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1. Introduction

- The index theory for finite factors was introduced by Jones in
[3]. In the paper, the following sequence {ei;i=1,2,...} of

projections plays an important role:

(a) e.e . .e = de. ~ for some A =1
i TiExlcvi i
(b) e.e, = e.e, for li-jl =2 2
1 ] J 1
(c) the von Neumann algebra P generated by (ei;i=1,2....} is
a hyperfinite IIl—factor,
(d) triwe,) = Atr(w) if w is a word on l,e;, €5, .00 15

where tr is the canonical trace of P and 1 1is the identity
operator.

If Q@ is a subfactor of P generated by {ei;i=2,3,...), then
the index [P:Q] of Q in P is 1/A. 1In the case of A>1/4, Q has
the trivial relative commutant in P and [P:Q] = 4cosz(n/m) for
some m= 3,4,... . Hence by his basic construction, we have the
family {ei;i=...,—2,—1,0,1,2,...} of projections with the properties
(a),(b),(c') and (d');

(c") (ei;i=0,il,iz,...} generates a hyperfinite IIlfactor M

d" tr(wei) =Atr(w) for the trace tr of M .if W is é‘word

on 1 and {ej;j<i) (cf.[51).
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We shall call this family {ei;i=o,t1,i2,...} the two sided Jones'

projections for A. The main purpose of this note is to show the

following thecorem.

Theorem . Let (ei;i=0,il,i2,...) be the two sided Jones'
projections for A=(1/4)se02(n/m) for some m (m=3,4,...). If M
(resp.N) is the von Neumann algebra generated'by (ei;i=0,il,i2,...}

(resp. (ei;izil, +2,...}1), then N is a subfactor of M with the

index
[M:N] = (m/4)cosec2(n/m),

and the relative commutant of N in M is trivial, that is, N'A" M =

C1.

2. Notations and Preliminaries

Let B be a subfactor of a IIl-factor A. Then Jones defined in
[3] the index [A:B] of B in A using the coupling constants of A
and B due to Murray and von Neumann ([4]) and he (also, Pimsner-Popa
in [5]1) gives some methods to get the number ([A:Bl. In [6], Wenzl
gets another method to compute [A:B] in the case where those
factors are o-weak closures of the union of increasing sequences of
finite dimensional algebras, which satisfy some good conditions.

In this note, we shall use results in [6] and give a proof of

Theorem.

(2.1) Let A be a finite dimensional von Neumann algebra. Then
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A is decomposed into the direct sum ET=1 + Ai' of the a(i) by a(i)
matrix algebra Ai‘ The vector a=(a(i)) 1is called the dimension.
vector of A following after Wenzl[61. Each tracee ¢ on the algebra
A is determined by a column vector w =(w(i)) which satisfies @(x)=
2?=1w(i)Tr(xi) for xgA, where x= X + X, (x,eA;) and Tr is the .
usual nonnormalized trace on the matrix algebra. The column vector.

w is called the_weight vector of the trace ¢. Let B. be a von

Neumann subalgebra of A with the direct summund B = Z ?=1 + Bi of

the b(i) by b(i) matrix algebras Bi' The inclusion of B in A

is specified up to conjugacy by an n by m matrix [gi j], where

1

g. . is the number of simple components of a simple Aj module viewed
’

as an Bi module. The matrix [gi J.] is called the inclusion matrix
b

of B in A which we denote by [B = Al. Let b = (b(i)) be:the

dimension vector of B and v the weight vector of the restriction

of ¢ to B, then
(e) DbIB = Al = a .and [B - Alw = v,

(2.2)  Let {ei;i=0,il,i2,...} ‘be two sided Jones' projections
for A(A =.1). A reduced word is a word on e, s of minimal length
for the rules (a), (b) and ei2 ﬂ-ei. I1f a reduced word is further

reduced by cyclic permutations, it is said totally reduced ([3]).

