両側Jenew Projection により生成される因子環の 部分因子環の指数

大阪教育大 長田まり名 (Marie Choda)

1. Introduction

The index theory for finite factors was introduced by Jones in [3]. In the paper, the following sequence {e; i=1,2,...} of projections plays an important role:

- (a) $e_i e_{i\pm 1} e_i = \lambda e_i$ for some $\lambda \le 1$
- (b) $e_i e_j = e_j e_j$ for $|i-j| \ge 2$
- (c) the von Neumann algebra P generated by $\{e_i; i=1,2,\ldots\}$ is a hyperfinite II_1-factor,
- (d) $tr(we_i) = \lambda tr(w)$ if w is a word on $1, e_1, e_2, \dots e_{i-1}$, where tr is the canonical trace of P and 1 is the identity operator.
- If Q is a subfactor of P generated by $\{e_i; i=2,3,\ldots\}$, then the index [P:Q] of Q in P is $1/\lambda$. In the case of $\lambda>1/4$, Q has the trivial relative commutant in P and [P:Q] = $4\cos^2(\pi/m)$ for some m= 3,4,.... Hence by his basic construction, we have the family $\{e_i; i=\ldots,-2,-1,0,1,2,\ldots\}$ of projections with the properties (a), (b), (c') and (d');
- (c') {e $_i$; i=0,±1,±2,...} generates a hyperfinite II $_1$ factor M (d') tr(we $_i$) = λ tr(w) for the trace tr of M if w is a word on 1 and {e $_i$; j<i} (cf.[5]).

We shall call this family $\{e_i; i=0,\pm1,\pm2,\ldots\}$ the <u>two sided Jones'</u> projections for λ . The main purpose of this note is to show the following theorem.

Theorem . Let $\{e_i; i=0,\pm 1,\pm 2,\ldots\}$ be the two sided Jones' projections for $\lambda=(1/4)\sec^2(\pi/m)$ for some m $(m=3,4,\ldots)$. If M (resp.N) is the von Neumann algebra generated by $\{e_i; i=0,\pm 1,\pm 2,\ldots\}$ $(resp. \{e_i; i=\pm 1, \pm 2,\ldots\})$, then N is a subfactor of M with the index

[M:N] =
$$(m/4)$$
cosec² (π/m) ,

and the relative commutant of N in M is trivial, that is, N' \cap M = C1.

2. Notations and Preliminaries

Let B be a subfactor of a II_1 -factor A. Then Jones defined in [3] the index [A:B] of B in A using the coupling constants of A and B due to Murray and von Neumann ([4]) and he (also, Pimsner-Popa in [5]) gives some methods to get the number [A:B]. In [6], Wenzl gets another method to compute [A:B] in the case where those factors are σ -weak closures of the union of increasing sequences of finite dimensional algebras, which satisfy some good conditions.

In this note, we shall use results in [6] and give a proof of Theorem.

(2.1) Let A be a finite dimensional von Neumann algebra. Then

A is decomposed into the direct sum $\sum_{i=1}^{m} + A_{i}$ of the a(i) by a(i) matrix algebra A_{i} . The vector a=(a(i)) is called the dimension vector of A following after Wenzl[6]. Each trace ϕ on the algebra A is determined by a column vector $\mathbf{w} = (\mathbf{w}(i))$ which satisfies $\phi(\mathbf{x}) = \sum_{i=1}^{m} \mathbf{w}(i) \mathrm{Tr}(\mathbf{x}_{i})$ for xeA, where $\mathbf{x} = \sum + \mathbf{x}_{i} (\mathbf{x}_{i} \in A_{i})$ and \mathbf{Tr} is the usual nonnormalized trace on the matrix algebra. The column vector \mathbf{w} is called the weight vector of the trace ϕ . Let B be a von Neumann subalgebra of A with the direct summund $\mathbf{B} = \sum_{i=1}^{n} + \mathbf{B}_{i}$ of the b(i) by b(i) matrix algebras \mathbf{B}_{i} . The inclusion of B in A is specified up to conjugacy by an n by m matrix $[\mathbf{g}_{i,j}]$, where $\mathbf{g}_{i,j}$ is the number of simple components of a simple \mathbf{A}_{j} module viewed as an \mathbf{B}_{i} module. The matrix $[\mathbf{g}_{i,j}]$ is called the inclusion matrix of B in A which we denote by $[\mathbf{B} \to \mathbf{A}]$. Let $\mathbf{b} = (\mathbf{b}(i))$ be the dimension vector of B and \mathbf{v} the weight vector of the restriction of ϕ to B, then

- (e) $b[B \rightarrow A] = a$ and $[B \rightarrow A]w = v$.
- (2.2) Let $\{e_i; i=0,\pm 1,\pm 2,\ldots\}$ be two sided Jones' projections for $\lambda(\lambda \leq 1)$. A reduced word is a word on e_i , s of minimal length for the rules (a),(b) and $e_i^2 \leftrightarrow e_i$. If a reduced word is further reduced by cyclic permutations, it is said totally reduced ([3]).
- Lemma.1 The von Neumann algebra N generated by $\{e_i; i=\pm 1, \pm 2, \ldots\}$ is a subfactor of the hyperfinite II factor M generated by $\{e_i; i=0,\pm 1,\pm 2,\ldots\}$.

