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Ihductive Inference of Logic Programs

Based on Algebraic Semantics

Yasubumi SAKAKIBARA (榊原 康文)

IIAS-SIS, FUJITSU LIMITED

Abstract In this paper we will present a new inductive inference algorithm
for a class of logic programs, called linear monadic logic programs, in the
sense that it is different from the Shapiro’s Model Inference System. It is
known thata set of trees is rational if and only if it is computed byalinear
monadic logic program, and that the rational set of trees is recognized by tree
automata. On the other hand, several efficient inference algorithms for finite
automata are developed. We will extend them to an inference algorithm for
tree automata and use it to get an efficient inductive inference algorithm for
linear monadic logic programs. The correctness, time complexity and several
comparisons of the algorithm with the Model Inference System will be shown.

1. Introduction

The study of inductive inference of logic programs was initially and mostly done

by E.Shapiro and his work is known as the Model Inference System $[5,6]$ . He devises

a program that infers first order sentences (Horn clauses) from examples of their

logical consequences. The target of the inference is an Herbrand model. Thus

Shapiro’s algorithm (especially the diagnosis algorithm) deeply depends on the

theory of predicate logic and logic programming. In the theory oflogic programming,

the least model $\cap M(LP)$ of a logic program LP is taken as the mathematical

semantics, called model-theoretic semantics, for it. This semantics provides the

denotation of a predicate symbol $P$ in a logic program LP:

$D(P)=\{(t_{1},\ldots,t_{n});P(t_{1},\ldots,t_{n})\epsilon\cap M(LP)\}$ .
$D(P)$ is the denotation $ofP$ as determined by model-theoretic semantics. Thus model-

theoretic semantics gives a nice characterization of the set of terms computed by a

logic program.

On the other hand, algebraic semantics which connects between the theory of tree

languages and the semantics of programming languages is now well known and

recently introduced to logic programming in [4]. It studies the use of tree languages
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in the semantics of logic programming. In algebraic semantics, the set of terms

computed by a logic program LP can be viewed as a tree language. That is to say, the

denotation $ofP,$ $D(P)=\{t;P(t)\in\cap M(LP)\}$ , is a tree language. From the result in [4], a

set of trees is rational iff it is computed by a linear monadic logic program, where a

rational set of trees is a set of trees which can be recognized by some tree automaton

$T_{A}$ and a linear monadic logic program is a class of logic programs defined by

syntactic restrictions such that predicate symbols are monadic, the height of terms

involved is less than or equal to 1 and the variables in a term must be distinct.

Therefore, the denotation of $P$ can be written as $D(P)=\{t$ : $t$ is accepted by a tree

automaton $T_{A}$ about $P$ in LP}. Based on such an algebraic semantics, we can

establish a new inductive inference schema of logic programs so that the problem of

inductive inference oflogic programs is reduced to the problem of inductive inference

of tree automata. By extending an inductive inference algorithm for finite automata

[1] to the one for tree automata, we can get an efficient inductive inference method

for logic programs. In this setting, the inductive inference algorithm can identify in

the limit a class of logic programs, linear monadic logic programs, such that the

denotation $ofP$ computed by it is equal to the one in the unknown model.

2. Basic definitions of trees

Definition Let $N$ be the set of positive integers. Dom is a tree domain iff it satisfies

a) $Dom\subseteq N^{*}$ and Dom is finite,

b) Dom is prefix-closed, i.e. if $m,$ $n\in N^{*}$ and mn $\epsilon$ Dom th$e1\Delta An\in$ Dom,

c) ni $\in Dom$ implies $nj\in Dom$ for $1\leqq j\leqq i,j\epsilon$ N.

Adirect successor(direct predecessor)ofanodex isanode y, wherey $=xi(yi=x)$

for $i\in$ N. The frontier of Dom is the set of all nodes in Dom which have no direct

successors. The depth of $n\epsilon$ Dom is recursively defined as:

depth(n) $=0$ if $n=\epsilon$

depth(ni) $=depth(n)+1$ for $i\in$ N.