- Lemma.l The von Neumann algebra N generated by (ei;i=i1,12,

I is a subfactor of the hyperfinite II1 factor M generated by

{ei;i=0,t1,iz,...}.
Proof. By the theory of the basic construction, M is a
hyperfinite Ill—factor.é Let ¢ be a faithful normal normalizéddtrace

on N. It is sufficient to prove that ¢ is the restriction of the



91

trace tr of M to N. Let A(resp.B) - be the von Neumann algebra’
~generated by (ei;i= 1,2,...)(re§p.{ei;i=-1,-2,...)). Then N 'is the

g-weak closure of linear combinations of ~{(abja(resp.b) 1is-a reduced

word in A(resp.B)}. Since ab=ba for agtA and begB, it is
sufficient to.prove that ¢(wv) = tr(wv) for totally reduced words
wEA and veB. VWe use a similar technique asin [3] or [6]. Let - wgA

and veB be totally reduced words. Then there'is an infinite ‘sequence

of totally reduced words {wi) in A such that WiEW, W W, = Wi W

for all k,i, and trdf_; w0 = trao” for all m, and (k;, k;)

Kj
with kj#ki(i#j). If g is a finite permutation of positive

integers, there is a unitary ug in - A such that ugwiug ='wg(i)

for all i by [2]. Put pi=wiv for all i, then {pi) is a
sequence of projections. The group S of finite permutations acts on
the von Neumann algebra generated by the sequence {pi} by g(pi) =

pg(i) for all- i and g&£S. The action is induced by (ug;geS} in A.

Since ¢ is a trace on N, ¢ is invariant under the action. The

action is ergodic. Hence ¢@(wv) = tr(wv).

(2.3) The factor M is the ¢-weak closure of the union of the
increasing sequence of the following von Neumann algebras(Mk;

k=1,2,...}:

Ml-cl, M, = {ej;ljl =m-1}'", M Y.

2m (MZ

2m+1° m’eZm

The subfactor N of M 1is generated by the following increasing

sequence of {(N,; ‘k=1,2,...}¢

k

{N,,

2m P,

= = . = 4 'S‘— '
N, =N,=Cl1, N2m {ej,Ofljl = m-1} s ’ N , €

1- V2 Nom+1” 2m

The algebras M and N are all finite dimensional ([2]). We denote

K" k

-4~
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by ak(resp.bk) the dimension vector of Mk(resp.Nk). In the case

where Mk is the direct ‘sum of dk matrix algebras, we say dk“the

dimension of the dimension vector a -

(2.4) Every Nk is a subalgebra of Mk' Let E(BY be the
conditional expectation ¢ef M onto the von Neumann.subalgebra B of -

M conditioned by tr(xE(B)(y))= tr(xy) for xeB and yegM.

Lemma.2 E(Nk+1)E(Mk)=E(Nk) and E(N)E(Mk)=E(Nk) for all k.

Proof. Since E(Nk+1)E(Mk)=E(Nk) if and only if E(Nk+1)E(MK)=

E(Nk+1)E(Nk)E(Mk),it is sufficient to prove that tr(yE(Nk+1)(x))

=tr(yE(Nk)(x)), for xeM yEN Every reduced word yesz+1 has a

k'’ k+1°
form y=vw1emw2, where v is a reduced form on (ei;i=—m+1
-m+2,...,-1} and- wi(ifl,Z) is a reduced word on {ei;i=1,2,...
,m-1}. Let w be a reduced word in M2m’ then

2wvw1)=z\tr(E(2m)(w)vw1w2)

em)=tr(yE(N m)(w)).

tr(yE(N Y(W))=tr(yw)=Atr(w

2m+1

=tr(w2E(N2m)(w)w

1 2

Since each algebra is generated by reduced words, E(N2m+1)E(M2m)

=E(N Similarly E(N2m)E(M Y=E(N Since E( YE(M, )

2m+1 om-1"" k+1 K

)E(Mk)="'=E(Mk)’ E(N)E(Mk)=E(Mk) for

2m)'

=E(N,, DEM . DEMO=EWN,, . _

K+i 1

all k.

(2.5) Let <(A,) and (B,) be sequences of finite dimensional.

k k
von Neumann algebras such that Bk Ak for all k. Following after
(6], we write (Ak)k (Bk)k if (Ak)k (resp. (Bk)k ) generates a

IIl—factor A (resp. a subfactor B of _ A) and satisfies the

property of Lemma 2. So, byv(c’), Lemma 1 and Lemma 2, we have
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(Nk) (Mk)' Such the sequence (Mk) is said to be periodic with

period r if there is a number m such that M, Moirsid = M, -

M 1] for n2m (i=1,2,...) and the matrix M, 2> M 1 is

n+i +Kk

primitive for n2m. The sequences (Mk)k (Nk)k is periodic if both

} are periodic with same period r and I[N - M ]

) and (N
n+r n+r

(Mk K

= [Nn - Mn] for a large enough n ([61). In section 6, we show the

periodicity of FNR)k (Mk)k.