<u>Proof.</u> By the theory of the basic construction, M is a hyperfinite II₁-factor. Let ϕ be a faithful normal normalized trace on N. It is sufficient to prove that ϕ is the restriction of the

trace tr of M to N. Let A(resp.B) be the von Neumann algebra generated by $\{e_i; i=1,2,\ldots\}$ (resp. $\{e_i; i=1,-2,\ldots\}$). Then N is the σ -weak closure of linear combinations of (ab; a(resp.b) is a reduced word in A(resp.B)}. Since ab=ba for a ϵ A and b ϵ B, it is sufficient to prove that $\phi(wv) = tr(wv)$ for totally reduced words weA and veB. We use a similar technique as in [3] or [6]. Let weA and $v\epsilon B$ be totally reduced words. Then there is an infinite sequence of totally reduced words $\{w_i\}$ in A such that $w_i = w$, $w_i w_k = w_k w_i$ for all k, i, and $tr(\Pi_{j=1}^m w_{kj}) = tr(w)^m$ for all m, and $\{k_i, k_j\}$ with $k_i \neq k_i$ ($i \neq j$). If g is a finite permutation of positive integers, there is a unitary u_g in A such that $u_g w_i u_g^* = w_{g(i)}$ for all i by [2]. Put $p_i = w_i v$ for all i, then (p_i) is a sequence of projections. The group S of finite permutations acts on the von Neumann algebra generated by the sequence $\{p_i\}$ by $g(p_i) =$ $p_{g(i)}$ for all i and ges. The action is induced by $\{u_g;ges\}$ in A. Since ϕ is a trace on N, ϕ is invariant under the action. The action is ergodic. Hence $\phi(wv) = tr(wv)$.

(2.3) The factor M is the σ -weak closure of the union of the increasing sequence of the following von Neumann algebras $\{M_k; k=1,2,\ldots\}$:

$$M_1 = C1$$
, $M_{2m} = \{e_j; | j| \le m-1\}$ '', $M_{2m+1} = \{M_{2m}, e_{2m}\}$ ''.

The subfactor N of M is generated by the following increasing sequence of $\{N_k; k=1,2,\ldots\}$:

$$N_1 = N_2 = C1$$
, $N_{2m} = \{e_j; 0 \neq |j| \leq m-1\}$ '', $N_{2m+1} = \{N_{2m}, e_{2m}\}$ ''.

The algebras M_k and N_k are all finite dimensional ([2]). We denote

by $a_k(resp.b_k)$ the dimension vector of $M_k(resp.N_k)$. In the case where M_k is the direct sum of d_k matrix algebras, we say d_k the dimension of the dimension vector a_k .

(2.4) Every N_k is a subalgebra of M_k . Let E(B) be the conditional expectation of M onto the von Neumann subalgebra B of M conditioned by tr(xE(B)(y)) = tr(xy) for $x \in B$ and $y \in M$.

<u>Lemma.2</u> $E(N_{k+1})E(M_k)=E(N_k)$ and $E(N)E(M_k)=E(N_k)$ for all k.

$$\begin{split} & \text{tr}(y \text{E}(\text{N}_{2\,\text{m}+1})\,(\text{w})) = \text{tr}(y \text{w}) = & \text{\lambda} \, \text{tr}(\text{w}_2 \text{wvw}_1) = & \text{\lambda} \, \text{tr}(\text{E}(2\,\text{m})\,(\text{w})\,\text{vw}_1\,\text{w}_2) \\ & = & \text{tr}(\text{w}_2 \text{E}(\text{N}_{2\,\text{m}})\,(\text{w})\,\text{w}_1\,\text{e}_{\text{m}}) = \text{tr}(y \text{E}(\text{N}_{2\,\text{m}})\,(\text{w}))\,. \end{split}$$

Since each algebra is generated by reduced words, $E(N_{2m+1})E(M_{2m})$ = $E(N_{2m})$. Similarly $E(N_{2m})E(M_{2m+1})=E(N_{2m-1})$. Since $E(_{k+1})E(M_k)$ = $E(N_{k+i})E(M_{k+i-1})E(M_k)=E(N_{k+i-1})E(M_k)=E(M_k)$ for all k.

(2.5) Let (A_k) and (B_k) be sequences of finite dimensional von Neumann algebras such that B_k A_k for all k. Following after [6], we write $(A_k)_k$ $(B_k)_k$ if $(A_k)_k$ (resp. $(B_k)_k$) generates a II_1 -factor A (resp. a subfactor B of A) and satisfies the property of Lemma 2. So, by (c'), Lemma 1 and Lemma 2, we have

 (N_k) (M_k) . Such the sequence (M_k) is said to be <u>periodic</u> with period r if there is a number m such that $[M_{n+r} \to M_{n+r+i}] = [M_n \to M_{n+i}]$ for $n \ge m$ $(i=1,2,\ldots)$ and the matrix $[M_n \to M_{n+k}]$ is primitive for $n \ge m$. The sequences $(M_k)_k$ $(N_k)_k$ is <u>periodic</u> if both (M_k) and (N_k) are periodic with same period r and $[N_{n+r} \to M_{n+r}] = [N_n \to M_n]$ for a large enough n ([6]). In section 6, we show the periodicity of $(N_k)_k$ $(M_k)_k$.

3. Bratteli diagram for (M_k) and path maps

For convenience' sake, throughout the bellow, we put

(3.1) for a positive integer k, $p=[\frac{k}{2}]$ and q=k-p.

