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Introduction

In this paper we describe a developmental system, called a distributed rewriting system

or a DR system for short, which generates a sequence of two dimensional patterns of

strings. A two dimensional pattern of strings or a configuration is a mapping from

the two dimensional rectangular array to the set of strings over a finite alphabet. A

DR system consists of a set of distributed rewriting rules and an initial configuration.
Distributed rewriting rules resemble to rewriting rules of a context free grammar or a

OL system. That is, distributed rewriting rules are of the form

$aarrow(b_{1}, d_{1})\cdots(b_{n}, d_{n})$ ,

where $a$ and $b_{i}$ are symbols of the alphabet and $d_{i}$ is one of the direction symbols

in $\{\uparrow, \downarrow, arrow, arrow, \cdot\}$ for $1\leq.i\leq n$ . If $a$ is contained in a string at the point $(x, y)$ and
$d_{i}=arrow$ ( $arrow,$

$\uparrow,$ $\downarrow,$ or $\cdot$ ), then $b_{i}$ is distributed at the point $(x+1, y)((x-1, y),$ $(x, y+1)$ ,
$(x, y-1)$ , or $(x, y))$ for $1\leq i\leq n$ .

After giving some preliminaries, we define a DR system formally in Section 2.

We will prove that for a deterministic DR system it is decidable whether the symbols

derived by the system are contained in a bounded region or not (Theorem 3.8). In

Section 4 we will prove that for a deterministic DR system it is decidable whether the

number of symbols in each point is bounded or not (Theorem 4.8).

Since $1960’ s$ , many array and web generators have been investigated (e.g., [1], [2],

and [4]). A difference between DR systems and the other array generating systems is

that DR systems permit for a point to contain more than one symbols. This convention

makes the notation of DR systems simpler than the other array generators (cf. [4]).

Therefore, we can treat it theoretically.

DR systems will be used as models of the pattern formation of living things.

We also think that there are fruitful results which will be obtained from theoretical
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investigations of DR systems, e.g., a classification of the patterns generated by DR
systems and a comparative study of many varieties of DR systems (deterministic,

A-free or propagating, homomorphic image, and so on).

DR systems also relate to process assignment problems for parallel computing.
Namely, each symbol of the alphabet corresponds a process and each point in the
rectangular array corresponds to a processor which can compute arbitrary number of
processes in a time step. Creations and destructions of processes during the compu-
tation may be described by the distributed rewriting rules. A process $P$ is assigned
to one of the neighbouring processors of the processor which has computed the parent
process of $P$ ; i.e., if the parent process of $P$ is computed by the processor at $(x, y)$ ,
then $P$ is assigned to the processor at $(x+1, y),$ $(x-1, y),$ $(x, y+1),$ $(x, y-1)$ , or
$(x, y)$ according to the direction symb$o1$ .

DR systems do not contain the issues of communications and synchronizations for
parallel computing. This is why some decision problems concerning DR systems are ef-
fectively decidable with relatively small computational cost. The study of DR systems
will be also useful to build more advanced formal models for parallel computation.

1. Preliminaries

Let $\Sigma$ be a finite alphabet. An element of $\Sigma$ is called a symbol. The set of all strings
over $\Sigma$ , including the empty string 1, is denoted by $\Sigma^{*}$ . The length of a string $s$ is
denoted by $\#(s)$ . If $V$ is any subset of $\Sigma,$ $\neq v(s)$ denotes the number of occurrences
of symbols of $V$ in $s$ .

For a set $A,$ $\#(A)$ denotes the cardinality of $A$ and $\mathcal{P}(A)$ denotes the power set
of $A$ , i.e., the set of all subsets of $A$ .

We denote by $Z$ the set of all integers and by $N$ the set of non-negative integers.
Let $w$ be a string in $\Sigma^{*}$ and $L$ be a subset of $\Sigma^{*}$ . We denote by alph$(w)$ the set

of all and only symbols of $\Sigma$ which actually appear in $w$ , and by alph$(L)$ the set of all
and only symbols appearing in the strings of $L$ .

Definition. A mapping $h$ from $\Theta^{*}$ into $\Sigma^{*}$ is said to be a homomorphism if it satisfies
the following conditions.

i) $h(1)=1$ ,
ii) $h(a)\in\Sigma^{*}$ for every $a\in\Theta$ , and
iii) $h(w)=h(a_{1})h(a_{2})\cdots h(a_{n})$ for every $w=a_{1}a_{2}\cdots a_{n}$ where $a_{i}\in\Theta$ for $i=$

1, 2, . . . , $n$ .

Unless otherwise stated, we treat in this paper homomorphism $h;\Sigma^{*}arrow\Sigma^{*}$ and
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we call such $h$ a homomorphism on $\Sigma^{*}$ . In this case we define for every integer $n$ the

product $h^{n}$ as follows:
$h^{0}=$ the identity of $\Sigma^{*}$ ,

$h^{1}=h$ , and $h^{n+1}=h(h^{n})$ .

The product is again a homomorphism. We shall use the following notations:

$h^{*}= \bigcup_{k\in N}h^{k}$
and $h^{+}=h(h^{*})$ .

A multivalued mapping $\tau$ from $\Sigma^{*}$ to $\Sigma^{*}$ is said to be a substitution on $\Sigma^{*}$ if it is

a homomorphism from $\Sigma^{*}$ to $\mathcal{P}(\Sigma^{*})$ . Thus a substitution $\tau$ is completely defined by

the family of sets $\{\tau(a)|a\in\Sigma\}$ and we have $\tau(1)=1$ .

Definition. Let $\tau$ be a substitution on $\Sigma^{*}$ . A pair { $\Sigma,$ $\tau\rangle$ is called a $0L$ scheme. A

triple { $\Sigma,$
$\tau,$

$w\rangle$ where { $\Sigma,$ $\tau\rangle$ is a OL scheme and $w$ is a string in $\Sigma^{*}$ is said to be a $0L$

system. Let $h$ be a homomorphism on $\Sigma^{*}$ . A pair { $\Sigma,$ $h\rangle$ is called a deterministic OL

scheme or a $D0L$ scheme for short. A triple $\{\Sigma, h, w\}$ where $\{\Sigma, h\}$ is a DOL scheme

and $w$ is a string in $\Sigma^{*}$ is called a deterministic OL system or a $D0L$ system for short.

