*), where A
is a C*-algebra with its dual K, G 1is a locally compact group, and &
is a continuous action of G on A by automorphisms. Here I do not mind
assuming A’ is simple; a bit more reluctantly assuming A 1is separable.
( In fact for most of the relevant results so far obtained we seem to have
to assume, at least, that A 1is prime and separable. ) A prototype
C*-dynamical system I am thinking of in this study is an infinite tensor
product type action on a UHF algebra or more generally a quasi-free
action on a CAR algebra, which seems to be endowed with many of the physical
properties in the real world.

In [13] and [15] I defined types of orbits in -X under d&° Namely,
for Te 2 regarded as an irreducible representation on some Hilbert

space, say H;, one constructs a representation ' of A by

~

= j Te A, dt
G

&

on L*(6, Hp, and define the type of the orbit through 7 under ¥ *

to be the type of fE(A)" as a von Neumann algebra. Since it is easily

shown that 5%(A)" is homogenebus, the orbit type is'especially either

of type I, II, or III. I am most interested in exploring type III orbits

( as this seems to be or have been the most natural attitude toward everything
named type III ), but without any results worth mentioning. As usual,

the type I case is the most manageable.

U
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I should mention another approach to the C*-dynamical systems in general ---
the one taken by e‘.g.; [16], of explori_ngbthe Connes spectrum (cf. [17]) or
a Connes spectrum to be. I tried this in [15] perhaps too consciously.

It now seems that the notion of Connes spectrum with an additional condition,
e.g., the existence of a covariant irreducible representation is géod enough.

Along these lines (as it happened) the results in [16] was cultivated in [2],

where the group G is assumed to be compact and abelian.

In this' expository note I am mainly concerned with the case G 1is compact
(and non-abelian) and describe some results (envolving type I orbits)
obtained in [3]. I quote from there:

1.1. Theorem. Let A be a separable C*-algebra, G a compact group with
G# {e}, and o a faithful continuous action of G on A. Then the
following conditions are equivalent:

(1) There exists a faithful irreduéible representation 7L of A
such that 773] A" is irreducible.

(ii) There exists a pure‘invariant state & of A such that the GNS
representation T« of AY is faithful.

(iii) Let {gng be an arbitrary sequence of finite-dimensional
unitary matrix representation of G, and let ﬁ be the infinite tensor
product action "’G:Ad 5§, of G on the UHF algebra C = »,?'Z,Md',,’ where
dn is the dimension of fn and 'M“n is the dn x dh ‘matrix algebra.

It follows that there exists a globally invariant C*-subalgebra B of A,
and a closed o™ -invariant projection q of A such that (a) q € B',
(b) gAq = Bq, (c) q € I** (¢ A**) for any non-zero closed ideal I

of A, and (d) ‘the C*-dynamical system (Bq, G, o(**]Bq) is isémorphic

to (C, G, F).



A
(iv) For each ¥ ¢ G there exists a 6?':> 0 such that for each unit

vector A-E Ed with d = dim Y, there is a central sequence {yh§ in

{x

' A :‘xéAo,((ur), Ux-All =1 § with

lim sup ljay.ll = J}Ilan, a € A,

where ur is a fixed unitary matrix representation of G in class ¥ .

A
(v) Condition (iv) holds with 53/ =1, Y € G.

A
Note that the orbit through T ¢ A as in (i) is of type I; 1in this

case the center of ff(A)" is isomorphic to ﬂ”(G) (together with natural

actions of G ). Also note that the orbit through ﬂ&(€ ﬁ) with w

as

in (ii) is of type I; in this case T, is fixed under CQ:, t € G.

Furthermore studying C*-dynamical systems like (C, G, ﬁ) in (iii) would

A
yield many orbits in A of various types.

'of

(a

is
In

to

In Section 24Qe discuss orbit types in details and give a characterization
type I orbits in the case 'G is a (hon—abélian) locally compact group
slight generalization of a result in [15]).

In Section 3 we discuss, roughly speaking, the pfoblem of when a C*-algebra
weakly dense in a larger C*-algebra in some irreducible representation.
fact this is quite essential in generalizing some of the results in [2]

the case G 1is non-abelian in our treatment. More preferably we should

a
disregard this; to do so we would needﬁcertain characterization of 'properly

outer' endomorphisms, generalizing the corresponding notion of automorphisms.

In Section 4 we discuss invariant Hilbert spaces for a C*-dynamical

system (with G compact). We will discuss more or less throughly a part

of

4.2, which is not really required for the proof of 1.1, only to explain

a general idea and to supplement a result in [9]. The implication (ii) si(iii)

in

1.1 follows from 4.2 (part with no proof ---see [9]) and [5];
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In Section 5 we discuss endomrphisms, which are the dual objects of a
compact action. The implication (i) 3 (ii) in 1.1, which is the hardest
in this theorem, follows from 5.7, 5.9, and 5.10 (where 5.9 relies on
Section 3 mentioned above).

In Section 6 we give a brief discussion on infinite tensor product type
actions on UHF algebras; that (iii) implies (i) would easily follow from
this kind of discussion.

In Section 7 we discuss central sequences, proving that (i)-;}(v) in 1.1.
Note that (v) g} (iv) is trivial. We will not give a proof to the implication
(iv) = (1). But in Section 8 we shall instead discuss the asymptotic
abelianess condition, which is certainly stronger than (iv), under which
a representation as in (i) is constructed without using the compactness
assumption on the group G.

In Section 9 we give another type of‘condition which is equivalent to
the ones in 1.1, i.e., a condition which could be placed between (i) and
(ii) in character, see 9.1.

Finally we remark that (ii) in 1.1 could be replaced by

(ii') There exists a family {Ldik of pure invariant states of A
such that & 7LQJ;IA“ is a faithful representation of A,

It is not hard to prove that (ii') implies (iii) (see 2.1 iﬁ {51, 2.1 in
[9], and 4.5).

I would like to thank Professor Sakai for his advices at an early stage
of this study and Professor Nakagami for encouraging me to write [13] which

was essentially the starting point for this kind of work.
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2. OrBit types

Let (A, G, ® ) be a C*-dynamical system as in section 1. Let 72 be
an irreducible representation on a Hilbert space ‘Hy. Let K(G, Hp be
the linear space of H, -valued continuous functions on G with compact

support and define an inner product on K(G, H;) by

(§,4) = (§(t), H (1)) dmied
)= [ 5@ o) 4
for %, Q ¢ K(G, H), where 4#c is a right Haar measure on G. For

each a € A define ﬁ{[a) on K(G, H) by

(T@FIE) = Ted,(a) T (1)

~

for §‘6 K(G, Hm)' Then it is obvious that 7 defines a bounded *-represen-
‘o '
tation of A and hence extendsAa representation of A on the completion of
: 2 '
K(G, Hng, i.e., L (G, an.
Define a unitary representation U of G on LZ(G, Hm) by right

translations, i.e.,

Wm3FIE) = F,

for ¥ € K(G, Hm)' Then §E is a covariant representation with this U,
i.e., U(t)if(a)U(tj*= Ted, (a), a €A, t€G. Denote by & the action
of G on 77 =‘%E(Af' implemented by U.

2.1, Lemma. Let Q¢ 797 and h ¢ K(G)

W

K(G, €). Define

F@ = [ he) FQ du®),

| “ | |
and dk(x) similarly for x € A. Let {1}\§ be a bounded net in" A such
that ?f(x )} converges weakly to Q. Then 7Z(az(xu)) converges weakly to

/L(

&;(Q),‘ Koag( &%(%k)) converges weakly, say to Te and

_ D
7, @ = fq T, o).
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Proof. Let =& (x,) and T = '57/L(Q). We first claim that 7'1‘:'(};4)

I = T

converges weakly to T. Let '5‘, ll'e K(G, H'_L) and choose a subsequence -{/q,,;.
such that (T?,'(%) §, % ) converges. Since the closed linear span of
{u(t)"§ s u(t)”z ; t € supp h f is separable, there is in turn a

subsequence {u ¢ of -{'/u,,}-‘ such that

(Lo u®)§ , u(t)') ) = @)'S, ut)*7), tesuph

as n goes to infinity. Hence (ﬁ/(yuh.) T, ?) converges to (T ¥, ) ),

which implies that 7 (y,) converges to T.