If $t$ is a tree domain, then depth(t) $= \max\{depth(i);i\in t\}$ .
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Definition A ranked alphabet is a pair $(\Gamma, p)$ consisting of a finite set $\Gamma$ and a

mapping $p;\Gammaarrow N$ which defines the ranh of any symbol $f$ in I’. For such a set $\Gamma$ , we

denote by $\Gamma_{n}$ the set $\{f\in\Gamma;p(f\gamma=n\}$ for $n\geqq 0.$ A tree over a finite ranked alphabet $\Gamma$ is a

mapping $t;Domarrow\Gamma$, which labels the nodes of the tree domain Dom. We require the

following condition which concerns the rank function: if $t(m)=f$ of arity $n\geqq 0$ , then

for $i\in N$ , mi $\epsilon$ Dom(t) iff $1\leqq i\leqq n$ . Let the set of all trees over $\Gamma$ be denoted by $\Gamma^{r_{\Gamma}}$ . If $t\in\Gamma^{T}$,

then the subtree of $t$ at $n$ , where $n$ is in the domain of $t(n\in Dom(t))$ , is defined as
$Un=$ {$(i,$ $x)$ ; (ni, $x)\in t$}. For $t\in\Gamma^{T}$ and $n\epsilon$ Dom(t), the replacement at $n$ with a tree $u$ is

defined as $t(narrow u)=\{(m, x);t(m)=x$ and $n\{m\}\cup$ {$(ni,$ $x);u(i)=x$ and $i\in Dom(u)$}. The

replacement (substitution) of terminal nodes labeled $c\in\Gamma$ with $a$ tree $u$ is defined as

$t(carrow u)=$ {$(m,$ $x);t(m)=x$ and $x\neq c$} $\cup$ {$(ni,$ $x);t(n)=c,$ $u(i)=x$ and $i\epsilon$ Dom(u)}. Let$ be

anew symbol of arity0that we add to F. $(\Gamma U\{})^{T}$ denotes the set of all trees over

$\Gamma\cup\{}$ . Especially we are interested in the subset Sub of $(\Gamma\cup\{})^{T}$ which is the set of

all trees $t\in(\Gamma\cup\{})^{T}$ such that $t$ exactl$y$ contains one $-symbol. We use the notation

$\Gamma_{\^{T}}$ for the Sub. $Fortreest\in\Gamma^{T}ands\epsilon\Gamma_{\^{T}},$ $wedefineanoperation\cdot$ to replace the

node labeled$ ofs with tby $s\cdot t=s(\arrow t)$ (like concatenation ofstrings).

3. Tree automaton and linear monadic logic program

Definition A deterministic (frontier to root) tree automaton over $\Gamma$ is a 4-tuple

$T_{A}=(Q, \Gamma, 6, F)$, where

a) $Q$ is a nonempty finite set of states,

b) $\Gamma$ is a nonempty finite ranked alphabet,

c) $6=(6_{0},6_{1},\ldots,6_{m})$ is a state transition function such that

$6_{k}$ : $\Gamma_{k}\cross Q^{k}arrow Q$ $(k=0,1,\ldots,m)$ ,

d) $F\subseteq Q$ is the set offinal states.

If 6 is $a$ state transition function from $r_{k\cross Q^{k}}$ to $2^{Q}$ , then $T_{A}$ is nondeterministic.

6 can be extended to $\Gamma^{T}$ by letting:

$6(f(t_{1},\ldots,t_{k}))=6_{k(f,6(t_{1}),\ldots,61t_{k}))}$ for $k>0$ and $f\in\Gamma_{k}$ ,

$=6_{0}(\iota\gamma$ for $k=0$ and $f\in\Gamma_{0}$ .
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The tree $t$ is accepted by $T_{A}$ iff $6(t)\in$ F. The set of trees accepted by $T_{\Lambda}$ is the subset

$L(T_{A)}$ of $\Gamma^{T}$ defined as: $L(T_{A)=\{t;6(t)\in F\}}.$ $A$ subset $L$ of $\Gamma^{T}$ is called rational iff there

exists some tree automaton $T_{A}$ such that $L=L(T_{A})$ .

Example 1 Let $\Gamma=\{t, u, \neg, \},$ $p(t)=p(u)=0,$ $p(\neg)=1,$ $p()=2$ .