We assume the reader to be familiar with the basic notions and results of DOL
systems (see, for example, [3]).

2. Distributed rewriting system and its underlying OL system

In this section the main notion of this paper is developed. Some notations which are

specific to this paper are also given.
Let $\Sigma$ be a finite alphabet and $Z\cross Z$ be the 2-dimensional rectangular array. A

finite subset $D$ of $\Sigma\cross(\Sigma\cross\{\uparrow, \downarrow, arrow, arrow, \cdot\})^{*}$ is said to be a set of distributed rewriting
rules if for any $a$ in $\Sigma$ there exists a pair $(a, T)$ in $D$ for some $T\in(\Sigma\cross t\uparrow, \downarrow, arrow, arrow, \cdot\})^{*}$ .
We sometimes denote $aarrow T$ if $(a, T)$ is in $D$ . A pair \langle $\Sigma,$ $D\rangle$ is called a distributed
rewriting scheme or a $DR$ scheme for short.

A function $C$ from $Z\cross Z$ to $\Sigma^{*}$ is called a configuration over $\Sigma$ . The set of all

configurations over $\Sigma$ is denoted by $C(\Sigma)$ . Let $C_{1}$ and $C_{2}$ be two configurations. The
multiplication of $C_{1}$ and $C_{2}$ , denoted by $C_{1}\Vert C_{2}$ , is defined as follows:

$(C_{1}\Vert C_{2})(x,y)=C_{1}(x,y)C_{2}(x, y)$ for any $(x, y)\in Z\cross Z$ ,

where $C_{1}(x, y)C_{2}(x, y)$ stands for the concatenation of the strings.
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Property 2.1. $C(\Sigma)$ is a free $m$onoid under the multiplication $\Vert$ . The empty config-
uration $\epsilon$ , i.e., $\epsilon(x, y)=1$ for all $(x, y)$ , is the uni$t$ elemen$t$ of the monoid. $\square$

A configuration which takes non-empty string at most one point is called a point
configuration and is denoted by $[s, x,y]$ , where $(x, y)$ is the point and $s$ is the string
on the point; i.e., $[s, x, y](x,y)=s,$ $s\in\Sigma^{+}$ , and $[s, x,y](x‘, y’)=1$ , for any $(x’, y’)\neq$

$(x, y)$ . The point configuration which takes a symbol on the point is said to be a single

point.
Let $\delta_{\dagger},$ $\delta\downarrow,$ $\delta_{arrow},$ $\delta_{arrow}$ , and $\delta$ . be homomorphisms from $(\Sigma\cross\{\uparrow, \downarrow, arrow, arrow, \cdot\})^{*}$ to $\Sigma^{*}$

given by,
$\delta_{x}((a, y))=\{\begin{array}{l}a,ifx=yl,otherwise\end{array}$

where $x$ and $y$ are in $\{\uparrow, \downarrow, arrow, arrow, \cdot\}$ . For example, $\delta_{arrow}((a, \uparrow)(b, arrow)(a, arrow))=ba$ .
The distributed rewriting rules determines a relation on $C(\Sigma)$ as follows.

Definition. Let \langle $\Sigma,$ $D$ } be a DR scheme and let $[a, x, y]$ be a single point. A configu-
ration $C$ is said to be directory derived from $[a, x, y]$ if there exists $(a, T)$ in $D$ and $C$

satisfies:
$C(x, y)=\delta.(T)$ ,

$C(x+1, y)=\delta_{arrow}(T)$ ,

$C(x-1,y)=\delta_{arrow}(T)$ ,

$C(x, y+1)=\delta_{\dagger}(T)$ ,

$C(x,y-1)=\delta_{\downarrow}(T)$ , and

$C(x’, y’)=1$ if $|x’-x|+|y’-y|>1$ .

We denote $C$ by $d[a, x,y]$ .

Remark. For a single point $[a, x, y]$ , there are different directly derived configurations
which are determined by the different elements $(a, T’)$ in $D$ . In other words, the

directly deriving relation is a non-deterministic mapping, i.e., it is a function from
$C(\Sigma)$ to $\mathcal{P}(C(\Sigma))$ . $\square$

Definition. Let $[s, x, y]$ is a point configuration such that $s=s_{1}s_{2}\cdots s_{l}$ . A directly

derived configuration $d[s, x, y]$ from $[s, x,y]$ is given by

$d[s, x,y]=d[s_{1},x, y]\Vert d[s_{2}, x, y]\Vert\cdots\Vert d[s_{l},x, y]$.

Definition. Let \langle $\Sigma,$ $D$ } be a DR scheme. Let $C_{1}$ and $C_{2}$ be two configurations and let
$E$ be an enumeration of all elements of $Z\cross Z$ .
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i) $C_{2}$ is simultaneously derived from $C_{1}$ under the enumeration $E$ by $D$ (denoted

by $C_{1D}\Rightarrow_{sim},{}_{E}C_{2}$ ) if

$C_{2}=d[s_{1}, x_{1}, y_{1}]\Vert d[s_{2}, x_{2}, y_{2}]\Vert\cdots$ ,

where $E(i)=(x_{i}, y_{i})$ and $s_{i}=C_{1}(x_{i}, y_{i})$ .
ii) $C_{2}$ is sequentially derived from $C_{1}$ by $D$ (denoted by $C_{1D}\Rightarrow seqC_{2}$ ) if for some

$(x, y)$

$C_{1}(x, y)=s_{1}s_{2}\cdots s_{1}$ and $C_{2}=d[s_{i}, x, y]\Vert C’$ ,

where $C’(x, y)=s_{1}s_{2}\cdots s_{i-1}s_{i+1}\cdots s_{l}$ and $C’(x’, y’)=C_{1}(x, y)$ for any $(x’, y’)\neq$

$(x, y)$ .

We note that $\epsilon_{D}\Rightarrow_{x}\epsilon$ by definition ($x=sim,$ $E$ or seq).

Let $D\Rightarrow x$ be one of the derivation relation defined above ($x=sim,$ $E$ or seq),

then the reflective and transitive closure of $D\Rightarrow x$ is denoted by $D\Rightarrow_{x}^{*}$ . We omit $D$

$and/orx$ when $Dand/orx$ are understood.