In this section, we shall get, for the sequence $\{M_k\}$ in (2.3), the components of the inclusion matrix $[M_q \rightarrow M_k]$, which we need to obtain the inclusion matrix $[N_k \rightarrow M_k]$. Let $A_k = \{1, e_1, \dots, e_k\}$ ''. Then M_k is *-isomorphic to A_{k-1} for $k \geq 2$. On the other hand there is a unitary u in M_{2m} which satisfies $ue_i u^* = e_{-i}$ and $ue_{-i} u^* = e_i$ for all $i=0,1,\dots,m-1$ ([21). Hence $[M_k \rightarrow M_{k+1}] = [A_{k-1} \rightarrow A_k]$ for all $k \geq 2$. It is clear that $[M_1 \rightarrow M_2]$ is the 1 by 2 matrix [1,1]. In [3], Jones gets the Bratteli diagram ([1]) for the sequence (A_k) , and so we get the Bratteli diagram for (M_k) . The dimension vector a_k of M_k , the dimension d_k of a_k and the weight vector w_k of the restriction of tr on M_k are as follows:

(3.2) If $\lambda \leq 1/4$, then

$$d_k = p+1$$
, $a_k(i) = \int_{p+1-i}^{k} - \begin{pmatrix} k \\ p-i \end{pmatrix}$ if $i=1,2,\ldots,d_{k-1}$

$$i f i = d_k$$

$$W_{k}(i) = \lambda^{p+1-i} P_{k-1-2p+2i}(\lambda),$$

where P_j is the polynomial defined in [2] by $P_1(x)=P_2(x)=1$ and $P_{n+1}(x)=P_n(x)-xP_{n-1}(x).$

$$[M_k \rightarrow M_{k+1}] = [\delta_{i,j} + \delta_{i+1,j}]_{i,j}$$
 for Kronecker's $\delta_{i,j}$.

where $i=1,2,\ldots, \lfloor \frac{k+1}{2} \rfloor +1$ and $j=\int 1,2,\ldots, \lfloor \frac{k+1}{2} \rfloor +1$ if k is even $\left\{1,2,\ldots,\frac{k+3}{2}\right\}$ if k is odd.

 $(3.3) \quad \text{If} \quad \lambda > 1/4, \quad \text{then} \quad \lambda = (1/4) \sec^2(\pi/n+2) \quad \text{for some}$ $n=1,2,\ldots \quad \text{The Blatteri diagram for} \quad \text{M}_1 \subset \text{M}_2 \subset \ldots \subset \text{M}_n \quad \text{has the same}$ form as in the case of $\lambda \leq 1/4 \quad \text{and the diagram for} \quad \text{M}_{n+2\,i-1} \subset \text{M}_{n+2\,i} \subset \text{M}_{n+2\,i-1} \subset \text{M}_{n+2\,i} \subset \text{M}_{n+2\,i-1} \subset \text{M}_{n+2\,i-1} \subset \text{M}_{n+2\,i-1} \subset \text{M}_{n+2\,i-1} \subset \text{M}_n \subset$

$$d_{k} = \begin{cases} p+1 & \text{if } k < n-1, \\ \left\lceil \frac{n}{2} \right\rceil + 1 & \text{if } k \ge n-1 \text{ and } n \text{ is odd,} \\ \frac{n}{2} & \text{if } k \ge n-1, & \text{k is odd and } n \text{ is even,} \\ \frac{n}{2} + 1 & \text{if } k \ge n-1, & \text{k is even and } n \text{ is even.} \end{cases}$$

Now we consider the Bratteli diagram for (M_k) as a graph Λ , the set of vertices of which is the set of points where $a_k(i)$ $(k=1,2,\ldots,i=1,2,\ldots,d_k)$ stand. We denote the vertex in Λ corresponding to $a_k(i)$ by the same notation $a_k(i)$. We denote by $[a_k(i) \rightarrow a_{k+1}(j)]$ the edge from $a_k(i)$ to $a_{k+1}(j)$. A path on Λ is a sequence $\xi = (\xi_r)$ of edges such that $\xi_r = 0$

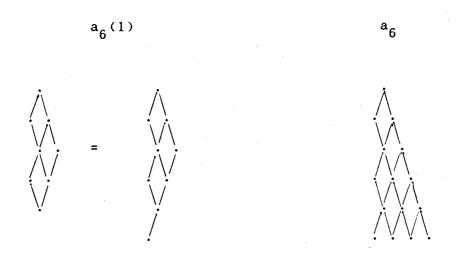
Remark.3 The i-th coodinate $a_k(i)$ of the dimension vector a_k represents a cardinal number of different paths in the polygon $[a_1(1) \rightarrow a_k(i)]$. In the below, we consider $a_k(i)$ as the polygon $[a_1(1) \rightarrow a_k(i)]$ and the dimension vector a_k as the path map $[a_1(1) \rightarrow a_k]$. Also, for path map $x = (x(1), \dots, x(m))$, we denote by the same notation x the path map $(x(1), \dots, x(m), 0, \dots, 0)$.

Under such the identification, we define the direct sum of path maps Let x = (x(1), ..., x(h)), y = (y(1), ..., y(m)) and z = (z(1), ..., z(n)) be path maps. If $h = \max\{h, m, n\}$ and x(i) = y(i) + z(i) for every polygons $\{x(i), y(i), z(i)\}$, we say x is the <u>direct sum</u> of y and z, and we write x = y + z.

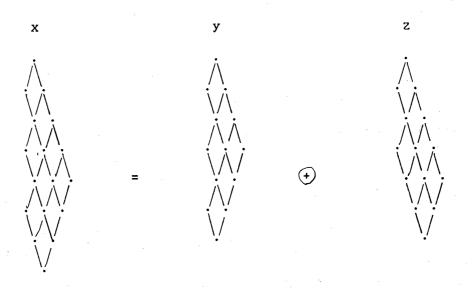
Remark.4 If we use the method of path model in [4], a polygon corresponds a matrix algebra and a path map corresponds a multi-matrix algebra.