3. Bratteli diagram for (M, ) and path maps

k

For convenience' sake, throughout the bellow, we put

(3.1) for a positive integer Kk, p=[%] and g=k-p.
In this section, we shall get, for the sequence (M) in (2.3), the
components of the inclusion matrix [Mq - Mk]’ which we need to obtain
the inclusion matrix [Nk - Mk]. Let Ak={1,e1,...,ek} . Then Mk

is "-isomorphic to A .y for Kk = 2, On the other hand there is a

unitary u in M2m which satisfies ueiu* = e_, and ue_,u” = e,

for all 1i=0,1,...,m-1 ([23). Hence [Mk - Mk+1]=[Ak~1 = Al for all
k 2 2. It is clear that [M1 - M2] is the 1 by 2 matrix ([1,117.
In [3], Jones gets the Bratteli diagram <([1]) for the sequence (Ak),
and so we get the Bratteli diagram for (Mk)' The dimension vector

ak of Mk’

the restriction of tr on Mk are as follows:

the dimension dk of ak and the weight vector wk~_of

(3.2) I1f A S 1/4, then

d = p+l, a ()= K ) - ( K | if i=1,2,...,d,.-1
p+l-i p-i A



94

1 if 1—dk
oy _qP*rl-id .
wy (iD= Pk-1-2p+2i(A)’
where Pj is the polynomial defined in [2] by Pl(x)=P2(x)=1 and
Pn+1(x)=Pn(x)—xPn_1(x).
[Mk - Mk+1] = [ 8i,j + °i+1,j ]i,j, for Kronecker's Si,j'
k+1 k+1

where i=1,2,...,( j+1 if K is even

2 2
k+3

j+1 and j = ) 1,2,...,
1 if k is odd.

(3.3) If A > 1/4, then A = (1/4)sec®(u/n+2) for some
n=1,2,... . The Blatteri diagram for Mlcf MZC'...CZMn has the same

. o< .
form as in the case of A = 1/4 and the diagram for Mn+2i-1C‘Mn+21
(resp. M C Mn+2i-1) is same as one for Mn_1CMn (resp. the reverse

form of one for Mn_ICTMn), for all i=0,1,2,... . Hence {d

n+2i

a

k' "k’

tk} follows after the movement of the diagram. For examle,

dk = |{p + 1 if k < n-1,
[§]+1 if kK2 n-1 and n is odd,
g if k= n-1, k 1is odd and n 1is even,
3 + 1 if k=2 n-1, k 1is even and n is even.

Now we consider the Bratteli diagram for (M,) as a graph A\,

k
the set of vertices of which is the set of points where ak(i)
Gk=1,2,...,i=1,2,...,dk) stand. We denote the vertex in A
corresponding to ak(i) by the same notation ak(i). We denote by
[ak(x) - ak+1(J)] the edge from ak(l) to ak+1(j). A path on A

is a sequence £ = (£r) of edges such that §r =
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[ (ir) - (jr)] for some i _, i and k(r) such that

Ak (r) qk(r)+1 r r

k(r+l) = k(r)+l. The set of all paths in A with the starting point

ak(i) and the ending point ar(j) is called a polygon from the

vertex ak(i) to the vertex ar(j) and denoted by [ak(i) - ar(j)].

Also the set of all paths in A with ak(i) as the starting point

and for some j ar(j) as the ending point is called a path _map from

the vertex ak(i) to the floor a. and denoted by (ak(i) - ar).

Let Em be the set of paths on /A consisting of m edges. For a

£ in El and y in Em let £y = (&£ 7;7ey}. Let xsEm be a

polygon. If there are polygons y and =z in Em-l such that as sets
of paths x is either the union of &£ y and 7 2z or the union of vy

§ and =z 7 for some & and 7 in E we say X is the direct sum

1 ’

of y an z and we write x =y ® 2z or y = x & z.

Remark.3 The i-th coodinate ak(i) of the dimension vector ak

represents a cardinal number of different paths in the polygon

[al(l) = a (i)]. In the below, we consider a, (i) as the polygon

k k
'[al(l) - ak(i)] and the dimension vector ak as the path map
[al(l) - ak]. Also, for path map X = (x(1),...,Xx(m)), we denote by

the same notation x . the path map (x(1),...,x(m),0,...,0).