Yt
Since the functions t > DQQ:“) are equi-continuous (in norm), it
, ’ any
follows that for any compact subset K of G andAseparable subspace H
of Hp, there is a subsequence {);qg ) such that H:o{t(yﬂ&) converges
weakly, say to T,, on H for each t € K. Note that t~- T, 1is norm- '
continuous. Thus if K D supp T, and - ¥ (L), /2(1:) & H for all

t € G, then

(50, 4@ duce) = (15, 7).

By taking various K and H, one can conclude that there is a continuous

bounded function T(.) of G into B(H'n,) such that
Jow s, pendum = as, 2)

for §, 1 € K, Hrt)‘ And it easily follows that 7re "‘Yt—()/’«) converges

to T(t).

It follows that the center Z of 7. 1is contained in La(G)f& cl.
— . : x_ :
Thus & is ergodic on Z, i.e., Z = €Cl. Hence 7! is homogeneous as
is claimed in section 1, i.e., for any two non-zero central projections e

and f, Jle and Lf are mutually isomorphic.

Since Z 1is globally ¥-invariant, Z can be identified with LM(H\G)
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for some closed subgroup H of G. For example let C be the set of
Q€ Z such that t > E‘,&(Q) is norm-continuous. Then H can be defined
as {h € H; f(h) = f(e), f ¢ C} , where e 1is the identity element.

2.2. Proposition. Suppose that the C*-algebra,is separable and the locally

compact groupAhas a co:ﬁtable basis. Let T ¢ A and define Gy = {téG_l‘ Ted, :n%_
Then the following conditions are equivalent:

(i) {(A)“, is of type I.

Ind i A I o

(ii) G is closed and T(A) (N T(A) =1L (G \G)®CIL.
Proof. Suppose (i) and let C be the C*-subalgebra of the center Z as
above. Let Q €C and h € K(G). Choose a bounded net £, ¢ in A such
that %(xp) converges weakly to Q. Then by Lemma 2.1 Lo o,t( o (x.))

converges to a multiple of the identity for any t €G. If t €G,, one

must have that & (Q)(t) = 0} (Q(t) i.e., Q(t) = Q(e) for all Q €C.
Thus Gy is contained in H where H 1is defined by the property that
Z > LT(H\G).

Let c}u, be a quasi-invariant measure on H\G and let f be a measurable

function of H\G into G such that t = Hf(t). Then

& D @
SG‘— ‘ﬂ:oo(t ‘!u(’%) = gH\C{— { ‘YH TI‘NS.f(-t) dSi‘ %M,(f)

where 0’,3‘ is a right Haar measure on H ( the measure on G defined by
cls‘xézl,ul via f 1is equivalent to the Haar measure fIAL on G ). Since the
integral over H\G is central and the weak closure of A in each integrand

representation is isomorphic with each other, one can conclude that

! f Toay () duewf = 1" (V) & | }f Teog (A2 A5 ]

Thus the direct integral of T+%; over H is of type I factor and hence
&s 1is weakly inner in this representation for all s&H. Therefore one

can conclude that H C G-
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The proof of the converse is similar to the above.

- From condition (ii) it is not difficult ﬁo see if there are non-type I
orbits: Often the stabilizer G5 is not closed. But it remains hard to
produce non-type I orbits where the stabilizer is trivial.

Finally we note the following result:

2.3. Proposition. Let A be a separable prime C*-algebra and let o be

a faithful continuous action of a compact group G % {ef . Let 97 be a
faithful irreducible representation. Then the following conditions are
equivalent:

(i) ®|A . is irreducible.

(i) fa'n T = 1%G)e cl.

Furthermore in this case A" is prime and has no minimal projections.

The proof is straightforward (cf. [/§] and Section 9).
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3. Weak density
Let A be a C*-algebra and B a C*-subalgebra of A. We consider the
problem of when B 1is weakly dense in A in some representation.

3.1. Proposition.[3 ] Take a pair A, B as above and suppose that A 1is

separable. Then the following conditions are equivalent:

(i) There exists a § > 0 such that for any x, YEA
sup i Wxby(l : b€B, b= 1} = &sup {uxayl : aéA, jansl ¢

(ii) Condition (i) holds with § = 1.

(iii) There exists a faithful family of irreducible representations of
A whose restrictions to B are also irreducible.

(iv) For any decreasing sequence {I" t of non-zero ideals of A such
that I,, is essential in I, for m >n, there is an irreducible
representation T of A such that TIlIn ¥0 forany n and 7]|B

is irreducible.
Let T be the set of e € A with e >0, iejl = 1 satisfying
H(e) = { a€EA:ea=ae-=a },# {0} .
It easily follows that Condition (i) remains equivalent if the 3nequalities
are only required for x, y € T. Note that if A is prime, then
sip { Ixayll :a €A, faj = 1} = uxplyp.
Since the implications (iv) = (iii) = (ii) 2 (i) are rather obvious, it

suffices to prove that (i) implies (iv).

Proof of (i) > (iv). Let {In } be a sequence as in (iv) and let ~{u,‘§

be a dense sequence in the unitaries of A (or A+ €1 if AR 1 ). We

enumerate .{(uk, ung tk,m=1, 2, ... j and let {’(uh, v,) § be the
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resulting sequence.
Fix e, € T() I,. We choose sequences e, € T(N I, (n=2),
a, € TN H(e,), and b < B,= ’"L b E€B: bW < 1}, satisfying

the following conditions:

sup Spec(y,) > A, — &/2n,

where
- At A
Ay, = sup { Hp,(ubv, + v,bu)lp,ll:b€B, ¢ ,
Y, = a,u,b,v,+ v:b:u:)an,

p, 1is the open projection corresponding to H(e,), and e, 1is chosen from

TN B(E, (v, )N L, for nx2 with £,(t) = £(( A, - §/n) t), where

0 t <0
f(t) = t 0<t<1
1 t=1.

Note that A, =2 & (by condition (i)) and that the arguments here are much
the same as in [/§].

Proving existence of those sequences, let f be a pure state of A
such that f(e,) = 1 for all n. Then T | 1, # 0 for all n. Since
f(ah) > 1 as n> o , it follows that for any unitaries u, v of A

(or A+ D), thereisa Q€ T(B)" such that QI < 1, "and
Re {Q MY, > = §2.
4 £ {
Thus, by using Kadison's transitivity theorem, one can conclude that
ﬂ'f(B)"' = B(H{_).

It is not clear whether (i) in this proposition is equivalent to:
(i') If xAy #{0} with x, y €A, then xBy # {0} . I do not know
whether this is true or not even if B is further supposed to be a

hereditary C*-subalgebra of A. See [2] for relevant results.

7
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4. Invariant Hilbert spaces.

In this section we assume that the group G 1is compact. One problem
associated with the C*-dynamical system (A, G, «) 1is whether there are
sufficiently many o-invariant Hilbert spaces in A (see e.g. [ € ~ & 1).
First we give:

4.1. Definition. A subspace dJ€ in the C*-algebra A is called a Hilbert

space if there is a non-zero positive a € A such that y*x € €a  for any
x, yéX and A is a Hilbert space with the inner product ( , ) defined

by (x, y)a = y*x.

Note that the inner product is unique up to a positive constant multiple.
If we can choose a to be a projection, we usually do so.

Actually we are only concerned with finite-dimensional Hilbert spaces,
and from now on we assume that Hilbert spaces (in a C*-algebra) are always
~ finite-dimensional.
If H is an ihvariant Hilbert space, then for x, y«H and a as in

4.1,
: S - k4 _ ;
Cogx), xg(¥))a = A(7x) = (x, ﬂy) X, (a).
B 7 -
Hence a & A and ( Q%(x), a%(y)) = (x, y). Thus the ¢ restricted to
H defines a unitary'representation of G.