Definition. i) A distributed rewriting system (abbreviated as a DR system) $P$ is a

triple $P=\{\Sigma, D, C\}$ , where ( $\Sigma,$ $D$ } is a DR scheme and $C$ is a configuration over $\Sigma$

called the axiom of $P$ .

ii) A sequence of configurations $C_{0},$ $C_{1},$
$\ldots$ is said to be the derivation sequence

by $P$ under $x$ ($x=sim,$ $E$ or seq) if $C_{0}=C$ and $C_{i}\Rightarrow xC_{i+1}$ for $i\geq 0$ .

A DR scheme $\{\Sigma, D\}$ (or system $\{\Sigma,$ $D,$ $C\rangle$ ) is called deterministic if $D$ is a func-

tion from $\Sigma$ to $(\Sigma\cross\{\uparrow, \downarrow, arrow, arrow, \cdot\})^{*}$ . It is easily seen that for a deterministic DR

scheme \langle $\Sigma,$ $D$ } and an enumeration $E$ , the simultaneous derivation $relation\Rightarrow sim,E$ is

a function on $C(\Sigma)$ .
Next we define an underlying OL system of a DR system. Let \langle $\Sigma,$ $D$ } be a DR

scheme. We construct a substitution $\tau$ on $\Sigma^{*}$ by setting,

$\tau(a)=\{w\in\Sigma^{*}|w=\delta(T), (a, T)\in D\}$ ,

where $\delta$ is a surjection from $(\Sigma\cross\{\uparrow, \downarrow, arrow, arrow, \cdot\})^{*}$ to $\Sigma^{*}$ given by

$\delta((a, x))=a$ , for any $x\in\{\uparrow, \downarrow, arrow, arrow, \cdot\}$ .

Then the pair { $\Sigma,$ $\tau)$ is a OL scheme and is called the underlying $0L$ scheme of $\langle\Sigma,$ $D$ }.
We note that if a DR scheme is determimistic, then the underlying OL scheme is

deterministic.
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Definition. Let $P=(\Sigma, D, C)$ be a DR system and $E$ be an enumeration on $Z\cross Z$ . A

OL system $\{\Sigma, \tau, w\}$ is said to be the underlying $0L$ system of $P$ under $E$ and denoted
by $G_{E}$ if { $\Sigma,$ $\tau)$ is the underlying OL scheme of $(\Sigma,$ $D$ } and $w=C(x_{1}, y_{1})C(x_{2}, y_{2})\cdots$

where $E(i)=(x_{i}, y_{i})$ .

We denote the underlying OL system by $G$ instead of $G_{E}$ when $E$ is understood or

the enumeration has no effect on the OL system, e.g., when $C$ is a point configuration.

In the sequel, we only consider the deterministic DR systems and the simultaneous
derivation under the triangular enumeration $E$ , i.e., $E(n)=(i,j)$ , where

$n=2k^{2}-2k+2+\{\begin{array}{l}jifi\geq 0andj>0k-iifi<0andj\geq 02k-jifi\leq 0andj<03k+iifi>0andj\leq 0\end{array}$

and $k=|i|+|j|$ (see Figure 1).

We sometimes concentrate our attention on a derivation process of a particular
symbol rather than on the whole derivation of the configuration. Let $P=\{\Sigma,$ $D,$ $C$ )
be a deterministic DR system and $C_{0}=C,$ $C_{1},$

$\ldots$ be the derivation sequence by $P$ .
If a symbol $s$ is in alph$(C_{i}(x, y))$ , then we call that the single point $[s, x, y]$ is a part
of $C_{i}$ . A sequence of $n+1$ single points $[s_{0}, x_{0}, y_{0}]_{0},$ $[s_{1}, x_{1}, y_{1}]_{1},$

$\ldots,$
$[s_{n}, x_{n}, y_{n}]_{n}$ is

said to be a derivation process of $[s, x,y]$ by $P$ if it satisfies:
i) $[s_{n}, x_{n}, y_{n}]_{n}$ is a part of $C_{i}$ , i.e., $n=i,$ $s_{n}=s$ , and $(x_{n}, y_{n})=(x, y)$ .
ii) $[s_{0},x_{0}, y_{0}]_{0}$ is a part of $C_{0}$ .
iii) For all $j>0,$ $s_{J+1}$ occurs in $d[s_{j}, x_{j}, y_{j}]$ at $(x_{J+1}, y_{J+1})$ , i.e.,

$s_{j+1}\in alph(d[s_{j}, x_{j}, y_{j}]_{j}(x_{j+1},y_{j+1}))$ .

We denote that $[s, x, y]arrow^{n}[s’, x’, y’]$ if there is a derivation process $[s, x, y]=$

$[s_{0}, x_{0}, y_{0}]_{0},$
$\ldots,$

$[s_{n}, x_{n}, y_{n}]_{n}=[s’, x’, y’]$ .
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3. Decision problem for boundedness

A DR system is bounded if the number of points which contain non-empty strings
in any configurations derived by it is bounded by a given positive integer. In other

words, the derivation of a bounded DR system is simulated in a finite (torus boundary)

rectangular array. The main theorem proved in this section (Theorem 3.8) ensures

that a DR system is effectively determined whether it is bounded or not. Theorem

3.8 will be clear by characterizing ingeniously the symbols in the alphabet.

Definition. A DR system $P=\langle\Sigma,$ $D,$ $C$ } is said to be bounded if there is a positive

integer $N$ such that $N>\#(\{(x, y)|C_{i}(x, y)\neq 1\})$ for any $C\Rightarrow^{i}C_{i}$ .

First we review some properties of symbols in OL system which are commonly

studied in the theory of OL systems.

Definition. Let $\{\Sigma, D\}$ be a DR scheme and let $\langle\Sigma, h\rangle$ be its underlying OL scheme.
i) A symbol $s\in\Sigma$ is called mortal if 1 is the descendant of $s$ , i.e., $1\in h^{+}(s)$ .
ii) A non-mortal symbol is called vital.

iii) A vital symbol $s$ is said to be self-embedding if $s$ appears in some descendant of $s$ ,
i.e., $usv\in h^{+}(s)$ for some $uv\in\Sigma^{*}$ . We denote by $S$ the set of all self-embedding
symbols.

Next we define bounded and unbounded symbols.

Definition. Let $\{\Sigma, D\}$ be a DR scheme. A symbol $s\in\Sigma$ is said to be bounded if

the DR system \langle $\Sigma,$ $D,$ $[s, 0,0]$ } is bounded. A symbol which is not bounded is called
unbounded.