Under such the identification, we define the direct sum of path
maps Let x = (x(1),...,x(h)), ¥y = (y(1),...,y(m)) and 2z =
(z(1),...,2z(n)) be path maps. iIf h = max(h,m,n) and xX(i) = y(i) +
z(i) for every polygons (x(i),y(i), 2(i)}, we say X is the direct

sum of y and 2z, and we write x =y + z.

Remark.4 If we use the method of path model in [4]1, a polygon
corresponds a matrix algebra and a path map corresponds a

multi-matrix algebra.
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Example

(1) The polygon a6(1) = (al(l) il a6(1)) and the path map ag =

(al(l) - as) are d&s follows in the case of either A = 1/4 or n £ 6:

a. (1) a6

/\ A\ A
VAR AN \A
. \/ A\
VAR VA
/ EATATA

yeB, and 2z € B be polygons, then X =y + 2

(2) Let xg= 6 6

7’

are as follows:

A N N

YA VA \A

JAYAY AYAY A

\AA ] W A

AN A AN

\/\/ \/ \/
Y |
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(3) Direct sum of path maps.

/\ \ A
VA A AA
A - A VAV
AA M AAA
JAYAYA

Now we discuss the iqclusion matrix [Mq - Mk]' It is obvious
that the (i,j)-component of [Mq - Mk] means the cardinal number of
[aq(i) - ak(j)]. Hence the i-th row vector Xy of [Mq - Mk] vis
considerd as the path map [aq(i) - ak].

Under the identification of vectors and path maps, we define the
.polynomials fi(m) of path maps on /A by

fi(O) = a, fi(l) = a5 and fi(m+1) = fi+1(m) - fi(m—l).

TThen for all positive integers i and m, fi(2m) (resp. fi(2m+1))
is a polynomial on path maps {ai+2j; j=0,1,2,...,m} (resp.

{a 1;j=0, 1,2,...,m} with positive integers as coefficients.

i+2j+

Lemma.5 Let xi be the i-th row vector of the inclusion matrix
[Mq - Mk]’ for a triplet {(k,p,q} in (3.1). Then, the path map Xy

is as follows for all i (i=1,2,...,dq) ;

-10-
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xi = Sfp(21—2) if q 1is even

\fp(Zi—l) if q is odd,

under the idenyification for vectors that (y(1),...,y(m),0,...,0) =

(y(1),...,ym)> for y(j)» # 0 (j=1,...,m).

Proof. Since the path map x1 is (aq(l) - ak), it is clear by
the shape of graph A that

Xl = ap+1

a = £ (0) if q 1is even.
P p

Suppose the statements are true for all i = i. As a path map, we

= fp(l) if gq 1is odd

have

X, = [aq(i+1) - ak] = (a2i(i+1) —a ] if g 1is even

i+l p+2i

[a2i+1(1+1) - ap+21+1] if q is odd,

by sliding up the line combining aq(l) and aq(i+1) as possible.

Then the assumptions of the induction means that

la (i)

2(i-1>1) 7 Bpupgp) = f(2172)

and

[ (i) - 1 = fp(2i—1).

A (i-1)+1 ap+2(i-1)+1

Since

1 =ta,, . (i) = a_ ...1,

fa,. (i) —a 5i-1 p+21i

21 p+2i
we have

] o+ [aZi(1+1) - ap+2i

1 - [la,, (i) ]

2i 8542
]

1l = [a21_1(1) - a0

o= lay oy 2 ap Hh6i-1

Eazi(1+1) - ap+2i

= lay o1 2 3401
2i-1) - £ 2i-2) = £ QD).

fp+1
On the_other hand,

-11-
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[a21+1(1) - ap+2i+1] + .[a2i+1(i+1) - ‘ap+21+1]=[821(1+1) - ap+2i+1].

Hence

RS R T TR Elr TR e TS PP L T S SRS AL L ST TSR OIS T
=_fp+1(21) - fP(21-1) = fp(21+1).

Thus in+1 = fp(21) if @q 1is even and xi+1=fp(2(1+1)—1) if: q is

odd.