Let u be a unitary matrix representation of G. and let d be the

dimension of wu, dim u. For each n = 1,2,... define
AT() = {xeASMpy i a(x) = xu(g), g€ GS§
where MnJ is the linear space of nxd métrices and qa(x) = ag(x{j))
for x = (x.).
LJ
If there is a non-zero Xx ¢ AT(u) such that x™x = a1 € Aﬂ9Md for

some -a & A, then the subspace H  spanned by the components xf,... X 4

[0
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of x 1is an invariant Hilbert space and 0(] H defines u. Note that if
u is..irreducible, the requirement . x"x = a®l is equivalent to the one
that ug(x*x) = x*x or x*x € £® M, .

We give one result concerning invariant Hilbert spaces.
4.2. Theorem.[?] Let A be a separable prime C*-algebra and let « be"
a faithful continuous action of a compact group G on A with G # {ef .
Suppose one of the following two conditions:

(i) There exists.a faithful irreducible representation 7T of A such
that TEIA(* is irreducible.

‘(ii) There exists an invariant pure state ' of A such that TEU\A"‘
is faithful.

Then A” is prime and has no minimal projections, and for any unitary
matrix representation u of G and for any e € TN A thére is an x € A": (u)

such that ex = x, and x*x € A“@ 1.

Note that (i) and (ii) are actually equivalent with each other (if 1.1
is proved).

Before we give a proof under condition (i), we present:
4.3. Lemma.[3 ] Let ?7 be a pure state of A such that K?IA‘* is
irreducible. Let 1/« be a pure state of A such that lH A" = ‘,’o[Ad.
Then there exists a g € G such that Y=o %y .

Proof. For a continuous non-negative function f on G, let
b= [ e beay a3
G v
< C Y, g« i = N i
Then ‘/’f_ < c 5@&040{7 1y with ¢ max{f(g) : g €6 }, since
foteps %ol pogds
G

-
As '

1
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is a central and irreducible decomposition, there is a bounded non-negative

measurable function h on G such that

b= [ e poyas.
f . g
&
Hence if j_ f(g)dgy =1, 7/? is in the weak closure of the convex hull
(<4 .
of P Ay, 8 €G, and thus 1 is too. Since the extreme points of this
convex set is { Ee 0(5 , 8 €6 } which is closed and l// is pure, it

follows that Y = §J'»013 for some g ¢ G.

Now we come to the proof with (i) in 4.2. The first part is trivial (as
we remarked in 2.2).

Let e € TN AY and H(e) = { ae Ad: ae =ea = ajr as before. Fix an
irreducible unitary matrix representation u of G and let B be the closed
linear span of x*A® My ¥y with x, yeH(e)AT(u). Then B 1is a non-zero
hereditary C*-subalgebra of A ® M, satisfying KBA% B, with A= A"® 1.

We first prove, by using (i),

(I) BNA"# f0} .

Then by routine arguments we can show

(II) There exists a non-zero Xx € A:(u) for some n = 1,2,... such that
ex = x and Xx € K‘@l.

Again by using (1) we prove

(ITI) There exists a non-zero X & Aar/,(u) for some n = 1,2,..., d such
that ex = x and x'x € A'® 1.

Finally by using the fact that Aa( has no minimal projections one can show
(IV) There exists a non-zero Xx € Ac; (u) such that ex = x and X'x € Aw'&l.
Once this is obtained it is easy to prove the results for arbitrary unitary

matrix representations of G.

IR
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Proof of (I). Contrarily suppose that BN A" = {O} . Then it follows
that for any state ¢ of A" there is a state ?’: of A ® My such that
F)a%= ¢ and & |B=o0.

Take a unit vector § & )(‘n with ¢ as in (i), and define a pure

state ¢ of A by

Px) = (LE)§, §), x €A

Any pure state extension of ﬂ A to A® My is of the form Peu, @ <
such that g€ G and &' 1s a pure state of M , by the previous lemma.
Then in the GNS representation 7, associated with this extension, the
support projection of T (B)" is of the form 1 ®e with e a projection

~r

d
of MJ since 727‘(A°(® 1)' = M,. But since for any non-zero X¢€ H(é)AT(LL) aird /\é(_}

g,}z.x;xs A= CZAx) (XA Ao,

we must have that e = 1. Thus u{?}B Il = 1 for any pure state extension
%: of §’] Aq, and hence for any state extension of ?I Aw. Since this
is a contradiction, one must have that B .} A% 40 f; .

We omit the (easy) proof of (II) and refer to [F].

To proove (III) we need
4.4. Lemma.[3] Let § be a pure state of A such that T, \Ad is
irreducible. Let -{zki. be a sequence in T[\Ay such that z,z,.= 2,4 ,
k=1, 2,... and the limit of {z,{ in (A")** 4is the support projection

of 4’( Ad[:éi]. Then for any x € A® M; it follows that
lim {| Z, Xz, I = sup {“ R(}w{(x)”: geé }
k|

where R?, is the map of A ®Md into M, defined by R%_(x) = (}l(xi’.))
for x = (xg)-
Proof. Since |l Ry, xll= 1 and Po ®(z) =1, it follows that

I R?uxj @ =1 Rf:.,.yj. (zpxz )l S flzexzey -

13



Since || )Xz 1 > 0200 X2y s the limit of jz xz, |l exists, say A,

and it follows that

A = sup { IIRF'dj(x)H: g€ }.
On the other hand for k and m,
2 < i zkxzmx*'z,c .

Since zkxsz*zk is decreasing in A ® Md as m goes to infinity, one
obtains that for any Kk,

)\: < | zkxpx*zk\l
where p = lim z, in A**. Since there is a pure state (b of AR M
such that u}(zkxpx*zk) = i 2, Xpx*z, |l , one has for T = m,, that
I L (zexpx*z, ) Il = jizxpx*zell = ) px*zixp i . In particular 7 (p) # O.
Since TJL 1is irreducible, it follows from 4.3 that 7L is equivalent to

ﬂ'y« s 1d where 24 is the identity representation of M . Hence

.5

k)

0 zixpx*z, || = I E(px*zfxp) = R?: a‘g(x*z:x) N =< Rijo%(x*zkx) il

Thus one obtains that for any Kk,
,\2' < sup {IIR?cq.ﬁ(X*ZAX) i : g &G } .

Since |l R?adg(x*zkx)ﬂ = |l R;,(O%(x*)zho(?(x)) Il is equi-continuous

as functions in g¢& G, and G is compact, it follows that

lim sup {{Rg,, (x*2zx) Il = sup lim HIR_ . (x*z,x) |i
k"?w SCG ?c’yg k ?6& kﬁlo ?tdg f(

where sup 1s really max. On the other hand
lim # R (x*z, x)1 = |IR (x) t12
?E'ig k ?“’dg
because for a, b € A,

lim ?=dg(azkb) = & og(a)?aog‘(b).

14
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Thus one obtains that

b

2
A o< sup IR g, o) W :gect,
which compl|etes the proof.

Proof of (III). Let m be the smallest poéitive integer for which there
exists a non-zero x & A:L(u) such that ex = x and x*x = a®@l € Ad® M.
We may suppose that a € T.

Let & be a unit vector of [H(a)Hy] with T as in (i) and 1ét Vi
be the associated vector state of A. Noting that 4" A s pure, we let
{ztﬂ— be a decreasing sequence in T /) A% such that Zp =8, 220" Zgyg o
and the limi‘t of z, in (A")** is the 'support projection of ¢lA°(.'

Denote by x . the i-th row of x. Then xb.c—'Aa,'(u) and

v
m
x*x = 2 x¥x, .
L =i

Since R?n ‘x&(xj_tx S = u(g) *R?(x’;xi)u(g), it follows from the previous lemma

that
lim )z x¥x;z, ) = \ Rf,(xf.xi) i
Hence if |} Rf,(x;xj) I < 1 for some j, then for large k, | zkx;xi N <1

and so

2 P

- *
kr] T Zeet X5X 2 ke L

v

where ¢ =1

li z,x¥x.z, it > 0. Since
<7575
2

m
= = * :
2w T Zret3Zen Z Zhot X, XpZ gy o
L =)

this estimate implies that

-2
2 = ~Z Zptt Xp X B
t¥3
By using this we can reduce m by 1 as in [4] and so reach a
contradiction. Thus one must have that thgﬂ(x*xL) W =1 for all i. As
. . b, A

Ra(x:.‘xi) is a positive matrix it follows that Tr R,.(x*x.) = 1 and that
i L ¢

#
15~



om
m < Tr {2_‘ R, (x}x,) } = d.
The proof of (IV) is again routine if we use the fact that A% is prime
and has no minimal projections. So we omit it and refer to [9].