<u>Example</u>

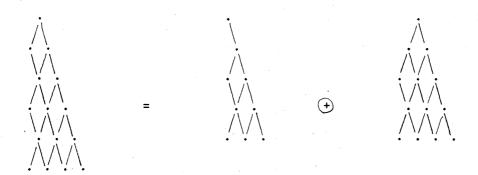
(1) The polygon $a_6(1) = (a_1(1) \rightarrow a_6(1))$ and the path map $a_6 = (a_1(1) \rightarrow a_6)$ are is follows in the case of either $\lambda \le 1/4$ or $n \ge 6$:



(2) Let $x \in \Xi_7$, $y \in \Xi_6$ and $z \in \Xi_6$ be polygons, then x = y + z are as follows:



(3) Direct sum of path maps.



Now we discuss the inclusion matrix $[M_q \to M_k]$. It is obvious that the (i,j)-component of $[M_q \to M_k]$ means the cardinal number of $[a_q(i) \to a_k(j)]$. Hence the i-th row vector x_i of $[M_q \to M_k]$ is considerd as the path map $[a_q(i) \to a_k]$.

Under the identification of vectors and path maps, we define the polynomials $\mathbf{f}_{i}\left(\mathbf{m}\right)$ of path maps on Λ by

$$f_{i}(0) = a_{i}$$
, $f_{i}(1) = a_{i+1}$ and $f_{i}(m+1) = f_{i+1}(m) - f_{i}(m-1)$.

TThen for all positive integers i and m, $f_i(2m)$ (resp. $f_i(2m+1)$) is a polynomial on path maps $\{a_{i+2j}; j=0,1,2,\ldots,m\}$ (resp. $\{a_{i+2j+1}; j=0,1,2,\ldots,m\}$ with positive integers as coefficients.

Lemma.5 Let x_i be the i-th row vector of the inclusion matrix $[M_q \to M_k]$, for a triplet $\{k,p,q\}$ in (3.1). Then, the path map x_i is as follows for all i $(i=1,2,\ldots,d_q)$;

$$x_i = \int_{p}^{f} f_p(2i-2)$$
 if q is even
 $\int_{p}^{f} f_p(2i-1)$ if q is odd,

under the idenyification for vectors that (y(1), ..., y(m), 0, ..., 0) = (y(1), ..., y(m)) for $y(j) \neq 0$ (j=1, ..., m).

<u>Proof.</u> Since the path map x_1 is $(a_q(1) \to a_k)$, it is clear by the shape of graph Λ that

$$x_1 = \begin{cases} a_{p+1} = f_p(1) & \text{if } q \text{ is odd} \\ a_p = f_p(0) & \text{if } q \text{ is even.} \end{cases}$$

Suppose the statements are true for all $j \leq i$. As a path map, we have

by sliding up the line combining $a_q(1)$ and $a_q(i+1)$ as possible. Then the assumptions of the induction means that

$$[a_{2(i-1)}(i) \rightarrow a_{p+2i-2}] = f_{p}(2i-2)$$

and

$$[a_{2(i-1)+1}(i) \rightarrow a_{p+2(i-1)+1}] = f_{p}(2i-1).$$

Since

$$[a_{2i}(i) \rightarrow a_{p+2i}] + [a_{2i}(i+1) \rightarrow a_{p+2i}] = [a_{2i-1}(i) \rightarrow a_{p+2i}],$$
 we have

$$[a_{2i}(i+1) \rightarrow a_{p+2i}] = [a_{2i-1}(i) \rightarrow a_{p+2i}] - [a_{2i}(i) \rightarrow a_{p+2i}]$$

$$= [a_{2(i-1)+1}(i) \rightarrow a_{p+1+2(i-1)}] - [a_{2(i-1)}(i) \rightarrow a_{p+2(i-1)}]$$

$$= f_{p+1}(2i-1) - f_{p}(2i-2) = f_{p}(2i).$$

On the other hand,

$$[a_{2i+1}(i) \rightarrow a_{p+2i+1}] + [a_{2i+1}(i+1) \rightarrow a_{p+2i+1}] = [a_{2i}(i+1) \rightarrow a_{p+2i+1}].$$
Hence

Thus $x_{i+1} = f_p(2i)$ if q is even and $x_{i+1} = f_p(2(i+1)-1)$ if q is odd.

4. Bratteli diagram for (N_k)

Let (N_k) be the sequence in (2.3). Let $N_k(+) = (e_i \epsilon N_k; j \ge 1)$ '' and $N_k(-) = (e_j \epsilon N_k; j \le -1)$ ''. Then N_k is generated by the commuting pair $N_k(+)$ and $N_k(-)$. For a triplet $\{k,p,q\}$ in (3.1), $N_k(+)$ is isomorphic to M_q and $N_k(-)$ is isomorphic to M_p . Two dimension vectors and weight vectors of a finite dimensional von Neumann algebra are respectively conjugate by an inner automorphism. We may take a dimension vector b_k of N_k and the weight vector u_k for the restriction of the trace tr of M to N_k as

(4.1)
$$b/k = (a_p(1)a_q, a_p(2)a_q, \dots, a_p(d_p)a_q)$$

and

(4.2)
$$t_{u_k} = (w_p(1)^t w_q, t_p(2)^t w_q, \dots, t_p(d_p)^t w_q),$$

where ty denotes the transposed vector of the vector y. Since we obtained the inclusion matrices for (M_k) in 3,

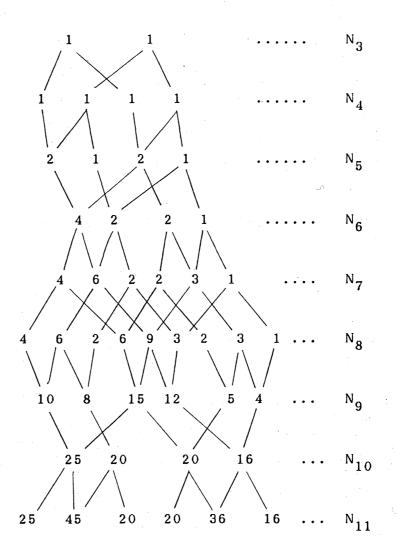
$$[N_k \rightarrow N_{k+1}] = I_p [M_p \rightarrow M_{p+1}] \qquad \text{if k is odd}$$

$$[M_p \rightarrow M_{p+1}] \quad I_q \qquad \text{if k is even,}$$

where I_k denotes the d_k by d_k identity matrix. It is easy to check that $[N_k \to N_{k+1}]$ satisfies the property (e) for b_k and u_k . The Blatteri diagram for (N_k) comes from the diagram for (M_k) following after the above information.