Property 3.1. A symb$ol$ is unbounded if on$e$ of its descen$d$ant is unboun$ded$. $\square$

Since there is no interaction among the symbols in DP system, it is obvious that

a DR system $P=\{\Sigma, D, C\}$ is bounded if and only if all symbols appearing in $C$ is
bounded. Therefore the subject of this section is to determine whether a symbol is

bounded or not. It is trivial that any mortal symbol is bounded. And from Property

3.1 it is obvious that a vital non self-embedding symbol is bounded if and only if all its

self-embedding descendants are bounded. Then our task is reduced to decide whether

or not a self-embedding symbol is bounded.

Definition. Let $s$ be a self-embedding symbol. The symbol $s$ is said to be single directed
if for any $[s,0,0]\Rightarrow^{*}C$ there exists a pair of integers $(p, q)$ such that $s\in alph(C(x, y))$

implies $(x, y)=(p, q)$ . A self-embedding symbol which is not single directed is called
multiple directed.
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A multiple directed symbol is easily proved to be unbounded (Property 3.2 below).

But it is not so easy to decide whether a single directed symbol is bounded or not.
For example, consider the following example.

Example. Let $P_{1}=\langle\{a\},$ $\{aarrow(a, \cdot)(a, arrow)\},$ $[a,0,0]$ } $,$

$P_{2}=\langle\{a, b\},$ $\{aarrow(a, arrow)(b,$ $arrow$

$)$ , $barrow(b, \uparrow)$ }, $[a, 0,0]$ }, and $P_{3}=\{\{a, b\}, \{aarrow(a, arrow)(b, arrow), barrow(b, arrow)\}, [a, 0,0]\}$ be

DR systems. Then $a$ in $P_{1}$ is multiple directed and hence $P_{1}$ is unbounded. On

the other hand, $a$ in $P_{2}$ and $P_{3}$ is single directed, but $P_{2}$ is unbounded, while $P_{3}$ is
bounded. The first few derivation steps are illustrated in Figure 2. $\square$

Property 3.2. A multiple directed symbol is unbounded.

Proof Let $s$ be a multiple directed symbol. There is a configuration $C$ such that
$[s, 0,0]\Rightarrow mC$ and $s\in alph(C(p_{0}, q_{0}))\cap alph(C(p_{1}, q_{1}))$ where $(p_{0}, q_{0})\neq(p_{1}, q_{1})$ .
Then for any positive integer $k,$ $s$ occurs at the $k+1$ points $(kp_{0}, kq_{0}),$ $((k-1)p_{0}+$

$p_{1},$ $(k-1)q_{0}+q_{1}),$ $\ldots$ , and $(kp_{1}, kq_{1})$ in the configuration $C$ ‘ such that $[s, 0,0]\Rightarrow^{km}C’$ .
$\square$

The next lemma makes an essential property of single directed symbols clear.

Lemma 3.3. Let $P=\{\Sigma, D, [s, 0,0]\}$ be a $DR$ system where $s\in\Sigma$ is self-embeddin$g$.

Let $C_{0}=[s, 0,0],$ $C_{1},$
$\ldots$ be the derivation sequence by P. If the symb$ols$ is single

directed, then for any $i,$ $j,$ $(x, y)$ , and $(x’, y’)$ such that $s\in alph(C_{i}(x, y))$ and $s\in$

$alph(C_{j}(x’, y’))$ we have $(x/i, y/i)=(x’/j, y’/j)$ .

Proof. Suppose that there are two points $[s, x, y]$ and $[s, x’, y’]$ which are parts of $C_{i}$

and $C_{j}$ , respectively, such that $(x/i, y/i)\neq(x’/j, y’/j)$ . If $i=j$ , then $s$ is not single-
directed. Otherwise, two different single points $[s,jx,jy]_{ij}$ and $[s, ix’, iy’]_{ij}$ are parts
of $C_{ij}$ , that is, $s$ is not single directed. $\square$

The vector whose uniqueness is proved in the above lemma is called the unit
derivation vector of $s$ . Then the next lemma gives the necessary and sufficient condi-
tion for a single directed symbol to be bounded.

Lemma 3.4. A single directed symbol $s$ is boun$ded$ if an$d$ only if for any symbol
$a\in S$ which is a descen$d$an$t$ of $s$ is single directed an$d$ the unit derivation vector of a

is that of $s$ .

Proof Only if part: If a self-embedding symbol $s$ is bounded, then $s$ and all its self-

embedding descendants are single directed by Properties 3.1 and 3.2. Let $(x_{s}, y_{s})$ be

the unit derivation vector of $s$ and $[s, 0,0],$ $\ldots$ , $[s, ix_{s}, iy_{s}]_{i}$ be one of the derivation
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processes of $s$ . Now assume that a descendant $a\in S$ of $s$ has a unit derivation

vector $(x_{a}, y_{a})$ such that $(x_{a}, y_{a})\neq(x_{s}, y_{s})$ . There are derivation processes $[s, 0,0]$ ,

. . . , $[a, x, y]_{m}$ and $[a, 0,0],$
$\ldots,$

$[a,jx_{a},jy_{a}]_{j}$ . Then, for any positive integer $n$ , the

configuration $C_{m+nM}$ contains $a$ at $n$ points:

$pM(x_{s}, y_{s})+(n-p)M(x_{a}, y_{a})+(x, y)$ for $0\leq p<n$ ,

where $M$ is the least common multiple of $i$ and $j$ . This implies that $s$ is unbounded,

and hence we have $(x_{a}, y_{a})=(x_{s}, y_{s})$ .
If part: First assume that a descendant $t$ of $s$ is not self-embedding. If $t$ is

in alph$(C(x, y))$ for some configuration $C$ which satisfies $[s, 0,0]\Rightarrow^{n}C$ , in other

words, $t$ has a derivation process $T=\{[s, 0,0], \ldots, [t, x, y]_{n}\}$ ; then there is a final

segment $[s, x_{n-j}, y_{n-j}]_{n-j},$
$\ldots,$

$[t, x, y]_{n}$ of $T$ such that $j\leq\#(\Sigma)$ because $t$ is not self-
embedding. Thus we have $|x-nx_{s}|+|y-ny_{s}|\leq\#(\Sigma)$ because $t$ is self-embedding.
Next assume that $a\in S$ is a descendant of $s$ and $A=\{[s, 0,0], \ldots, [a, u, v]_{n}\}$ be a

derivation process of $a$ . Then there is an initial segment $[s, 0,0],$
$\ldots,$