We shall not give a proof under condition (ii) except:

4.5. Proposition. Under condition (ii) in 4.2 (in particular there is an

invariant pufe state 0 of A such that WZAA“ is faithful), Aaﬂ is
prime and has no minimal projections.
Proof. Since kﬂ A s pure, it follows that Aqi is prime.

Suppose that Ad has a minimal projection e. Then « 1is ergodic on
eAe, and there is an invariant pure state ¢ of eAe since LU\A?eAs £ o.
Then ﬂ? is faithful and it follows from [/p] that f’ is a tracial state,
which implies that eAe = €e, i.e, e 1s minimal in A.

Theré is a non-zero Xx € Ar(u) for some non-trivial irreducible unitary
matrix representation- u of G. Since AY is prime, there is an a € A

such that eaxx* # 0. Thus < x*a*eax # 0. Again thereis a bEA such

that
Zi x*a*eax;-be # 0.
z

This shows that eax[be f 0 for some i, which. contradicts that

eaxibe & €e since eaxbe € Kﬁ(u)

Incidentally we give:

4.6. Proposition. Let A be a C*-algebra, G a compact group, and « a
faithful continuous action of G on A. Let ¢ be a pure invariant state
of A. Then the following conditions are equivalent:

(i) Ty is faithful.

59

(i) "Nw v U is faithful, where U 1is the canonical unitary representation
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of G on H, and 'n'wx U is the corresponding representation of the
crossed product A X G.
Proof. (ii) = (i). Let for each ¥ € G
R = Sd Tr(¥) A(g) dg € M(AxG)
& | |
where d = dim(Yy) and Tr(y) 4is the character of ¥ . Since AX G D

K'®cr (@) > K©Pp, and Myx U is faithful, (m,xU)|A@ P, is faithful.

That is, F|U(P,)H, is faithful, where £ = T,]A™.

(i) = (ii). Let I = ker(N,x U) and let x be a positive element of I.
Let b € AT( Y), with Y € /(3, where Y is also regarded as a fixed
unitary matrix representation in its class. Then since P, bxb*P

=P, E(bxb*jP ,‘ where §(a) = fq_wb(a)dg, and since F\U(PL)HR) is
faithful, it follows that PL bxb*PL = 0. Thus. xbgPL= 0 for all 1.

Let J be the closed ideal generated by b*Pb; with b & AT(Y),
i=1,2,..., dim(¥), Y& G. Then one must have 1J =0.

Since A" is prime, and & 1is faithful, it follows that the spectrum
of o is G. Since Pb*P b = b*Pb # 0 for non-zero béAq;(y) and
Pr's are minimal central pmjections of C*(G), it follows that
JNA*®P, # 0 for each Y € G. since A% is prime and F P. =1 (in

the multiplier algebra), J must be essential. Thus I = 0.

17



5. Endomorphisms

Let (A, G, &) be a C*-dynamical system with G compact( We denote
by M(A) the multiplier élgel;ra of A and by the same & the unique
extension of o  to an action on M(A). We let U -—-’IL((G) be the set
of irreducible unitary matrix representations of G. In this section we
assume that for any u € { there is.a v € M(A)T (u) such .that‘ vw* = 1
and v*v = 1@1 € M(A)® My where d =dimu. Let ¥ € 8, a class of
equivalent irreducible unitary representations. We fix a u'e W in
class Y and in turn Vv € M(A)’: (u") and define an endomorphism ?'73( of
A°( by_

4 «
f;(a) = vav* = 2 v-avi., a €A
C=1 '

. . . A
where v = (v’,...,vd). Thus we have a family { ?’a,: )"éGj of
endomorphisms of the fixed point algebra. A (cf [6~8D]).

One typical example of such a C*-dynamical system is given by

5.1. Proposition. Let | be the right regular representation of G on

LZ(G). Let H be an infinite-dimensional separable Hilbert space and
denote by K(H) the compact operators on H. Dénote by {3) the action
of G on the C*-algebra C = K(I?(G)) ® K(H) defined by F? = Ad U(g)® L
where | 1is the identity automorphism.

Then for any finite-dimensional unitary representation u of G,
there is a v €-'M(C)°(I (u) such that vv* =1 and v*v = 1@ 1 &EMO)® My
with d = dim u.

Proof. Let W, WY be visometries in M(K(H)) = B(H) such that
Z wow*. =1 .,

Regarding u;J. , a matrix component of u, as a multiplication operator

2
on L (G), let

Iy
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&

<
2t

Then v = (v! seees Vrl) satisfies the required conditions.

Let ¢’ be an invariant state of A. Define a unitary representation

UofGonHwby

Uy T, = T eo0p00f2,, x& A

Denote by Pr be the spectral projection of U corresponding to )’c 8,
i.e., P. is in the center .Uq"’ such that the representation' UP), of

G is in class Y. Note that Py # 0 forany ¥é¢& [

5.2. Lemma. Let ¢ Dbe an invariant state of A and let U, PY etc. be
as above. Let Tz’lé = Tl‘u\Arx' and let § =Typ = WLO/!PLHM. Then for each
Y & T it follows that Tl'{ iP),Hw is unitarily equivalent to the direct
sum of d copies of Poy‘a,: where d =idim2r and 5’_ is the conjugate
class of ¥ .

Proof [71, [3]. Let [ € /(S and let v €& M(A)D: (u) be the element

‘ defining q"y . It follows that PFH“ is the direct sum of [ f[w(v*)Hl],
i=1,..., d, each of which is left invariant under Hw(Ay), where

H, = [-'{Iw(Au)wi] = P H,. The restriction V, of Yd TV to H o is

L
an isometry onto “Tw (Vf)H’_] and satisfies that
v

. X
v, Pb?}(a) = T[_qi (a),\/é, age A.

This completes the proof.

5.3. Proposition. Let (A, G,X) be as above; in particular there is

. ; = . o _
a family { ?r Y€ Gy of endomorphisms of A . Let iU be an extreme
invariant state of A (and so kl A is pure). Then the following
conditions are equivalent:

(1) o 1is pure.

7



(ii) For each ¥ & G\di1f , £ f, is irreducible and disjoint
from f .

(1ii) For each Y € 6 g, Pe 5‘;, is disjoint from F.
Proof of (i) = (ii). Let ¥ € G. In the proof of 5.2 it follows that

/
Since T/ |I M,(v¥)H,] is unitarily equivalent to fe ?’;, (= Wé"ﬁ,l H,),
it follows that Pe 5”), is irreducible. Since T((:. \P?HLJ is disjoint from
L IPLHw Pe¥, is disjoint from f .
Proof of (ii) = (iii). This is trivial.
Proof of (iii) = (i). Using the notation in the proof of 5.2, one has that

PLG Ty (A“)“, P, W (A)"P, = B(P, H,) and the central support of P,

is 1. Hence T,(A)' =€l and so &> 1is pure.

By an analogy from the case of automorphisms we define

5.4. Definition. Let < be an endomorphism of a C*-algebra B. One calls

% to be properly outer if for any non-zero hereditary C*-subalgebra D

of B and any a of B it follows that
inf { ixa ()l 1 x€TADf =o.

5.5. Lemma. Let { £ :n=1,2,... } be a sequence of endomorphisms
of a separable prime C*-algebra B. Suppose that all &, are properly
outer. Then there exists a faithful irreducible representation 7L of

B such that Te¥, is disjoint from 7 for any n.