In the case of λ = $(1/4)\sec^2(\pi/n+2)$ for some n $(n=1,2,\ldots)$, the diagram for $N_1=N_2$ N_3 ... N_{2n} has the same form as in the case of $\lambda \leq 1/4$, the diagram for $N_{2n+4i-2}$ $N_{2n+4i-1}$ $(resp.\ N_{2n+4i-1}$ $N_{2n+4i-1}$ is similar to one for N_{2n-2} N_{2n-1} $(resp.\ N_{2n-1}$ N_{2n} and the diagram for N_{2n+4i} $N_{2n+4i+1}$ $(resp.\ N_{2n+4i+1}$ $N_{2n+4i+2}$ has the reverse form of order changed one for N_{2n-1} N_{2n} $(resp.\ N_{2n-2}$ N_{2n}).

Example. In the case of n=4, the diagram is as follows;



5. Inclusion matrix of N_k in M_k .

Let $\{k,p,q\}$ be a triplet in (3.1). Let $x_i(j)$ be the (i,j)-component of $[M_q \to M_k]$ and x_i the i-th column vector of $[M_q \to M_k]$. Here we consider x(i,j) and x_i as a polygon and a path map in Ξ_p . By Lemma 5, the polygon $x_i(j)$ can be decomposed into the direct sum of polygons $\{a_{p+j}(i); j=0,1,\ldots,i=1,2,\ldots,d_p\}$. Then we define the matrix $[a_p \to x_i] = [h(j,k)]$ such that h(j,k) is the number that $a_p(j)$ is contained in $x_i(k)$. We call the matrix $[a_p \to x_i]$ the inclusion matrix of the path map a_p in the path map x_i .

Remark. 6 Let x, y and z be path maps on Λ such that $[x \rightarrow y]$ and $[x \rightarrow z]$ are defined. Then, by the definition of the direct sum of path maps and the inclusion matrix for path maps, the matrix $[x \rightarrow (y \oplus z)]$ is defined and

$$[x \rightarrow (y \oplus z)] = [x \rightarrow y] \oplus [x \rightarrow z].$$

By this property and Lemma 5, the inclusion matrix $[a_p \to x_i]$ of the path map a_p in the path map x_i is defined from the inclusion matrices $[M_p \to M_r]$ $(r \ge p)$ by the natural method.

Lemma. 7 Let $\lambda = (1/4)\sec^2(\pi/n+2)$ and $p \ge n-1$. (1) If n is odd and p is even, then

$$[a_p \rightarrow f_p(m)](i,j) = \int 1, -[\frac{m}{2}] \le i - j \le [\frac{m+1}{2}], [\frac{m}{2}] + 2 \le i + j \le 2[\frac{n}{2}] - [\frac{m-1}{2}]$$

If n is odd and p is odd, then

$$[a_p \to f_p(m)](i,j) = \begin{cases} 1, & -[\frac{m+1}{2}] \le i - j \le [\frac{m}{2}], & 1 + [\frac{m-1}{2}] \le i + j \le 2[\frac{n}{2}] - [\frac{m}{2}] \\ 0, & \text{otherwise.} \end{cases}$$

(2) If n is even and p is odd, then

$$[a_p \to f_p(m)](i,j) = \begin{cases} 1, & -[\frac{m+1}{2}] \le i - j \le [\frac{m}{2}], & 1 + [\frac{m+1}{2}] \le i + j \le 2[\frac{n}{2}] - [\frac{m}{2}] \\ 0, & \text{otherwise.} \end{cases}$$

If n is even and p is even, then

<u>Proof.</u> It is sufficient to prove the statement for p=n-1 and p=n, because $f_p(m)$ is the polinomial on $\{a_{p+j}; j=[\frac{m}{2}], j \text{ is }$ odd(resp. even) if m is odd (resp. even) and $[a_p \to a_{p+j}] = [a_{p+2} \to a_{p+2+j}]$ for all p\geq n-1 and j. Since $f_p(1) = a_{p+1}$, it is clear that $[a_p \to f_p(1)]$ satisfies the conditions for all n and p. For a given n, assume that the statements hold for p=n-1, n and m=1,2,...,k. Then we can give a proof of the statements for p=n-1, n and m=k+1 by the relation;

$$[a_p \to f_p(k+1)] = [a_p \to a_{p+1}][a_{p+1} \to f_{p+1}(k)] - [a_p \to f_p(k-1)]$$

and

$$[a_{n+1} \rightarrow f_{n+1}(k)] = [a_{n-1} \rightarrow f_{n-1}(k)].$$

<u>Lemma.8</u> Let $\lambda = (1/4)\sec^2(\pi/n+2)$ and x_i the i-th column vector of [Mq \rightarrow Mk]. Assume q \geq n.