$[a, u_{0}, v_{0}]_{j}$ of $A$

such that $j\leq\#(\Sigma)$ and $a_{m}\neq a$ for $0<m<j$ . Since the unit derivation vector

of $s$ equals to that of $a$ , we have $(u, v)-(u_{0}, v_{0})=(n-j)(x_{s}, y_{s})$ . Therefore we

have $|u-nx_{s}|+|v-ny_{s}|<|u_{0}|+|v_{0}|+|jx_{s}|+|jy_{s}|$ , where the right side hand is
a constant which is dependent only on the distributed rewriting rules. Thus, for any
integer $n$ and the configuration $C$ which satisfies $[s, 0,0]\Rightarrow^{n}C$ , the cardinarity of the

set $\{(x, y)|C(x, y)\neq 1\}$ is bounded. $\square$

Now the remaining task is to determine whether a self-embedding symbol is single
directed or not. This is done as follows: Let ( $\Sigma,$ $D\rangle$ be a DR scheme and let $s$ be a self-

embedding symbol. We construct a non-deterministic $fini\dagger e$ automaton $M_{s}=\langle\Sigma,$ $\{\uparrow$

$,$

$\downarrow,$

$arrow,$ $arrow,$
$\cdot$ }, $\delta,s,$ $F\rangle$ where $F=\{s\}$ and

$\delta(b, d)=$ { $c\in\Sigma|barrow x(c,$ $d)y$ is in $D$ for some $xy\in(\Sigma\cross\{\uparrow,$ $\downarrow,$

$arrow,$ $arrow,$ $\cdot\})^{*}$ }.

Then $M_{s}$ satisfies the following property.

Property 3.5. For any derivation process $[s, 0,0]_{0},$ $\ldots[s, x_{n}, y_{n}]_{n}$ , there exists a

string $w=d_{1}\cdots d_{n}\in\{\uparrow, \downarrow, arrow, arrow, \cdot\}^{*}$ in $L(M_{s})$ such that $d_{i}$ is the direction from the

poin$t[s_{i-1}, x_{i-1}, y_{i-1}]_{i-1}$ to the poin$t[s_{i}, x_{i}, y_{i}]_{i}$ for $1\leq i\leq n$ . $\square$

Let $\mathcal{E}_{s}$ be the regular expression such that $L(\mathcal{E}_{s})=L(M_{s})$ . We can assume that
$\mathcal{E}_{s}$ contains $no+operator$, for otherwise we add $\mathcal{E}\mathcal{E}_{1}\mathcal{E}’$ and $\mathcal{E}\mathcal{E}_{2}\mathcal{E}’$ to $\mathcal{E}_{s}$ if $\mathcal{E}(\mathcal{E}_{1}+\mathcal{E}_{2})\mathcal{E}’$
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is in $\mathcal{E}_{s}$ and we add $\mathcal{E}(\mathcal{E}_{1}^{*}\mathcal{E}_{2^{*}})^{*}\mathcal{E}’$ to $\mathcal{E}_{s}$ if $\mathcal{E}(\mathcal{E}_{1}+\mathcal{E}_{2})^{*}\mathcal{E}’$ is in $\mathcal{E}_{s}$ . We inductively define
a function $f$ from $\mathcal{E}_{s}-\{\emptyset,\epsilon\}$ to $(N\cross N)\cross N$ as follows:

i) if $\mathcal{E}=d\in\{\uparrow, \downarrow, arrow, arrow, \cdot\}$ , then $f(\mathcal{E})=(v, 1)$ where

$v=(1,0)$ if $d=arrow$ ,

$v=(-1,0)$ if $d=arrow$ ,

$v=(0,1)$ if $d=\uparrow$ ,

$v=(0, -1)$ if $d=\downarrow$ , and

$v=(0,0)$ if $d=\cdot$ .

ii) if $\mathcal{E}=\mathcal{E}_{1}\mathcal{E}_{2},$ $f(\mathcal{E}_{1})=(v_{1}, n_{1})$ , and $f(\mathcal{E}_{2})=(v_{2},n_{2})$ , then $f(\mathcal{E})=(v_{1}+v_{2}, n_{1}+n_{2})$ .
iii) if $\mathcal{E}=\mathcal{E}_{1^{*}}$ and $f(\mathcal{E}_{1})=(v_{1}, n_{1})$ , then $f(\mathcal{E})=(kv_{1}, kn_{1})$ where $k$ is a variable

which does not appear in $n_{1}$ .
If $f(\mathcal{E})=((x,y),$ $n$ ) is in $\mathcal{E}_{s}$ and $n,$ $x$ , and $y$ have variables $k_{1},$

$\ldots,$
$k_{l}$ , then it is easily

seen that for any non-negative integers $c_{1},$ $\ldots,$
$c_{l}$

$[s, 0,0]arrow^{n(c_{1},\ldots,c_{l})}[s, x(c_{1}, \ldots, c_{l}), y(c_{1}, \ldots, c_{l})]$

where $n(c_{1}, \ldots, c_{l}),$ $x(c_{1}, \ldots, c_{l})$ , and $y(c_{1}, \ldots, c_{l})$ are the integers which are obtained
by the assignment $c_{1},$ $\ldots,$

$c_{1}$ for $k_{1},$
$\ldots,$

$k_{l}$ from the definition of $f$ and Property 3.5.

Then the next lemma ensures that a symbol is effectively determined whether it
is single directed or not.

Lemma 3.6. The following $t$ wo conditions are equivalent.
i) A self-embedding symbol $s$ is single directed.
ii) For any formulas $\mathcal{E}$ and $\mathcal{E}$

‘ in $\mathcal{E}_{s}$ such that $f(\mathcal{E})=(v, n)$ and $f(\mathcal{E}’)=(v’, n’)$ we
have $v/n=v’/n’$ an$dv/n$ does not cont$ain$ an$y$ variable.

Proof. $i$ ) $arrow ii$). The proof immediately follows from Lemma 3.3.
$ii)arrow i)$ . Let $C_{0}=[s, 0,0],$ $\ldots,$

$C_{n}$ be the derivation sequence by the DR system
$\{\Sigma, D, [s, 0,0]\}$ . If $s$ is in alph$(C_{n}(x, y))$ and alph$(C_{n}(x’, y’))$ , then by the condition ii)

we have $(x, y)=(x’, y’)$ . This implies that $s$ is single directed. $\square$

Proposition 3.7. A symbol is effectively determin$ed$ whether it is bounded or not.