Proof. Let {I,} be a decreasing sequence of non-zero ideals of B
such that for any non-zero ideal J of B there is an n such that

JO L,. Let {a,{ be a dense sequence in B. Enumerate

{(ak, lf—‘m) :k, m=1, 2,...}- and let { (a,» ¥, )t be the resulting
sequence. As in []]|], one constructs a decreasing sequence - { eng such

that e_e¢ T/ I, ee

n ntt = €y > and

63
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Mo | T,(v)H,] is irreducible since U.'R. = M, and Ug'Py = T[;,(Ax) P
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Il ena, f(e, )0 < 1/n.
Let f be a pure state of B such that £f(e,)=1 for all n. Then 'JT.j_. is
f.he &esir’ed representatidn.
5.6, Lemma. Let 7’ be an endomorphism of B. If there is a faithful
irreducible representation JU of B such that Te¢§ is disjbint from 7,

then ¢ is properly outer.

Proof. Trivial.

5.7. Proposition. Let (A,G,O() be as above, and suppose.that A is
separable'. Then the following conditions are equivalent:

(i) There is a pure invariant state « of A such that TL,_UM« is
faithful.

(ii) A% is prime and %, is properly outer for any ¥¢€ G\ 1L .
Proof. 1) = (ii) follows from 5.3 and 5.6. (ii) > (i) follows

from 5.3 and 5.5.

5.8. Lemma. Let (A, G, ) be as above. Suppose that there is a faithful

irreducible representation 7€ of A such that T | A* is irreducible.
A

Then for any ¥ € G and for any X, ye T NA, it follows that

4

-

sup-{_”x?;(a)yﬂ :ac€ A, fap < 1}' > d

Proof. Assume that 7’,, is defined by ve M(A)T (ur), i.e., f’r(x) = VXV*,
First we claim that 'Ecﬁ(A“)' is the C*-algebra 2 generated by
TG(V‘;VJ.‘ ), i,j =1,...,d, which is isomorphic to M-

It is clear that M = My since T (v, va‘) 's are matrix units. Define

~

an endomorphism ¢ of B(H;) by
4
P@ = 2 TOEHATEN

) . p . N ~ 7 .
Then it follows that the image of ? is M . Since Tul Aq is irreducible,

2/



it follows that "JZ"?(Ad)" contains any element of the form $(Q), Q€B(H,).
Let Xx,y & TnAq and let
5 = sup{ ||xf>(a) yil : a€n /}
where AT = {ae‘Aq : uanél} . Then
§ = sw{ltF@zmi : QeBE), .
Take a partial isometry u for Q where p = uu* and q = u*u are
one-dimensional projections. Then it follows that
A ~ ~ »
2@ T PMMIT)§ @I,
i = G *XV. WWF), btains that
Since TL(x) Z ?(m (VL. xvd)) TL(vuvf_) one obtains tha
§ 2 2, ?(pmcv:ka)p)qa(u)éacqncv;yg,nncvév;)
Lk g :
2N &
Define states fP’ fq of B(H)Z) by
£,(Qp = pp, £4(@q =aQ, Q &BH).

Then defining auJ. = fP(,‘L(vl}‘xv\).)) and b;j = f%(iz(v;y\i).)), one obtains

5zl Z 2 a,be. vevt) || = J|ABI
L7 ok 4 3

where A = (a[j) and B = (bLj) are dxd matrices. The above inequality
is true for those A and B defined by vector states fP’ f4f of B(HTL)
and hence for A and B defined by any normal states. It then follows
by taking a weak* limit that for ény states f and g of A

3y 2 (Elvixv;))- (8 (viyv;)) I

1 ‘_l
Note that || x4 vt 2 d % since
Va A e
5 O(g(x vivgx Jdg = d x .

This implies that | 2. v"fxvv I 2 1/d and hence there are invariant states

f and- g of A such that

£(Evixv,) = | 2 vixv || > 1/d

g(Zviyv,) = I 2Zviyv. = 1/d.
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Since  £(v*xv,) = 1/d £(Ivixv, ) and f(v?‘xv5 ) =0 for i#]j, it
o 4 .
follows that ‘
-2 ) ..4.
§ zd WZvixv, | | Zviyvpil 2 4 .

5.9. Proposition. Let A be a separable C*-algebra, G a compact group

with G # {ef, and X a faithful continuous action of G on A. Suppose

that for each Yéa with fixed unitary matrix representation u? in class
¥, there is a ve M(A)"j (u(), such that vv* = 1, v*v = 1@14 with
X
d = dimY¥, defining an endomorphism f@ of A Dby
d
o

@ (x) =vxv* = 2 v.xv: , x€&A .

¥ V= v 14
Also suppose that there is a faithful irreducible representation 7 of A

such that 7 [  is irreducible. Then %, is properly outer for any
ye G3rg.
Proof. Let Y¢ G\iof and suppose that ?’Y is not properly outer. Thus
there are a non-zero hereditary C*—sub;'ilgebra D of A and aEAd such
that || xa ¢r(x) i = 1 for any x € TOD.

Let § € ['IZ_(D)HI] be a unit vector and define a state «wW of A
by w () = <‘7I_ x)XX , §> . Since u)lAu is pure, there is a decreasing
sequeﬁce §zk§' in T/)A such that L Zpn = Zpy oo and the limit p

of Zp in (£)** is the support (minimal) projection of A",

Since | zavz, i = 1 for any k where ?;, = Ad v, one obtains
by 4.4 that
sup {,ﬂqu (@l :g€Gf = 1.
9

But as chdg(av) = Ry(av)u(g), it follows that (R, (av)ll > 1.
Suppose that d = dim¥ = 1. (In this case we can use a method as in [//].)

Then v 1is a unitary in M(A) and
[<m@ns, $>] =2 1

for any unit vector § € [TL(D)HE].
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Let E be the open projection in A** corresponding to D. Then the
above condition implies that there is a A€ € with 4] =1 such tﬁat
AT**(EaVE)+\Tm*( EV*a* E)2 271**( E ).
Let x € D. Then, since T is faithful, it follows that
)\xavx* + X X VFartx*>= 2 xx* .
By applying 0( and integrating it over G , one reaches the contradiction
that
0= 2 x x* , x €D.
Suppose that d=z:2. Then by 3.1 and 5.8, there is a faithful irreducible
representation f of AY  such that % |%(Ax) is irreducible.
Let ¥ be a unit vector in [JO(D)HF] and define a state @ of A~
by w(X) = (P(x)? , §> . Let -{ z) f be a sequence in T{)D as

before. Then |l z,a ?3,(22) i > 1 for all k, ¢ and hence v
w(a %,( Ja*) = 1.

This implies that (P ?’.r)**(p) # 0 where p is the support projection
of W, i.e., the representation Po ﬁ, of A% contains P as P is
equivalent to the GNS representation associated with . But since feo ¥
is irreducible, this means that e % is equivalent to £ and that
there is a unitary U on HP such that ;Oofl,;(a) =UFP@U*, a€aA.

2 2 2 2,
Hence Pcf’, (a) = UP<P(a)U* = U f(a)U*", a €A . Thus P‘f;(A’()
is irreducible.

' 2 . & . . r Y

Note that ?’3, is an endomorphism of A~ associated with u® ® u

which is not irreducible. Explicitely let p ¢ M(A*) be the projection

corresponding to the symmetric part:

= _+ V. VLt * o+ ok,
P L%JZ (vv v) )(VVJ vjv) ZVLVAVKVL—

Then a(ﬁ(p) =p and 0

WA

P S 1 and one has that p'fr(A)(l-p) =10j%.
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Since P(p) #0 and ' pP(l-p) # O , this implies that P l'f;'(A")
cannot be irreducible, i.e., a contradiction.

5.10. Remark. To complete the proof of (i) (ii) in Theorem 1.1,

we must first réplace (A, G, &) by (A®K (Ll( G))®K (H), G,
X@AtAN® L ) (see5.1).

Checking that (i) is still satisfied for this new system, we apply 5.9

and 5.7 and then have to go back to the original system.



6. Infinite tensor product type actions

Let G be a compact group with countable basis. For each ¥ & 8
we fix a unitary matrix representation u’ inclass Y . Let {55 be
a sequence of representations |® u¥, 5’66 such that each |2 uY appears
infinitely often in <{§,§ where 1 is the trivial on.e-dimensional‘
representation. Let d, = dim §,, and let {3 be the infinite tensor
product action ;,,%, Ad%, of G on the UHF algebra C = é’ My .