4., Bratteli diagram for (Nk)

Let (Nk) be the sequence in (2.3). Let Nk(+) = (eist;jgl)"
and Nk(—) = (ejst;jé—l}". Then Nk is generated by the commuting
pair Nk(+) and Nk(—). For a triplet (k,p,q} in (3.1), Nk(+) is

isomorphic to Mq and Nk(—) is isomorphic to Mp. Two dimension
vectors and weight vectors of a finite dimensional von Neumann algebra
are respectively conjugate by an inner automorphism. We may take a
dimension vector bk of Nk and the weight vector uk for the
restriction of the trace tr of M to N, as

4.1 b - a 1 a a 2 a -..,a d )a )

£ t t
o st @ et

- (4.2) u

where'_ty denotes the transposed vector of the vector vy.

Since we obtained the inclusion matrices for (Mk) in 3,

] if Kk is odd

(4.3) [Nk - N 1l = I : [Mp - M

kK+1 P
M = M
p p

p+1

+1] Iq 1f k is even,‘

-12-
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where Ik denotes the: dk by dk identity matrizx. It is easy to

check that [Nk - Nk+1] satisfies the property»(e) for bk and uk.

The Blatteri diagram‘for (Nk) comes from the diagram for - (Mk)

following after the above informatfon.

In the case of A= (1/4)sec®(m/n+2)  for some n (n=1,2,...), the

diagram for N1 = N2 N3 e N2n has the same form as in the case
= ‘ i

of A = 1/4, the diagram for N2n+4i—2 N2n+4i—1 (resp. Ny . 4i-1

Nop+1? 'is similar to one for N2n—2 N2n—1 (resp. N2n-1 N2n) and

thg diagram for N2n+4i N2n+4i+1 (resp. N2n+41+1 N2n+4i+2) has

the reverse form of order changed one for N2n-1 N2h (resp. N2n-2

N, >.

2n
Example. In the case of n=4, the diagram is as follows;

/N
A A
2 4.

MUNN
7 REEERN,

IVAVRTAVRNIVAR
\%\X/”;
S NN

_13_
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5. Inclusion matrix of Nk in Mk.

Let (k,p,q) be a triplet in (3.1). Let x (i) be the
(i,j)—componeht of [Mq e Mk] énd x; the i¥th column vector of
[Mq - Mk]. Here we consider x(i,j)> and X, as a polygon and a path
map in Ep.‘lBy.Lemma‘S,'tHe polygon x, (J) "can be decomposed into
the direct sum of polygons (ap+j(i);‘j = 0,1,;.., i = 1,2,...,dp}.
Then we define the matrix [ap - Xi] = [h(j,k)] such that h(j,k) is

the number that a,(j) is contained in x; (k). We call the matrix

[ap g xi] the inclusion matrix of the path map ap in the path map

X..
1

Remark. 6 Let x, y and 2z be path maps on /\ such that [x =
yl] and [x = z] are defined. Then, by the definition of the direct
sum of path maps and the inclusion matrix for path maps, the matrix

[x 2 (y® 2)]1 is defined and
X2 (y® 2)] = [x2y]1® [x - 2z].
By this property and Lemma 5, the inclusion matrix [ap - ii] of the

path map ap in the path map xi is defined from the inclusion

matrices [Mp - Mr] (r 2 p) by the natural method.

Lemma. 7 Let A= (1/4)sec2(n/n+2) and p 2 n-1.

(1) If n is odd and p 1is even, then
: . M. .cMt]l m L. n m-1
i = -[si-jsre- Bysosi+js2rRy-15+
[a, - fp(m);(l,g) J1,‘ [RISi-JSU,1, (5142815820501 ]

-14-
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\ 0, otherwise.

If n 1is odd and p is odd, then

m-1

.. 1 .. . s
fa, = £, (m1Ci,§) =1, —tmg—léx-Jétgl, 1+ 1§1+J§2[§]—[§1

0, otherwise.

(2) If n is even and p 1is odd, then

.. m+1 .. m m+] s e n m

- = -[—15i ~ = < LRy

[ap fp(m)](l,J) g 1, [ > 1si Jé[zl, 1+ 2]_1+Jé2[2] [2]
0, otherwvise.