(1) If n is odd, then $[a_p \to x_i]$ is a $(1+[\frac{n}{2}]$ square matrix with the following form:

(1.1) If p=q is an odd number, then

$$[a_p \rightarrow x_i](j,l) = \begin{cases} 1, & 1-i \le l-j \le i < j+l \le n+2-i \\ 0, & otherwise. \end{cases}$$

(1.2) If p+1 = q is even, then

$$[a_p \rightarrow x_i](j,l) = \begin{cases} 1, & |l-j| < i \leq j+l \leq n+2-i \\ 0, & \text{otherwise.} \end{cases}$$

(1.3) If p=q is even, then

$$[a_p \rightarrow x_i](j,l) = \begin{cases} 1, & |l-j| < i < j+l \le n+3-i \\ 0, & \text{otherwise.} \end{cases}$$

(1.4) If p+1 = q is odd, then

$$[a_p \rightarrow x_i](j,l) = \begin{cases} 1, & -i \leq l - j < i < j + l \leq n + 2 - i \\ 0, & \text{otherwise.} \end{cases}$$

(2) Let n is even.

(2.1) If p = q is odd, then $[a_p \rightarrow x_i]$ is an n/2 by 1+(n/2) matrix with

$$[a_p \rightarrow x_i](j,l) = \begin{cases} 1, & 1-i \leq l-j \leq i < j+l \leq n+2-i \\ 0, & \text{otherwise.} \end{cases}$$

(2.2) If p+1=q is even, then $[a_p \rightarrow x_i]$ is an n/2 square matrix with

$$[a_p \rightarrow x_i](j,l) = \begin{cases} 1, & |l-j| < i \leq j+l \leq n+2-i \\ 0, & \text{otherwise.} \end{cases}$$

(2.3) If p = q is even, then $[a_p \rightarrow x_i]$ is a 1+(n/2) square matrix with

$$[a_p \rightarrow x_i](j,l) = \begin{cases} 1, & |l-j| < i < j+l \le n+3-i \\ 0, & \text{otherwise} \end{cases}$$

(2.4) If p+1 = q is odd, then $[a_p \rightarrow x_i]$ is a 1+(n/2) by n/2 matrix with

$$[a_p \rightarrow x_i](j,l) = \begin{cases} 1, & -i \leq l - j < i < j + l \leq n + 2 - i \\ 0, & \text{otherwise.} \end{cases}$$

<u>Proof.</u> Let n be odd. Then $d_j = d_{n-1}$ for all $j \ge n-1$. Since $d_{n-1} = \lceil \frac{n}{2} \rceil + 1$, $\lceil M_q \to M_k \rceil$ is a $1 + \lceil \frac{n}{2} \rceil$ square matrix. It means that a_j $(j \ge n-1)$ and each x_i are path maps consisting of $1 + \lceil \frac{n}{2} \rceil$ polygons in Ξ_{p+1} . Similarly, if n is even, then a_j is a path map with

 $\lceil \frac{n}{2} \rceil$ (resp. $\lceil \frac{n}{2} \rceil + 1$) polygons for odd (resp. even) $j \ge n-1$. Hence x_i is a path map with $\lceil \frac{n}{2} \rceil$ (resp. $\lceil \frac{n}{2} + 1 \rceil$) polygons if k is odd(resp. even). Therefore by Lemma 5 and Lemma 7, the statements hold.

 $\underline{\text{Lemma}}.$ 9 For the weight vector \boldsymbol{w}_k of the restriction of $\mbox{tr to}$ $\boldsymbol{M}_k,$ we have

$$[a_p \to x_i] w_k = w_q(i) w_p$$
 (i = 1,2,...,d_q).

<u>Proof.</u> We denote the matrix $[[a_p \rightarrow a_{p+i}], 0, \ldots, 0]$ by the same notation $[a_p \rightarrow a_{p+i}]$, where 0 is the row vector with all components 0. Then by the Bratteli diagram for (M_k) , we have for all i $(i=0,1,\ldots)$

$$[a_p \rightarrow a_{p+i}] w_k = \lambda^{n(i)} w_p$$
 for $n(i) = [\frac{q}{2}] - [\frac{i}{2}]$.

Since x_i is given by the polynomials f_i on $\{a_{p+i}; j=0,1,\ldots\}$ by Lemma 5, we have the statement by Lemma 6, (3.2) and the relation between the polynomial f_j 's and P_j 's, because

$$w_{k}(i) = \lambda^{p+1-i} P_{k-1-2p+2i}(\lambda),$$

where P_j is the polynomial defined in [2] by $P_1(x) = P_2(x) = 1$ and $P_{n+1}(x) = P_n(x) - xP_{n-1}(x)$.

Let G_k be the d_pd_q by d_k matrix, the $(d_q(j-1)+i)$ -th column vector of which is the j-th column vector of the matrix $[a_p \rightarrow x_i]$, where $i=1,2,\ldots,d_q$, $j=1,2,\ldots,d_p$. That is, the transposed matrix tG_k of G_k is as follows;

$${}^{t}G_{k} = [G[1]_{1}, G[2]_{1}, \dots, G[d_{q}]_{1}, G[1]_{2}, \dots, G[d_{q}]_{2}, \dots, G[1]_{q/p}, \dots G[d_{q}]_{q/p}],$$

where G[i] is the transposed vector of the j-th column vector of $[a_{_{D}} \rightarrow x_{_{i}}].$

<u>Lemma</u>. 10 The matrix G_k satisfies the following;

$$b_k G_k = a_k$$
, $G_k w_k = u_k$ and $G_k [M_k \rightarrow M_{k+1}] = [N_k \rightarrow N_{k+1}] G_{k+1}$,

where \mathbf{a}_k , \mathbf{b}_k are dimension vectors of \mathbf{M}_k , \mathbf{N}_k and \mathbf{w}_k , \mathbf{u}_k are weight vectors of \mathbf{M}_k , \mathbf{N}_k .