Let P, be the one-dimensional projection of MJ,\ that supports the
trivial representation ‘1. Regarding ph‘ as a projection of C, let ¢
be the pure state of C whose support projection is the limit of P, ---P,
in C**,

Let qa, be the one-dimensional projection of MJ,, such that every
matrix entry of in is d;‘ (in the matrix factor Mal,, where §, is
represented as it is). Regarding q, as a projection of C let 50 be

the pure state of C whose support projection is the limit of q,---9,

in C**,

6.1. Proposition. Let (C, G, ?) be as above, and let W and 59 be
the pure states as defined above. Then (a) w is a pure invariant state
such that n.,w is faithful and (b) 3" is a pure 'anti-invariant'

I

state in the sense that TT;, ’ A" is irreducible.

We shall prove here part (a). Let I be the kernel of )I.\‘Ad and

' ‘ 8
suppose that I ;! {0¢ . Then we must have that I, =INC, # {0§%
h 8

for some n where C, = 29 M‘(k . Since C, is the direct sum of finite

B :’ ) '
type I factors, each corresponding to each central direct summand of
" B A n
e of C, with e €I . Let ¥ € G be the class containg (& §, Je.

k=3

8
Then there is an x € (C,)| [u'r) such that x*x = PP @ 1 and
n

26

n
&S5, , and I, is an ideal of C , there is a minimal central projection
=
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e

X x* < e. On the other hand there is an m > n such that §m’§ fPu”
3. —
and hence there is a v € ( My )', (u¥) such that v* v =R ®1 and
"

vv*=1¢-p, . Then it follows that a = 2 x.v. € C'ﬁ and that

[}

wWw(a*ea) > w( x*. e xd_)u)( v’:_vd.)

2 W( x*e x.)

)

dim. (¥)
This contradict$s the assumption that e & I. Hence n_’LJIAd must be

faithful.

Part (b) can be proved similarly. See [ 7 ]} [ 2 1.
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7. Central sequences

We shall give the proof of (i) = (v) in Theorem 1.1. (The result here
relies on Lemma 1.1 im [1].)

Suppose (i) and let TL be a representation as in (i). Let ¥ & 8
and let u be a unitary matriX representation in class Y . Define a

representation T? of A by

R = S Te X d 3
G §9J

as before. Then TL(A)"3 <uF, £>  for any unit vector 7§‘€ CA with
d = dim u, where <(uf§,¥ > is regarded as the multiplication operator
by <u(t)€, §> . Hence there exists a central sequence -{y"”} in A
such that jy“) < 1 and %(y"") converges to (ug, £ > in the
strong* topology [1].

Define

) _ . m
y(;)- = dSGu L"‘(s) 0(5‘|(y ) dS,

and let y'V = (y (;J).). Then it follows that 0(5(}(,(”))

1]

(n)
(% by

2

= z“”u(s). By computation one obtains that for ?, ¢ € CJ

T (’Zt}(,(h)g) —> <§, np<ug, ) strongly*

which implies that TAZ‘(ZW) converges to gif*u on LZ(G)®H,C® E”( in

the strong* topology, where u 1s the multiplication operator by the
matrix valued function wu(t). Hence for @ € Hp and 7 € Cd,
it follows that

[RAER A

)(@eu(s)*)) - ggrus)@auls)*4) A
T eeq - g5t gen

and that

25
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ITG ™ (@ourn) - F5*u@ouh) ||
= Il @eh) - s3*g2) |l

where Q@u*/] is the vector of LZ(G)®H1,_® cd defined by t—> Q)Qu(t)*/( .

This implies that T (y converges to §§* in the strong” topology.

- o

Let a®™’ = yWyW*  Then a is a positive element of A“®Md. Define

a function £ on R by

)
£(t) = {t t = 1
: t t < 1
and let vz(n) = £(al™)y®™ . Then o(s(z("’) = z(")u(s) and |z = 1.
Since
T@™ - 3 strongly
and since 11§%"l =1, it also follows (see e.g., [18]) that

TM(EE™) > FEF.
Thus T (z") = TE* strongly*. Hence g*z¢ & A"(‘(u),
RS *z(""s‘ W< w3 ux™agh = 1 , { §*z‘")§ { is a central

sequence, and T(_(’g*z‘“’f) —> 1, which implies that
lim inf || §*z"g.all = Jla |
for any a € A.

Ihcidentally we remark the following.

7.1. Proposition. Let A be a simple unital C*-algebra and {znﬁ a

central sequence such that |z, |l = 1. Then for any a €A,
1im || zna W= 1 ali.

We omit the (easy) proof of this result (cf. [16]).



8. Asymptotic abelianess

In this section we show how the asymptotic abelianess condition can be
used to produce an 'anti-invariant' pure state, i.e., a pure state
whose associated GNS representation generates a type I orbit as in the
foilowing (cf. [4]):
8.1. Theorem. Let A be a separable simple unital C*~algebra, G a
locally compact group with countable basis, and ¢« a faithful continuous
action of G on A. Suppose that there is an automorphism O of A
such that Cox, = o,e0, t € G and | [x, c‘n(y)] f >0 as n-—=>c0
for all x, y € A. Then there is an irreducible representation 7C of

A such that for the representation of A defined by
~ D
= g Te o, d+
G

on L*(G)®H, , the center of R(A)" is L"(G)® cl.

Proof. For f ¢ L (G) we define a linear map W{; on A by

1]

% () Jq—f(t) A (e (), x €A

where (t,u 1s a right Haar measure on G. Since ||a;( N < it fl(‘ , and
& © 03 = O(f‘_&; with fAg(s) = 5f(t)g(t" s)d//t (t), the map fi—> &9, is
a continuous homomorphism of L'(G) into the bounded maps on A. We first

claim that this map is an injection, i.e.,
1=4{ feL'© : o(7£.=o)L

is the zero ideal of L'(G).

Since I 1is a closed ideal, IﬂCc(G) is dense in I, where C,(G)

is the continuous functions on G vanishing at infinity. Let f & INC,G).

Then for any x, y ¢ A\ 40§, it follows that

{fct) e (x ) (8) = 0
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for n=1, 2,... .
‘For any £ > 0, let K be a compact subset of G such that

I£(e)|dm () < €.
a1 -
Let U be an open neighbourhood of e of G such that

Nox) - x of <&/ uiyuM, N -yl < &/ nxaM

for all t € U, where M = sup { [E(B)|: t € Kj’, and

|£(st) - £6s)] < E/nxu-iyn-u®

for any s € K and t € U. There are tl;...,tn in G such that

N
U t,u 2 k.
=y
Define for i =1,...,n,
v=1

A; = (5;UN K\ U A;
. ()-v
with Au=¢. For t €U

I £cese) o, o €)) - £05) o, (xTTONN S 38/ M.

Let ,\L.=/L(A£). Then
n

I gf(t) X (x G0N AU () - Z KE(E) o (x S )

= Z XA!' £(1) o, (x () - £(5) o (x T dp(t)

= 2 (3E/pm) A =3 E.

Therefore one obtains that

n
A2 Afe) o & s'on Il £ 3¢

<

=3
for all n=1, 2,... . As n>& one obtains that

2 A e % (0@ o Ny < 3¢€

where 3; is a C*-norm on A® A (cf. [|6]).
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On the other hand, for the same reasoning as above, one has that

I § e W) @ A ©) - T D 4 99 0 ]
< s, |

Hence it follows that

njfm X, 0B o O | < 6 &,

Since & is arbitrary, this implies that

Sf(” X, (0® o (dp(t) =0

In a similér way one can show that for f €1,

S-f(t) o ()@ - @ (x,)dp(t) = 0

for any x .y X, € A. In other words, one has that

.
| £ @ (o, () - 6 (0 dpe () = 0

for any X,,..., x, €A and ?’,...,ﬁbh & A*. Since the set g of

{
functions t > @(&, (x)) on G with xg A and ¢ & A* separates
the points of G, and is closed under the complex conjugation, it generates
LM(G) as a G‘(Loo(G), L'(G))-—closed algebra, as is seen below.