If n is even and p 1is even, then

.. My. ..M+l m n m+1
= -[LI1Si-jsSr— T1+2=i+jS2[0)-
[ap - fp(m)](l,J) 1, [2]_1 J=2I[ 5 1, [2]+2_1+J_2[2] {_2 ]
0, otherwise.
Proof. It is sufficient to prove the statement.for p=n-1 and

p=n, because fp(m) is the polinomial on {ap+j;j=[%3, j is
odd(resp. even)} if m 1is odd (resp. even) and [ap - ap+j] = [ap+2

] for all p&n-1 and j. Since fp(l) = a it is clear

-
Ap+2+j p+1°

that [ap - fp(l)] satisfies the conditions for all n and p.
For a given n, assume that the statements hold for p=n-1, n and
m=1,2,...,k. Then we can give a proof of the statements for p=n-1, n

and m=k+l1 by the relation;

[ap - fp(k+1)] = [ap - ap+11[ap+1 - fp+1(k)] - [ap - fp(k—l)]

-15-
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= £ 01 =t o £ GO,

Lemma.8 Let A = (1/4)sec2(n/n+2) and  x. the
vector of [Mq - Mk]' Assume q 2 n.

(1> If n is odd, then [a ~ ;] is a (a+th
with the following form:

(1.1) If p=q 1is an odd number, then

[ap = x,1¢5,1) = { 1, 1-iS1-jSi<j+1Sn+2-i

0, otherwise.
(1.2) If p+1 = q 1is even, then

tay, = x,1¢5,1) = {1, [1-j1<iSj+1Sn+2-1

0, otherwise.
(1.3) If p=q 1is even, then

fay, = x;1¢j,1) = { 1, 11-j1<i<j+1Sn+3-i

0, otherwise.
(1.4 If p+l1 = q 1is odd, then

[ap - Xi](j,l) = 1, -iS1-j<i<j+13n+2~-i

l 0, otherwise.

-16-

i-th column

square matrix
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(2) Let n 1is even.

(2.1) If p =aq 1is odd, then [ap - Xi] is an n/2 by 1+(n/2)

matrix with

ta, =x;1¢j, D =) 1, 1-iS1-jSi<j+1Sn+2-i

? Q, otherwise.

(2.2) I1f p+l=q is even, then [ap - xi] is.an n/2 square matrix

with

[ay, = x;1(5, 1) ='{1, [1-j1<iSj+1Sn+2-i

0, otherwise.

(2.3) 1f p = 4q 1is even, then [ap - xi]» is a 1+(n/2) square

matrix with

fa, @x;1C3,1) = %1, I1-§1<i<j+1Sn+3-i
0, otherwise

(2.4) If p+l = q 1is odd, then [ap - Xi] is a\“1+(n/2) by n/2

matrix with

[a, =x;1(i, 1) = )1, ~iS1-j<i<j+1Sn+2-i
10. otherwise.
Proof. Let n be odd. Then dj =d _; for all j&n-1. Since
= : n .
dn_1 = [2] +1, [Mq - Mk] is a 1+[2] square matrix. .It means that

aj (j2n-1) and each xi are path maps consisting of 1+[g] polygons

in Ep+1. Similarly, if n 1is even, then aj is a path map with

-17-
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[51 (resp. [%]+1) polygons for odd (resp. even) j £ n-1. Hence x,

n
2 i
is a path map with {31 (resp. [g+1) polygons if Kk is odd(resp.

even).Therefore by Lemma 5 and Lemma 7, the statements hold.

Lemma. 9 For the weight vector w of the restriction of tr to

k
Mk’ we have
- = i i =
[ap Xi]wk wq(l)wp (i 1,2,...,dq).
Proof. We denote the matrix [[ap - ap+i]’0""’O] by the same
notation [ap - ap+i]" where 0 1is the row vector with all

components 0. Then by the Bratteli diagram for (Mk)’ we have for

all i (i=0,1,...)