Let $T_{A}=(Q, \Gamma, 6, F)$ be a tree automaton, where $Q=\{A, B, C\},$ $F=\{A\}$ ,

$6_{0}(t)=6_{1}(\neg,B)=6_{2}(\vee,A,A)=6_{2}(\vee,A,B)=6_{2}(\vee,A,C)=6_{2}(\vee,B,A)=6_{2}(\vee,C,A)=A$,

$6_{1}(\neg,A)=6_{2}(\vee,B,B)=B$ ,

$6_{0}(u)=6_{1}(\neg,C)=6_{2}(\vee,B,C)=6_{2}(\vee,C,B)=6_{2}(\vee,C,C)=C$.

Then $L(T_{A)}$ is the set of all true logical formulae over $\Gamma$ interpreted by the

Kleene’s strong 3-valued connectives.

Note We reserve the predicate symbol $P$ for the inferring predicate.

Let the least Herbrand model for a logic program LP be denoted $by\cap M(LP)$ .

Definition ([4]) A linear monadic logic program is a logic program in which all

predicate symbols are monadic and all the terms occurring in atomic formulas are of

bne $of$ the following two forms:

a) $x$ ; $(i\in N)$

b) $f(x_{i_{1}},\ldots,x_{i_{m}})$ with $f\epsilon\Gamma_{m},$ $\{i_{1},\ldots,i_{m}\}\subseteq N$ th$ei_{k}$ being pairwise distinct.

Now we state very important theorem from [4] which connects a linear monadic

logic program with a tree automaton.

Proposition 3.1 ([4]) A set of trees is rational iff it can be computed by a linear

monadic logic program.

By the results of logic programs in [2], we can restate the above theorem as

follows.

Corollary 3.2 $IfLMLP$ is a linear monadic logic program and $P$ is a predicate symbol

$in$ LMLP, then the set of trees $\{t:P(t)\in\cap M(LMLP)\}$ is rational. Conversely, $ifa$ set of
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trees $T$ is rational, then there is a linear monadic logic program LMLP such that

$T=\{t;P(t)\epsilon\cap M(LMLP)\}$ for some predicate symbol $P$ in LMLP.

Definition-A Let $T_{A}=(Q, \Gamma, 6, F)$ be a tree automaton. We define a set of predicate

symbols $R=\{R_{q} : q\in Q\}$ in one-to-one correspondence with the set of states of the $T_{A}$ .
To code the computation $ofT_{A}$ , we need a clause for each transition. So, for each $f\in$ Fn

and each n-tuple ofstates $(q_{1},\ldots,q_{n})$ , we define the clause $C_{f,q_{1},\ldots,q_{11}}$ as:

$Cr_{q_{1},\ldots,q_{n}}=R_{6(f,q_{1},\ldots,q_{n})^{(f(x_{1},\ldots,x_{n}))arrow R_{q_{1}}(x_{1}),\ldots,R_{q_{11}}(x_{n})}}$ .

Another set of clauses is necessary to take care of the set of final $s$tates. So, for each

$q\epsilon F$ , we define the clause $C_{q}$ as:

$C_{q}=P(x)arrow R_{q}(x)$ .

Example 2 Let $T_{A}=(Q, \Gamma, 6, F)$ be a tree automaton as in example 1. The

corresponding linear monadic logic program is the following set of clauses.
$P(x)arrow R_{A}1x)$ .
$R_{A}(t)arrow$ .
$R_{C}(u)arrow$ .
$R_{A}(\neg x)arrow R_{B}(x)$ .
$R_{B}(\neg x)arrow R_{A}(x)$ .
$R_{C}(\neg x)arrow R_{C}1x)$ .
$R_{A}(x\vee y)arrow R_{A}(x),$ $R_{A}(y)$ .
$R_{A}(x\vee y)arrow R_{A}(x),$ $R_{B}(y)$ .
$R_{A}(xy)arrow R_{\Lambda}(x),$ $R_{C}(y)$ .
$R_{A}(x\vee y)arrow R_{B}(x),$ $R_{A}(y)$ .
$R_{A}(x\vee y)arrow R_{C}(x),$ $R_{A}(y)$ .
$R_{B}(xy)arrow R_{B}(x),$ $R_{B}(y)$ .
$R_{C}(xy)arrow R_{I3}(x),$ $R_{C}(y)$ .
$R_{C}(x\vee y)arrow R_{C}(x),$ $R_{B}(y)$ .
$R_{C}(xy)arrow R_{C}(x),$ $R_{C}(y)$ .