Let ?‘ be the uniformly closed algeﬁra generated by . Then for
a continuous function h on R with compact support hoe 7’ belongs to c?,
for all reél ¢ € B‘FI , since ja is bounded and any h can be uniformly
approximated by polynomials on a boﬁnded vinter‘val. Let ge I?O(K) be a
real valued function with K compa‘ct. Then there exists a sequence {%‘f
in g, suchthat ¢k g in s(@@, L'W), fr = F, e
il <Ph] K “5_1;1\ git. Then by replacing ?Dh by he ?’.ﬂ if hecessary we can
assume’ that" {N%‘nf .is bounded. Thus there exists a (f in. the ¢ -weak
closupe of 3-1 such that ?’ l K = g. . Since K is arbitrary, this shows

that the € -weak closure of '3'1 is equal to Loo(G).
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Hence for any P € L°(G),

: jf(t) ¢ () 44(t) = 0,

which implies that f = 0. This concludes the proof of I = {0f.
Let {'fh § be a dense sequence in { fe LI(G) Dl fuw =1 f. For

each n, there is an X, € A such that | xh‘l =1 and
sup Spec( g (x,) + Q% (x)*) > I % Ul /2.
n 3 h :

Let {c,} be a sequence which consistes of infinitely many copies of
u?n(xn) with n=1, 2,... . Let -{a,l} be a dense sequence in
{'a.é A ftal =1 }. We choose kn and b, , e, €T with e, €T

arbitrarily fixed, in the following way: -

I (2, C’"k"(xm)] V< 1/n, ¢, m=1, 2,..., n,
bné H(en_;‘)mT{
sup Specy b, G’hwcn + c* )b‘f > (1-1/2n) fjc, + ekl ,

kn . |
e, = g,(byG T, + chIby),

where gn(t] is defined by

1 t 2 (1-1/2n)flc, + cx |

g, (t) = . ,
0 t < @-1n)flc,+cx|

and by linearity elsewhere. Then e, é'li(enq YN T. Let 7’ be a pure
state of A such that f (e,) =1 for all n. Then

kn

Re $( 67(c,)) = 27 - vy iien v ek

1 ‘ = .
For each m let {,&13 be a subseqience such that CL& fk$xm) Let
g, be a weak* limit point of Ty (¢ “(x,)). Since {™n(x,)f “isa
n
central sequence, - is a central element of h}(A)" with norm less"

than or equal to 1 and can be regarded as a function on G. It follows

that
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Re jj f.m(t,)gm(t) ‘{/" (t) = 4-' L q,f,n 0.

Let Z = T\[; A" N 7’1; (A)' C L7(G)® €1. Assume that Z & L”(6) ® 1

and let f &€ Ll(G) be such that f{fil =1 and

~gf(t)g(t)c;/&(t) =0, g€ 1.

Then there is a subsequence {mnk such that (] f, - f ”1 — 0. It

m;,
follows that:

A g Il S Re 5 En(D)En(t) i S HE, - 1, gl S V£, - €1,
and

lopgn < 17 Sag e S E - £ + 4 lE - £, 1

1

=S~ £, .

Thus one obtains that % = 0, which implies the contradiction that f = 0.

Hence z = L™(G) ® C1.

3¢
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9. Other type I orbits
..In this section we shall prove the following result bas‘ed‘on 1.1.
9.1. Theorem. Let A be a ”separable C*-algebra, G a compact group, and
o a faithful continuous action of G on A. Let H be a closed subgroup
of G. Then the following conditions are equi‘valent‘:
| (i) There exists a faithful irreducible représentétioﬁ 7Z: of ‘A
such that 7| A" is irreducible.

(ii) AH is prime and there exists an H-invariant pure state g’ of A
such that 77-<HAH is faithful and :I\I;, (A)" 1is of type I with center

Ifo(l-l \G)® €1 where AM is the fixed point algebra of o|H and
. ~ @
]T;‘,'=$Cr T;,co(s ds .

9.2. Lemma. For an irreducible unitary matrix representation .u of G let
pH =p, - S u(h)dh.

H
Then AH is the closed linear span of the set of (yPu]L. , 1= 1,‘...,’dim u,
with y¢€ A'J;(u) and u all of those representations of G.
Proof. Note that P, is a projection and that A< is the closed linear
span of y, , i=1,..., dimu with y GAT(u) and ué€ J{ , where Z,(,
is the set of all irreducible unitary matrix representations of G.
H

Thus A" 1is the closed linear span of

jHth(x,)dh - [oum,an = om;
i=1, ..., dim u, with ye¢ Aﬁ;(u) and u € Z( .

Proof of (i) ':$> (i1) of 9.1. Since AHD Ag = AD(, E’AH is irreducible
if X l AS is irreducible. Thus AH is prime.
By using a representation T as in (i), we define a representation ¢

of the crossed product AXpH, with ﬁ = ¥ JH, on Lz(H, H;) by
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($@EI() = Teop@)§), a¢A
(LA EI() = 3(ts), s €H

for S ¢ 12 (H, Hp), where ) 1is the canonical unitary representation
~of H in the multiplier algebra M(Apo) and the’uniq.ue extension of Q
to M(A A H) is denoted by thé same symbol Q.

First we 'assert that ¢ is a féithful irreducible representation of
A Xg H. Since; T is faithful, @ is faithful. Since | A" s
irreducible, the center of P (A)" is L MH)® Cl‘ on LZ(H)® He
- "4, H). Thus @ is irreducible. |

Let u be the set of all irreducible unitary ﬁatrix representations
of G as before. Let u ¢ ¢ be such that u(h) =1 for h€ H.

Then there is a central sequence {’x(u, k)} (central in A) in

{xl D = Aol((u) f' such that [[x(u, k) {{f =1 and

lim sup || a x(u, k) I = lay
. .

!
for any a € A, where Jp,; is a positive constant depending only on
the ciass of u (see (iv) in Theorem 1.1 — we shall use this apparantly
weaker condition to illustrate how this could be used to prove that
(iv) '; (i) in 1.1). Since ofh(x{) =x; for h€H and x¢ AT(u),
it follows that -{ x(u, k)% is a central sequence in A Xp H. (But
note that x(u, k) € M(AXPH).) - |

There is an H-covariant ifreducible representation ‘.of A. (See
(i) 2 (ii) in 1.1 for B = %|H.) Then © induces a representation ﬁ
of AXP H on the same space. Hence the weak closure of. ﬁ(A,\(hj)
contains 1- for any h € H. This implies that there is a sequence
{a(h, ‘n)}-. in A rsuch that’ lath, n) Il =1 and -(a(h, n)/\(h‘)}-is a
central sequence in A x, H vand i xé(h, n) /\ M)y = fxi for any

P

X € AX,H.
f
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Let {u,t be a dense sequence in the set of ué& ] with u,(h)=1,
h € H such that each isolated point in thjs set appears infinitely often

in .§'u*3 . Let -{Ikl; be a sequen;e of non-zero i‘deals of AXﬁH such
tha‘t for ‘eac1'14n’on-zero‘ videa’l J of A po the:e is a k with JD2 I..
Let {hkl— be a dense sequence in ‘H such that each isolated point‘
appears infinitely often in {hk{- - Let fbkf be a dense sequence
in the unit ball of AX? H, gnd let Y&, ) be a decreasing sequence
of positive numbefs such that & < 1 and’ lim & = 0.

Let e ¢ T_f) I,, H(e)) = {xe AxﬂH : ex = Xe = ’x} (as befpre) and
P, =p(e,) the open projection corresponding to H(el). Choose k_' such

that

A‘ = Il P‘,(X(U;: k,)"" X(U|,vk))’)p‘ il 2 8[%,3
Wb, x(u , k)1 < &

where x(ul , k') may be replaced by ) x(u‘ s kl) with A\ &€ T to obtain

the first inequality. Then choose a, € H( )N T such that
” y' " = sup Spec()’() > /\1 = E‘i JE(_( j
7

where y = a‘{x(u,, k) + x(u,, k|)*}a,, by replacing x(u,, k,) by

- x(u,, kI ) if necessary. Define a continuous function f on R by

- 1 t > 2/3
f(t) = 3(t - 1/3) 1/3 £ t < 2/3
0 t < 1/3.