Proof This is an immediate consequence of Lemma 3.4 and Lemma 3.6. $\square$

Now the following theorem is proved.

Theorem 3.8. A $DR$ system is effectively determin$ed$ whether or not it is boun$ded$.
$\square$

10
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4. Decision problem for explosion and flatten theorem

In this section, we concentrate our attention on the length of the string in each point;

namely, for a given DR system $P=\{\Sigma, D, C\}$ , we ask whether there exists an integer
$N$ such that $N>\#(C_{i}(x, y))$ for any $C\Rightarrow^{i}C_{i}$ and any $(x, y)$ . If there is no such $N$ ,

we say that $P$ explodes. We show that a DR system is effectively determined whether

it explodes or not (Theorem 4.7). Then we prove that certain DR system is made

“flat”; in other words, for a DR system $P$ which explodes, there is a DR system $P$ ‘

which does not explode and has the same underlying OL system with $P$ (Theorem 4.8).

We conclude this section with a characterization of the DR systems by combining the

notions of boundedness and explosion.

First we characterize the symbols of a DR system by their growth order which is

defined by the growth function of the underlying OL system.

Let { $\Sigma,$ $D\rangle$ be a DR scheme and let $(\Sigma,$ $h$ } be its underlying OL scheme. For
a symbol $s$ in $\Sigma$ , let $f_{s}(n)$ be the growth function of the OL system $\{\Sigma, h, s\}$ , i.e.,
$f_{s}(n)=\#(h^{n}(s))$ . We define the growth order (or order for short) of the symbol $s$ as

follows:

Polynomial $k(\geq 0)$ : If for any $c$ there exists $N$ such that $f_{s}(n)>cn^{k-1}$ for any

$n>N$ and there exists a constant $c$ such that for any $n\geq 0f_{s}(n)\leq cn^{k}$ .

Exponential: If for any $k$ there is $N$ such that $f_{s}(n)>n^{k}$ for any $n>N$ .

Null: If there exists $N$ such that $f_{s}(n)=0$ for any $n>N$ .

We denote the order of a symbol $s$ by order$(s)$ as follows:

order$(s)=\{\begin{array}{l}\infty,ifsisexponentialk,ifsispolynon_{\grave{1}rightarrow}\Delta lk-\infty,ifsisnull\end{array}$

The following property is obvious from the definition of the order and the standard

properties of homomorphisms.

Property 4.1. Let $\{\Sigma, D\}$ be a $DR$ scheme an$d(\Sigma,$ $h\rangle$ be the underlyin$g0L$ scheme

of it.

i) A symbol $s$ is null if an$d$ only if $s$ is mortal.

ii) For an$y$ symbol $a,$ $order(a)={\rm Max}_{b\in alph(h(a))}order(b)$ .

iii) For any non negative order symbol a (i.e., $a$ is vital), there is a self-embedding

symbol $s$ in alph$(h^{+}(a))$ such that order$(a)=order(s)$ .

11
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iv) If a symbol $s$ is multiple directed, then order $(s)=\infty$ . $\square$

Property 4.1 says that the null symbols are effectively determined. Since the

growth function of a DOL system is easily calculated, the order of any symbol is

also effectively determined. The well established method to calculate the growth

function of a DOL system utilizes the growth matrix, i.e., the matrix $M=[m_{ij}]$ where
$m_{ij}=\#_{t^{a_{j}}}\}(h(a_{i}))$ and $\Sigma=\{a_{1}, a_{2}, \ldots, a_{k}\}$ . Then $f_{a_{j}}(n)=\pi M^{n}\eta$ where

$i$

$\pi=$ $(0$ $0$ 1 $0$ $0)$

and $\eta=$ $($ 1, $\ldots$ , $1)^{T}$ .
The next lemma clarifies a subtle property of a polynomial order symbol, which

will be useful in the sequel.

Lemma 4.2. If the order of a self-embedding symbol $s$ is polynomial $i$ , then:
i) There are exactly one self-embeddin$g$ symbol of order $i$ and no symbol which are

order more than $i$ contained in $h^{n}(s)$ for any $n>0$ .

ii) There is at least on$e$ self-embedding symbol of order $i-1cont$ain$ed$ in some $h^{m}(s)$

where $m$ is a positi $1^{re}$ integer less than $\#(\Sigma)$ .

Proof. i) First observe that all symbols in alph$(h^{+}(s))$ are order less than or equal

to $i$ and that there exists at least one symbol of order $i$ contained in $h^{n}(s)$ for any

$n>0$ by Property 4.1 ii) and iii). Then assume there are two symbols $a$ and $b$ of

order $i$ contained in $h^{m}(s)$ for some $m>0$ , i.e., uavbw $=h^{m}(s)$ for some $uvw\in\Sigma^{*}$ .

If $s\in alph(h^{+}(a))$ and $s\in alph(h^{+}(b))$ , then $s$ would be exponential. Therefore we

can assume, without loss of generality, that $s\not\in alph(h^{k}(b))$ and $s\in h^{k}(s)$ for some
$k>0$ . Let $f_{s}(x)$ and $f_{b}(x)$ be the growth functions of $s$ and $b$ . Then we have

$f_{s}(kx)> \sum_{n=0}^{x}f_{b}(kn-m)$

for any $x>0$ . Since $b$ is order $i,$ $f_{b}(x)>cx^{i-1}$ for any sufficiently large $x$ , and hence

for any $c$ there exists $N$ such that $f_{s}(x)>cx^{i}$ for all $x>N$ . This contradict that $s$

is order $i$ . Therefore there is exactly one order $i$ symbol contained in $h^{n}(s)$ for any

$n>0$ .

ii) If there was no order $i-1$ symbol contained in any $h^{m}(s)$ , then we should have

$f_{s}(x) \leq\sum_{n=0}^{x}(cn^{i-2}+O(i-3))$

12
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where $O(i-3)$ stands for the terms of order $i-3$ and this should imply that $s$ is order
$i-1$ . Let $a$ be a self-embedding symbol of order $i-1$ and $[s, 0,0],$