_ 4n(i) Sy a, _ i
[ap - ap+i]wk = A wp for n(i) = [2] [2].
Since xi is given by the polynomials fi on {ap+i; i=0,1,...} by

Lemma 5, we have the statement by Lemma 6, (3.2) and the relation
between the polynomial fj's and Pj's, because
. _ ,b+l1l-i
w (i) = A 'Pk-1—2p+21(k)’
where Pj is the polynomial defined in [2] by Pl(x) = Pz(x)

H
—

and

P (x) = Pn(x) - xP (x).

n+1 n-1

Let 'Gk be the dpdq

vector of which is the j-th column vector of the matrix [ap - Xi],

by dk matrix, the(dq(j—1)+i)—th column

where i = 1,2,...,dq, i= 1,2,..., dp. That is,the transposed matrix
t ’ . .
Gk of Gk is as follows;

-18-
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G, = [G[1]1,,G[2],,..., , s p e s sy y oo
K [GL ]1 [2]1 G[dq]l G[l]2 G[dq 2 G[l]%ﬁ\ GEdq]@@Q’

where G[i]j is the transposed vector of the j-th column vector of

ﬁ
[ap Xi]‘

Lemma. 10 The matrix Gk satisfies the following;

ka = a G, W, = 1u

k = %’ k" K and Gk[Mk - M

1= [N, = N ]G

k+1 17 7k+1,

where b are dimension vectors of Mk’ Nk and wk, uk are

axr %k
weight vectors of Mk’ Nk’

Proof. Since aq[Mq - Mk] = ak, we have, by the relation (4.1),

kak = Ei aq(x)ap[ap - xi]1= Ei aq(l)xi = a,

ksl

where 1 runs over (1,2,...,dq).

Lemma 7 implies that kak = u., combining the definition of G
and (4.2).

If A > 1/4 and k 2 2n, by Lemma 8, we have Gk[Mk - Mk+1] =

[N 1G For another case, we need a similar lemma as Lemma

k ~ Ng+1108k41-
8. In the below we does not need such cases. Hence we omit to give a

proof of such cases.

Thus we can get a method of inclusion of Nk in Mk' Hence we

denote Gk by [Nk - Mk].

6. Periodicity of (N) C (M) in the case of A > 1/4.
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In this section, we assume that A = (1/4)se02n/(n+2) for some n

Lemma. 11 The sequence (Mk) is periodic with period 2 and the

sequence (Nk) is periodic with period 4.

Proof. <Combining the discussions in (2.5) and section 3 with results

in [2] or [6], we have that the seduence (Mk) is periodic with

period 2.

The fact implies that (Nk) is periodic with period 4, by Lemma 1 and

the Bratteli diagram for (Nk)’

Lemma. 12 Let xi (resp. yi) be the i-th column vector of [Mqﬂ

=
MRJ (resp. [Mq+2 g Mk+4])' If q 2 n, then

[ap - xi] = [a - vy.] (1=1,2,...dq).

Proof. First we remark that both [Mq - Mk] and [Mq+2 - Mk+4]
are dq by dk matrices, because (Mk) is periodic with period 2

and [Mq+2 - Mk+4] = CMq-ﬂ Mk][Mk - Mk+2]‘ Since p = [EJ and q =
k+4

K-p, we have p+2 = [—E*] and qg+2 = (k+4 - (p+2), that is,v {k+4,

p+2, q+2} satisfies (3.1). Hence X, = fp(21—2) (resp. X, =

‘fp(21-1)) if and only if Y = fp+2(21f2) (resp.fp+2(21—1)). By the

definition, fj(2m) (resp.fj(2m+1)) is a linear combination on

(resp. {a, }) with integer

(aj’aj+27""aj+2m} je1? aj+3,.., aj+2m+1

coefficients. Therefqre, by Remark 6, we have [ap el xi] = [ap+2 -3

yiJ, becahse (Mk) is periodic with period 2.
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Lemma. 13 . The sequence (Nk)<: (Mk) is periodic.

Proof. We already proved that both (Mk) and (Nk) are periodic

with same period 4, Hence it is sufficient to prove that

v

[Nk - Mk] = [N - M 1] for K 2n.

k+4 k+4

By the form of the matrixv‘[Nk

Lemma 12. Thus (NK)C (M) is periodic.

g Mk] = Gk’ it . is nothing else but

7. Proof of Theorem.
Lemma. 14 If A = (1/4)sec2(n/m) for some m (m= 3,4,...), then
[M:N] = (m/4)cose02(n/m).

Proof. The factors M and N are generated by the periodic
sequences (Nk)<C(Mk) of finite dimensional algebras. Hence, by

[6;Theorem 1.51, for the weight vectors w and u of the

K k

‘ restriction +tr to M and N we have that [M:N] =

k k’
2

2 .
Ilukllz/llwkll2 for a large enough k. By (4.2),

Plu, 112 = 1w 112 (1w 112

k 2 P 2 q 2 for a {(k,p,q} 1n (3-1).