1
Let a! = fri/(& 0 ) - é, + 1) and choose e! €H(a') NT. Since

e, Y, s it follows that e‘ai' = a! and so e e: = e . Let

p" = p(e") and choose f, such that

Koz ip G, 4)A®0) + Ap*at, 4,)9p/ 1 > 1
by, ath,, LA DTN < & . |
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Then choose a'l' € H(e") N T such that
m y(' i = sup Spec(y') = )\; - €

where y! = a’] {a(h,, 4,) A (h)) + A (h)*a(h,, ¢, )*} a'l , by replacing

a(h, f,) by - a(h, IZ’) if necessary. Let a:" = f(yy/(él 0y, ) - gﬁ*”

- i 1411 = it ] 1 =
and choose eleH(a’)[\TnIZ. Then e'al al and eje,= e,.

We repeat this procedure. Eventually we obtain a decreasing sequence
{en} and others satisfying appropriate conditionms.
Let ? be a pure state of A x{gH

and we assert that '77,7, satisfies the desired properties.

such that fa(en) =1 for all n,

Since ep € I, and so MSO\I,, I =1, 7[7) is faithful.
Since e a} = e, and so ?(ar”) = 1, it follows that

FOIZ U= E/Divgl = A - &/ (A - &, S

where vy = ah{x(un, kp) + x(u, kh)*j‘an and a' = f(y, /(éqﬂynu) -g:'+l).

n..

On the other hand it follows that
. L .
CUry) = I, {x(uy, k) + x@u, k) Ep I @ E) = Aa ().

Thus for a subsequence -[nmls with [u,] = Y, ?A(a;) converges
M m

to 1 and so
2
lim 1 -a = 0.
in ¥ -a, )
Hence it follows that

lim inf Re ?’(x(un sk, ) = 42
m " "
"y

Since € e dn = €, and so cf(a,:") =1, it follows that

PO 2 A= &/ = (- &/ A - E)

where 'yn' = a';, {a(hn, ‘En YA (hh) + A (hn)*a(hn, e') )*}' a" and

(e 4
) {

a, = f(yn'/(é'n iy, u)- Eh- + 1). On the other hand it follows that

5%
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1 - v @rar?
?(yn) ﬁ /\n?‘(an )'
Since ):, > 1, it follows that f’(a;,z) converges to 1 as n - 0o

Thus we obtain that
lim inf Re P(a(h,, ¢, ) A(h)) = 1.
From this property it beasily foliowé that Tf;"l A is irfeducible. (Because
for any ‘h € H, choose a subSequénce {nm} such that h, —> h. Let
. m
Q be a weak limit point of H;r(a(hn , Q,,")) and then it follows that
m ¥
QW (A ) =1 or 'n‘,,'“(,\ (W) & n};’" (A)", which implies that
T, (g )" = T ()
Let f

'ﬁ‘;"A and define a representation /8 of A on LZ(G, 13;,)
by

P f: Peos ds .

Let Z be the center of P(A)". Let ue X be such that u,,(h) =1,

h € H. Choose a subséquence {n } such that [u, ] = [u] and u, - u.
m m nm

X v
Let x‘méAi(unm). such that xfm)= x(u, , knﬂg. Then {xi'\m} is a

(43
central sequence in A for any i =1, 2,..., d = dim(u), and we may
assume that
i m),
lim P (x.) = J;
exists. Then &8cu3/2 <A, € 1 and 1A;] < \/-E, i=2,...,d

«

(which follows from the way Xx;'s are defined). Since

o
?e 0(5()(?5 = Z ?(x‘ﬁuid.(s),

L=

it follows that for j =1,..., d,

d
Z )\; u -
C =

. € 1z,
oo

' ol
where we regard Z as a subalgebra of L (G).

. . - H
This argument shows the following: For any ué¢ 'L( with P, #0 and
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. 4 . d
any unit column vector & € € there is a row vector ) € €  such

that A§ # 0 and
d
Aw, =2 Aru; € 2. )
g =i 4’

Since Z is a right-translation invariant subalgebra of Lw(G), there
is a closed subgroup N of G such that Z & Ifo(N \G). We have to show
that N = H. Since Pooih ~ P for h €H, it follows that H <N (see
the proof of 2.2).

Let s€ N. Fix ue U{ with PLLH £ 0 and let d = dim u. For each
unit vector T €& C"l with P, § = ¥, one has a row vector § € Glal

such that (gu)- € Z for j=1,..., d. Then it follows that
¢
S5, ushs) - 2, S,ug ), heEH
rvv -~ -~ ~N

This implies that §P,u(s) = §PB . Then, since Er§ =355 70, and
§ is an arbitrary vector in PuCA, one obtains that Puu(s) =P . But
note that C(H\G) 1is the closed linear span of (Pwu)l.’;. with u € z(
Since (Pt(u(s))b} = (P) C&_ , Hs 1is not distinguishable from H in

H\G, i.e., s € H.

Proof of (ii) :; (i) of 9.1. Suppose (ii) and let ? be a state as
in (ii). Let ué€ U with P, # 0, and let d = dim u. For any unit

vector 7§ S Pudld, it follows that

~
<U§:§> E Tr;“(A)”
where <u§', ) is the multiplication operator on Lz(G, H ) defined

by

({us.5> ¢ 1) = <u®§,3) ¢ (), t €.
Then there is a central sequence -{y(’”f in A such that

hy®™i < udug, §>ii=1 and
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Ty — QE, 1) strongly*,

Let

Y::;) = dJ‘G’uL‘j(t) a‘\,_;. ™y de .
Then O(S(y~("’) = Zwu(s), where yv‘"’ is the d xd matrix (yiz_)) and
X (™) = ( Q/S(y:“})))’ and also

) =
TL;“(YL:)-) _9 EL' f\j .

By using the method in Section 7 one can assume that ly™ | < 1. Hence
{ * () . olH
g Y §} is a central sequence of elements of A with norm less

than or equal to 1 and satisfies that

'Tl;a (.?xz(h)f ) — 1.

Now for each u € J{ with By # 0 and each unit vector g < P“CA
with d = dim u, . there is a central sequence {yn ¥ in

{xf: xeAT(u), x3li =15 such that
lim llay, | = ljail, a€ A.

On the other hand for each v éu(H), the set of irreducible unitary

matrix representations of H, and each unit vector §é CA with d = dim v,
H .

there is a central sequence {znl- in {x§ : X€ AD:' v), UxZY= 1}.

such that
lim Wlaz, li = Halk , a &A.

We apply the procedure described in the proof of (i) % (ii). What
we obtain here is a pure state ‘)L‘ of A satisfying
(a) Ty is faithful,
(b) for any ué€ Y with Py # 0 and any unit vector § € P((Cd the
weak closure of {T[#x?) o X€ AA;(u)jZ contains 1, and »
(¢c) for any v € u(H) and any unit vector § € Cd the weak clo;ﬁre

of {Tl'q‘(x;) : X€ Aﬂm(v)} contains 1.

4i



From (c¢) it follows that TLHAH is irreducible. Because for v € Z((H),
x € AX:H(V) and any unit vector ¢ € C‘i there is a row vector ? ¢ ¢4
such that

- - = o a
T,x§") = Z M) §, € Tahr, TEio.

Since the set of :§‘V with & € CJ spans CJ, one obtains that
Ty(x) e MY for all i. This shows that Ty[A" is irreducible.

Now we proceed to the proof that TL“,]A'X is irreducible. Let u & u
with B 7/0, X & Acr(u), and § a unit vector of Pu’GJ. Then

d

there is a row vector ?"e C such that

Tx§ =T myx) §, em@, 8 Ao

For any h €H, since xu(h) € A’ (u(h)*uu(h)) and P P

www wlhy - w?

it also follows that
TyCau®) £ € T,
In particular,
Ty, §1) € TR,
Note that (Pug")*?g~ = %Pu'g = g§ Z 0. The set of Pu%'k with unit

d
vectors § < Putd spans Puc . Hence one can conclude that

'TI.\P(AH) C“'!T‘F(A‘x)", completing the proof.
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