<u>Proof.</u> Since $a_q[M_q \rightarrow M_k] = a_k$, we have, by the relation (4.1),

$$b_k^G_k = \Sigma_i a_q(i)a_p[a_p \rightarrow x_i] = \Sigma_i a_q(i)x_i = a_k$$

where i runs over $\{1, 2, \dots, d_q\}$.

Lemma 7 implies that $G_k w_k = u_k$, combining the definition of G_k and (4.2).

If $\lambda > 1/4$ and $k \ge 2n$, by Lemma 8, we have $G_k[M_k \to M_{k+1}] = [N_k \to N_{k+1}]G_{k+1}$. For another case, we need a similar lemma as Lemma 8. In the below we does not need such cases. Hence we omit to give a proof of such cases.

Thus we can get a method of inclusion of $\,{\rm N}_k^{}$ in $\,{\rm M}_k^{}.$ Hence we denote $\,{\rm G}_k^{}$ by $[\,{\rm N}_k^{}\,\to\,{\rm M}_k^{}\,]\,.$

6. Periodicity of $(N_{k}) \subset (M_{k})$ in the case of $\lambda > 1/4$.

In this section, we assume that $\lambda = (1/4)\sec^2\pi/(n+2)$ for some $n = 1, 2, \ldots$.

Lemma. 11 The sequence $(M_{\hat{k}})$ is periodic with period 2 and the sequence $(N_{\hat{k}})$ is periodic with period 4.

<u>Proof.</u> Combining the discussions in (2.5) and section 3 with results in [2] or [6], we have that the sequence $(M_{\mbox{\scriptsize k}})$ is periodic with period 2.

The fact implies that (N_k) is periodic with period 4, by Lemma 1 and the Bratteli diagram for (N_k) .

Lemma. 12 Let x_i (resp. y_i) be the i-th column vector of $[M_q \rightarrow M_k]$ (resp. $[M_{q+2} \rightarrow M_{k+4}]$). If $q \ge n$, then

$$[a_p \to x_i] = [a_{p+2} \to y_i]$$
 (i=1,2,...d_q).

Proof. First we remark that both $[M_q \to M_k]$ and $[M_{q+2} \to M_{k+4}]$ are d_q by d_k matrices, because (M_k) is periodic with period 2 and $[Mq+2 \to M_{k+4}] = [M_q \to M_k][M_k \to M_{k+2}]$. Since $p = [\frac{k}{2}]$ and q = k-p, we have $p+2 = [\frac{k+4}{2}]$ and q+2 = (k+4-(p+2)), that is, $\{k+4, p+2, q+2\}$ satisfies (3.1). Hence $x_i = f_p(2i-2)$ (resp. $x_i = f_p(2i-1)$) if and only if $y_i = f_{p+2}(2i-2)$ (resp. $f_{p+2}(2i-1)$). By the definition, $f_j(2m)$ (resp. $f_j(2m+1)$) is a linear combination on $\{a_j, a_{j+2}, \dots, a_{j+2m}\}$ (resp. $\{a_{j+1}, a_{j+3}, \dots, a_{j+2m+1}\}$) with integer coefficients. Therefore, by Remark 6, we have $[a_p \to x_i] = [a_{p+2} \to y_i]$, because (M_k) is periodic with period 2.

<u>Lemma</u>. 13 The sequence $(N_k) \subseteq (M_k)$ is periodic.

 \underline{Proof} . We already proved that both $({\rm M}_{k})$ and $({\rm N}_{k})$ are periodic with same period 4. Hence it is sufficient to prove that

$$[N_k \rightarrow M_k] = [N_{k+4} \rightarrow M_{k+4}]$$
 for $k \ge 2n$.

By the form of the matrix $[N_k \to M_k] = G_k$, it is nothing else but Lemma 12. Thus $(N_k) \subset (M_k)$ is periodic.

7. Proof of Theorem.

<u>Lemma</u>. 14 If $\lambda = (1/4)\sec^2(\pi/m)$ for some m (m= 3,4,...), then

[M:N] =
$$(m/4)$$
cosec² (π/m) .

<u>Proof.</u> The factors M and N are generated by the periodic sequences $(N_k) \subset (M_k)$ of finite dimensional algebras. Hence, by [6; Theorem 1.5], for the weight vectors \mathbf{w}_k and \mathbf{u}_k of the restriction tr to \mathbf{M}_k and \mathbf{N}_k , we have that [M:N] = $|\mathbf{u}_k||_2^2/|\mathbf{w}_k||_2^2$ for a large enough k. By (4.2),

$$\|\|u_k\|\|_2^2 = \|\|w_p\|\|_2^2 \|\|w_q\|\|_2^2$$
 for a $\{k, p, q\}$ in (3.1).

Put n = m - 2. Then we have

[M:N] =
$$||u_k||_2^2 / ||w_k||_2^2$$
 for all $k \ge n-1$.

Since $||\mathbf{w}_{k}||_{2}^{2}$ / $||\mathbf{w}_{k+1}||_{2}^{2} = 1/\lambda$ for all $k \ge n-1$,

[M:N] =
$$||w_{n-1}||_{2}^{4} / ||w_{2(n-1)}||_{2}^{2} = ||w_{n-1}||_{2}^{2} / \lambda^{n-1}$$
.