$\ldots,$
$[a_{i}, x_{i}, y_{i}]_{i}$ ,

. . . , $[a, x, y]_{m}$ be a derivation process of $a$ . If $m>\#(\Sigma)$ , then there are integers $i$

and $j$ such that $i\neq j$ and $a_{i}=a_{j}$ . Therefore we have that $a_{i}$ is self-embedding and
order$(a_{i})=i-1$ . Then the proof is completed. $\square$

Lemma 4.2 says that for a self-embedding symbol $s$ whose order is $i$ , there exist
$i+1$ self embedding symbols $s_{i},$ $s_{i-1},$ $\ldots,$

$s_{0}$ such that $s_{i}=s,$ $s_{j-1}\in alph(h^{+}(s_{j}))$ ,

and order$(s_{j})=order(s_{J+1})-1=j$ . The sequence $\{s_{i}, s_{i-1}, \ldots , s_{0}\}$ is called a

descendant sequence of $s$ .
This lemma also proves that for a self embedding symbol $s$ of polynomial order,

there is only one derivation process $[s, 0,0],$
$\ldots,$

$[s, x, y]_{c}$ which satisfies the following
conditions:

i) $c\leq\#(\Sigma)$ .
ii) $s_{j}\neq s$ for $0<j<c$ .

In this case, $c$ is called the length of cycle of $s$ . (Of course, the unit derivation vector
is $(x/c, y/c).)$

Now we define the notion of explosion.

Definition. Let $P=\langle\Sigma,$ $D,$ $C$ } be a DR system and $C_{0}=C,C_{1},$ $\ldots$ be the derivation
sequence. If for any integer $N$ there is a positive integer $M$ such that for any $n\geq M$ ,
$\#(C_{n}(x, y))>N$ for some $(x, y)$ , then $P$ is said to be explosive or $P$ is said to explode.

A DR system which is not explosive is called flat.
The next property directly follows from the definition and the properties of the

growth order.

Property 4.3. Let $P=(\Sigma,$ $D,$ $C$ } be a $DR$ system. $P$ is explosive if
i) There is $a$ exponential symb$ol$ contain$ed$ in $C(x, y)$ for some $(x, y)$ .
ii) There is a symbol $s$ contain$ed$ in $C(x, y)$ for some $(x, y)such$ that order$(s)>2$ .
iii) $P$ is bounded-and there is a symbol $s$ contain$ed$ in $C(x, y)$ for some $(x, y)such$

that order $(s)\geq 1$ . $\square$

If $P$ is unbounded and for any $(x, y)$ all symbols in $C(x, y)$ have order less than 3,

then there are two possibilities: $P$ explodes or $P$ does not explode. Indeed, consider
the following examples.

Example. Let $P_{1}=(\{a, b, c\},$ $D_{1},$ $[a, 0,0]\rangle$ be a DR system, where $D_{1}=\{aarrow$

$(a, \cdot)(b, arrow)(c, \cdot),$ $barrow(b, arrow),$ $carrow(c, \cdot)$}. Then order$(a)=1$ and order$(b)=order(c)=$
$0$ . As seen in Figure 3, $P_{1}$ is explosive.
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Next let $P_{2}=\{\{a, b, c\},$ $D_{2},$ $[a, 0,0]\rangle$ be a DR system, where $D_{2}=\{aarrow(a, \cdot)(b,$ $\uparrow$

$)$ , $barrow(b, \uparrow)(c, arrow),$ $carrow(c, arrow)$ }. Then order $(a)=2,$ $order(b)=1$ , and order$(c)=0$ .

But $P_{2}$ does not explode (see Figure 3). $\square$

The following lemmas give the necessary and sufficient conditions for a polynomial

DR system to explode.

Lemma 4.4. Let $P=\{\Sigma,$ $D,$ $C\rangle$ be a $DR$ system whose underlying $0L$ system
$G=\langle\Sigma, h, w\rangle$ is polynomial order more than $0$ . Then $P$ explodes if there exist self-

embedding symbols $s$ and $t$ in alph$(h^{+}(w))such$ that $\{s, t\}$ is the descendant sequence

of $s$ an$d$ the unit derivation vector of $s$ equals to that of $t$ .

Proof. Let $L$ be the least common multiple of the length of cycles of $s$ and $t$ and
$(x_{s}, y_{s})$ be the unit derivation vector of $s$ (and hence of $t$ ). Since $s$ and $t$ occur
in some configurations, we can assume that $C_{i}(x, y)=usv,$ $C_{j}(x’, y’)=u’tv’$ , and
$[s, x, y]arrow j-i[t, x’, y’]$ . Then, for any $n$ , the number of the occurrences of $t$ in
$C_{J+Ln}(x’+Lnx_{s}, y’+Lny_{s})$ is more than $n$ . $\square$

Lemma 4.5. With the same assumptions as in Lemma 4.4, $P$ explodes if there exist
self-embedding symbols $r,$ $s$ , an$dt$ in alph$(h^{+}(w))$ such that $\{r,s, t\}$ is the descendant
sequence of $r$ and for the unit derivation vectors $u_{r}=(x_{r}, y_{r}),$ $u_{s}=(x_{s}, y_{s})$ , and
$u_{t}=(x_{t}, y_{t})$ of $r,$ $s$ , an$dt$ satisfy,

$x_{r}y_{s}+x_{s}y_{t}+x_{t}y_{r}-x_{r}y_{t}-x_{t}y_{s}-x_{s}y_{r}=0$ .

Proof Let $c_{r},$ $c_{s}$ , ant $c_{t}$ be the length of the cycles of $r,$ $s$ , and $t$ , respectively. We use
the vector notation $C_{i}(x)$ instead of $C_{i}(x, y)$ where $x=(x, y)$ . Since $r,$ $s$ , and $t$ occur

in some configurations we have:

$r\in alph(c_{i}(X)),$ $s\in alph(C_{i+i’}(X+X’))$ , and $t\in alph(C_{i+i’+i’’}(X+X’+X’’))$

for some positive constant integers $i,$ $i$ ‘, and $i”$ and constant vectors X, X’, and X”.
Then $t$ typically occurs in

$C_{i+i’+i’’+kc_{f}+lc_{\delta}+mc_{t}}(X+X’+X’’+kc_{r}u_{r}+lc_{s}u_{s}+mc_{t}u_{t})$

for some $k,l$ , and $m\geq 0$ . Now we must show that for any $N\geq 0$ there exist $N$

non-negative integer solution $(k, l, m)$ of the equations

$\{\begin{array}{l}kc_{r}+lc_{s}+mc_{t}=Lkc_{r}x_{r}+lc_{s}x_{s}+mc_{t}x_{t}=Xkc_{r}y_{r}+lc_{s}y_{s}+mc_{t}y_{t}=Y\end{array}$
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for some appropriate constants $L,$ $X$ , and Y. Indeed this holds since the determinant

of the coefficients matrix satisfies

$\det|\begin{array}{lll}c_{r} c_{s} c_{t}c_{r}x_{r} c_{s}x_{s} c_{t}x_{t}c_{r}y_{r} c_{s}y_{s} c_{t}y_{t}\end{array}|=0$

because of the assumption of this lemma. $\square$

Next we prove the reverse of Lemma 4.4 and Lemma 4.5.