Put n = m - 2. Then we have
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. = 1l 2 2 > e
[M:N] Iluklt2 / Ilwkll2 for all Kk 2 n-1.
Since {lw 112/ Ilw, . 11% = 1/ 'for all k Z n-1
k 2 k+1 2 - ’
o 4 2 2 n-1
[M:N] = Ilwn_lll2 / Ilwz(n_l)ll2 = llwn_lll2 / A .
By (3.3,
2 _ 2 2 . n-1
Ilwn_lll2 = Ej A Pn_zj(k) , where j runs over {0,1,...,I > 1}.
On the other hand, by [31],
2 : ‘ k-1 k-1

Pk((1/4)sec 8) = sin k6 / 2 cos 8sin@ for all k and 6.

Hence

[M:N] = Z, sin?((n-2j)n/(n+2)) / sin’(n/(n+2))
=Zj(2—exp(2(n—2j)/(n+2))ni - exp(2(2j-n)/(n+2))mi} / 4sin2(n/(n+2))
= ((n+2)/4)cosec’(n/(n+2)) = (m/4) cosec” (n/m),
because E?=1 exp((j/k)2ni) = 0, for all integer K.

Remark. 15 (1) 1f m=3 or 4, then [M:N] = [P:Ql] for the

subfactor Q = {e.; i=2,3,...}'" of the factor P {ei;i=1,2,...)".
That is, [M:N} =1 if m =3 and I[M:Nl =2 if m= 4.

(2) 1f m= 5, then [M:N] # [P:Ql. If m =5, then [M:NI<4.
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Hence trere is an integer k (k £ 3) such that [M:N]l = 4cosz(n(k).
H. Choda gets the number k, that is k = 10. (Here the author thank
to H. Choda for helping her by computing a lot of indices [M:N].)
On the other hand, by tHe proof oquemma 14,

[M:N] = dcos® /3y + 4cosz(n/5).~
This implies the following equation ( the equation is proved by an
ellementary method, which M.Fujii tells us); -

cosZ(n/3) + cos®(n/5) = cos?(n/10).

Lemma. 16 The relative commutant N'n M of N in M is

trivial.

Proof. Since [M:N] 1is finite, N'" M 1is finite dimensional.
Let ¢ be the dimension'vector of N'n M. Since (Mk)jD(Nk) is

periodic, by [G:Theoremﬂl.71,

Ilcll1 =qa = min{IIG[i]jll1 ;kéZn,i=1,2,...,dq,j=1,2,...,dp),

where G[i]j is the vector in the section 5. By Lemma 8, there are
many (i,j}'s such that tG[i]j = (1,0,...,0). It implies a = 1.
Hence N'n M is l—dimehsional, so that N'~ "M = Cl1.

8. A generalization

Let take and fix a positive integer n. Let

L= +{(,,,. € e_n’ el,ez,es,...}' .

-23-



111

In the case of n =1, L = N. By a similar proof as Lemma 1, L is
a subfactor of M, for all n. Also, L is a subfactor of N and

[N:L] = 4cosz(n/m). Hence

[M:L] = (m/4)cose02(n/m)(4cosz(n/m)}n_1w
Let
L1 = L2 = €L, Ly, q = Ly; = (ei;i=1,2,...,n—1}" if i =n
and
- L] = L] 3 i 2
Lyjsp = (Loys e} Lyiws = (e iy Loy, ? if i Zn.

- The sequence (Lk) is periodic with period 4 and generates L. By a

similar method as for (Nk)<f (M, ), we get the inclusion matrix [Lk

k
- Mk]. For a triplet (k,p,q} 1in (3.1), we consider the matirix

[ - Xi] for a large k, where xi is the same as in section

ap—(n—l)
3, that is the i-th column vector of [MqﬂMk]. Then (Nk) C_(Mk) is

‘periodic. Let h be the dimensibn vector of L'A M.

If aq is even, then Xy = an hence [ap—(n—l) - x1] = [ap—(n-l)
d .
ap]
If n = 2,we have N'n M = €1, by the form of la, = akfll for an
odd K.
= [ : : . '
If n 2 3, {e_n+2’e_n+3...,e_1} is contained .in L'~"M and

isomorphic to M Hence we have

n-1°

L'n M= {e_ P L

n+2,-n+3 -1
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