By (3.3),

$$||\mathbf{w}_{n-1}||_2^2 = \sum_j \lambda^{2j} P_{n-2j}(\lambda)^2, \text{ where } j \text{ runs over } \{0,1,\ldots,\lfloor\frac{n-1}{2}\rfloor\}.$$

On the other hand, by [3],

$$2 \qquad \qquad k-1 \qquad k-1 \\ P_{k}((1/4)\sec\theta) = \sin k\theta / 2 \quad \cos \quad \theta \sin\theta \quad \text{for all } k \quad \text{and} \quad \theta.$$

Hence

[M:N] =
$$\Sigma_{i} \sin^{2}((n-2i)\pi/(n+2)) / \sin^{2}(\pi/(n+2))$$

$$= \sum_{j} \{2 - \exp(2(n-2j)/(n+2))\pi i - \exp(2(2j-n)/(n+2))\pi i\} / 4\sin^{2}(\pi/(n+2))$$

=
$$((n+2)/4)$$
cosec² $(\pi/(n+2))$ = $(m/4)$ cosec² (π/m) ,

because $\sum_{j=1}^{k} \exp((j/k)2\pi i) = 0$, for all integer k.

Remark. 15 (1) If m = 3 or 4, then [M:N] = [P:Q] for the subfactor $Q = \{e_i; i=2,3,...\}$ ' of the factor $P = \{e_i; i=1,2,...\}$ '. That is, [M:N] = 1 if m = 3 and [M:N] = 2 if m = 4.

(2) If $m \ge 5$, then [M:N] \ne [P:Q]. If m = 5, then [M:N]<4.

Hence trere is an integer k ($k \ge 3$) such that [M:N] = $4\cos^2(\pi/k)$. H. Choda gets the number k, that is k = 10. (Here the author thank to H. Choda for helping her by computing a lot of indices [M:N].) On the other hand, by the proof of Lemma 14,

[M:N] =
$$4\cos^2(\pi/3) + 4\cos^2(\pi/5)$$
.

This implies the following equation (the equation is proved by an ellementary method, which M.Fujii tells us);

$$\cos^2(\pi/3) + \cos^2(\pi/5) = \cos^2(\pi/10)$$
.

<u>Lemma</u>. 16 The relative commutant $N' \cap M$ of N in M is trivial.

<u>Proof.</u> Since [M:N] is finite, N' \cap M is finite dimensional. Let c be the dimension vector of N' \cap M. Since $(M_k) \supset (N_k)$ is periodic, by [6:Theorem 1.7],

$$||c||_1 \le \alpha = \min\{||G[i]_j||_1; k \ge 2n, i=1,2,\ldots,d_q, j=1,2,\ldots,d_p\},$$

where $G[i]_j$ is the vector in the section 5. By Lemma 8, there are many $\{i,j\}$'s such that ${}^tG[i]_j=(1,0,\ldots,0)$. It implies $\alpha=1$. Hence $N'\cap M$ is 1-dimensional, so that $N'\cap M=\mathbb{C}1$.

8. A generalization

Let take and fix a positive integer n. Let

$$L = \{,,,,e_{-n-1},e_{-n},e_{1},e_{2},e_{3},...\}$$

In the case of n = 1, L = N. By a similar proof as Lemma 1, L is a subfactor of M, for all n. Also, L is a subfactor of N and [N:L] = $4\cos^2(\pi/m)$. Hence

[M:L] =
$$(m/4)\csc^2(\pi/m) \{4\cos^2(\pi/m)\}^{n-1}$$
.

Let

$$L_1 = L_2 = C1$$
, $L_{2i-1} = L_{2i} = \{e_i; i=1,2,...,n-1\}$ ' if $i \le n$

and

$$L_{2i+1} = \{L_{2i}, e_i\}''$$
 $L_{2i+2} = \{e_{-i}, L_{2i+1}\}''$ if $i \ge n$.

The sequence (L_k) is periodic with period 4 and generates L. By a similar method as for $(N_k) \subset (M_k)$, we get the inclusion matrix $[L_k \to M_k]$. For a triplet $\{k,p,q\}$ in (3.1), we consider the matrix $[a_{p-(n-1)} \to x_i]$ for a large k, where x_i is the same as in section 3, that is the i-th column vector of $[M_q \to M_k]$. Then $(N_k) \subset (M_k)$ is periodic. Let h be the dimension vector of $[L' \cap M]$.

If q is even, then $x_1 = a_p$, hence $[a_{p-(n-1)} \rightarrow x_1] = [a_{p-(n-1)} \rightarrow a_p]$.

If n = 2, we have $N' \cap M = C1$, by the form of $[a_k \rightarrow a_{k+1}]$ for an odd k.

If $n \ge 3$, $\{e_{-n+2}, e_{-n+3}, \dots, e_{-1}\}$ '' is contained in L' \cap M and isomorphic to M_{n-1} . Hence we have

$$L' \cap M = \{e_{-n+2}, e_{-n+3}, \dots, e_{-1}\}''$$
.

References

- 1. Bratteli, O.,: Inductive limits of finite dimensional C-algebras.

 Trans. A.M.S. 171, 195-234 (1972).
- 2. Goodman, F., de la Harpe, P., Jones, V.,: Coxter-Dynkin diagrams and towers of algebras. Preprint, I.H.E.S.
- 3. Jones, V., : Index for subfactors, Invent. Math. 72, 1-25 (1983).
- 4. Murray, F., von Neumann, J.,: On rings of operators, II. Trans.
 A.M.S. 41, 208-248(1937)
- 5. Pimsner, M., Popa, S.,: Entropy and index for subfactors.

 Ann.Sci.El.Norm.Sup. 19, 57-106 (1986)
- 6. Wenzl, H.,: Representations of Hecke algebras and subfactors.

 Thesis, University of Pennsylvania

尚、この結果は、 OCNEANU により、 JONES の問題として WARWICK の研究集会で紹介されているものの解になっている。