Lemma 4.6. Let $P=\{\Sigma, D, C\}$ be a $DR$ system whose underlying $0L$ system $G=$

\langle $\Sigma,$ $h,$ $w$ } is polynomial order less than 3. If $P$ explodes, then
i) there exist self-embeddin$g$ symbols $s$ and $t$ in alph$(h^{+}(w))$ such that $\{s, t\}$ is the

descendant sequence of $s$ and the unit derivation vector of $sequ$als to that of $t$ .

ii) there exis $t$ self-embedding symbols $r,$ $s$ , and $t$ in alph$(h^{+}(w))$ such that $\{r,s, t\}$

is the descendant sequence of $r$ an$d$ for the unit derivation vectors $u_{r}=(x_{r}, y_{r})$ ,

$u_{s}=(x_{s}, y_{s})$ , an$du_{t}=(x_{t}, y_{t})$ of $r,$ $s$ , an$dt$ , we have

$x_{r}y_{s}+x_{s}y_{t}+x_{t}y_{r}-x_{r}y_{t}-x_{t}y_{s}-x_{s}y_{r}=0$ .

Proof Since $P$ explodes and $\#(\Sigma)$ is finite, for any $N>0$ , there are a configuration
$C_{i}$ derived from $C$ and a self-embedding symbol $t$ such that $\#_{t^{t\}}}(C_{i}(x))>N$ . From

Lemma 4.2, there are other self-embedding symbols $s_{0},$ $s_{1},$ $\ldots$ such that $\{s_{0}, s_{1}, \ldots, t\}$

is the descendant sequence of $s_{0},$ $s_{0}$ occurs in $C_{j}(x_{0})$ for some $j<\#(\Sigma)$ , and that
$[s_{0}, x_{0}]$ derives $\alpha N$ occurances of $t$ in $C_{i}(x)$ for some constant $0<\alpha\leq 1$ . Since the

order of $G$ is less than 3, we must consider the following two cases:
Case 1. The descendant sequence is $\{s, t\}$ . Letting $u_{s}=(x_{s}, y_{s})$ and $u_{t}=$

$(x_{t}, y_{t})$ be the unit derivation vectors and $c_{s}$ and $c_{t}$ be th $\supset$ ’ength of cycles of $s$ and $t$ ,

respectively, we have that the equations

$\{\begin{array}{l}lc_{s}+mc_{t}=i-j-j’lc_{s}u_{s}+mc_{t}u_{t}=x-x_{O}-x’\end{array}$

have $\alpha N$ solutions, where $j’$ is a non-negative constant and $x’$ is a constant vector.

The necessary and safficient condition for this is

rank $(\begin{array}{ll}1 1x_{s} x_{t}y_{s} y_{t}\end{array})=1$ ,

and hence we have that $x_{s}=x_{t}$ and $y_{s}=y_{t}$ .
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Case 2. The descendant sequence is $\{r, s, t\}$ . Let $u_{r}=(x_{r}, y_{r}),$ $u_{s}=(x_{s}, y_{s})$ , and
$u_{t}=(x_{t}, y_{t})$ be the unit derivation vectors and $c_{r},$ $c_{s}$ , and $c_{t}$ be the length of cycles

of $r,$ $s$ , and $t$ , respectively. We have that the equations

$\{\begin{array}{l}kc_{r}+lc_{s}+mc_{t}=i-j-j’-j^{//}kc_{r}u_{r}+lc_{s}u_{s}+mc_{t}u_{t}=x-x_{O}-x’-x’’\end{array}$

have $\alpha N$ solutions, where $j’$ and $j”$ are non-negative constants and $x’$ and $x”$ are

constant vectors. The necessary and safficient condition for this is

rank $(\begin{array}{lll}l 1 1x_{r} x_{s} x_{t}y_{r} y_{s} y_{t}\end{array})\leq 2$ .

and hence we have $x_{r}y_{s}+x_{s}y_{t}+x_{t}y_{r}-x_{r}y_{t}-x_{t}y_{s}-x_{s}y_{r}=0$ . $\square$

Now the first main result of this section becomes obvious.

Theorem 4.7. A $DR$ system is effectively determin$ed$ whether or not it explodes. $\square$

Then we state and prove the second main theorem of this section.

Theorem 4.8. Let $P=\langle\Sigma, D, C\rangle$ be a $DR$ system and $G=\langle\Sigma,$ $h,$ $w$ } be its underlying
$0L$ system. If the orders of all symbols in alph$(w)$ are less than 3, then there is a $DR$

system $P’=\{\Sigma, D’, C\}$ such that the underlying $0L$ system of $P$ ‘ is $G$ and that $P’$

does not explode.

Proof We construct $D’$ as follows:
i) For any $a\in\Sigma$ , if $h(a)=s_{1}\cdots s_{l}$ , then

$aarrow(s_{1}, x_{1})\cdots(s\iota, x_{l})$

is in $D$ ‘ where $x_{i}=\uparrow$ if $s_{i}$ is order $0or-\infty,$ $x_{i}=arrow ifs_{i}$ is order 1, and $x_{i}=$ . if
$s_{i}$ is order 2.

ii) $D’$ contains no other rewriting rules.

Then $G$ is the underlying OL system of the DR system $P’=\{\Sigma,$ $D’,$ $C\rangle$ , and $P$ ‘ does

not explode because of Lemmas 4.4, 4.5, and 4.6. $\square$

Finally we summarize in Table 1 the relationship among the notions of growth

order, boundedness, and explosion.
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