This is a logic program for determining the truth of a logical formula.

Proposition 3.3 Let $T_{A}=(Q, \Gamma, 6, F)$ be a tree automaton and LMLP be the

corresponding linear monadic logic program in the sense of Definition-A. Then

$R_{q}1t)\in$ nM(LMLP) $iff6(t)=q$ . Furthermore, $P(t)\epsilon nM(LMLP)i[[61t$) is in F.
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(Proof) We prove it by induction $on$ th $e$ depth of $t$ . Suppose first that the depth of $t$ is

$0$ , i.e. $t=a\epsilon\Gamma_{0}$ . By the definition of $C_{f,q_{1},\ldots,q_{n}}$ , there is a clause $R_{6(a)}(a)arrow in$ LMLP.

Then clearly $R_{6(a)^{(a)\epsilon}}$ nM(LMLP). If $6(a)=q$ , then $R_{(I}(a)=R_{6ta)}(t1)\in\cap M(LMLP)$ .

Conversely if $R_{q}(a)\in\cap M(LMLP)$ , since $T_{\Lambda}$ is deterministic (so 6 is deterministic),

$6(a)=q$ .

Next suppose that the result holds for all trees with depth at most $h$ . Let $t$ be a

tree of depth $h+1$ , so that $t=f(u_{1},\ldots,u_{n})$ for some trees $u_{1},\ldots,u_{n}$ with depth at most $h$

and some $f\epsilon\Gamma_{n}$ . For the if part, assume that $6(t)=q$ . By the definition of 6,

$6(t)=6(f(u_{1},\ldots,u_{n}))=6(f,6(u_{1}),\ldots,6(u_{n}))=q$ . By the definition of the clause $Cr_{(1l,\ldots,q_{I1}}$ ,

there is a clause $R_{6(f,6(u_{1}),\ldots,6(u_{n}))^{(f(x_{1},\ldots,x_{n}))arrow R_{6(u_{1})^{(x_{1}),\ldots,R_{6(u_{I1})}(x_{n})}}}}$ in LMLP. For

$1\leqq i\leqq n$ , by the induction hypothesis, $R_{6(u_{i})^{(u_{i})\in}}\cap M(LMLP)$ iff $6(u_{i})=6(u_{i})$ . The right-

hand side of this statement is obviously true. Thus $R_{6(\iota li}$ ) $(u_{i})\in\cap M(LMLP)$ , and so

$R_{6(f,6(u_{1}),\ldots,6(u_{n}))^{(f(ul,\ldots,u_{n}))\epsilon\cap M(LMLP)}}$ . Then

$R_{q}(t)=R_{6(t)}1t)$ , by the assumption,

$=R_{6(f(u_{1},\ldots,u_{n}))}(f(u_{1},\ldots,u_{n}))$

$=R_{6(f,6(u_{1}),\ldots,6(u_{n}))}(f(u_{1},\ldots,u_{n}))$ , by the definition of6.

Hence $R_{q}(t)\in$ nM(LMLP).

For the only-if part, as $s$ ume th at $R_{q}tt$ ) $\in\cap M$ (LMLP). Then

$R_{q}(flu\iota,\ldots,u_{n}))\in$ nM(LMLP). For $R_{q}(f(u_{1},\ldots,u_{n}))$ , there is a ground instance

$R_{6(f,q_{1},\ldots,q_{n})^{(f(u_{1},\ldots,u_{n}))arrow R_{q_{1}}(u_{1}),\ldots,R_{q_{11}}(u_{n})}}$ of a clause in LMLP such that

$6(f,q_{1},\ldots,q_{n})=q$ and $R_{q_{1}}(u_{1}),\ldots,R_{q_{n}}(u_{n})\in\cap M(LMLP)$ . By the induction hypothesis,

$6(u_{i})=q;(1\leqq i\leqq n)$ . Then

$6(t)=6(f(u_{1},\ldots,u_{n}))$

$=6(f,6(u_{1}),\ldots,6(u_{n}))$ , by the definition of 6,

$=6(f,q_{1},\ldots,q_{n})$

$=q$ .
This completes the induction.

Furthermore, if6(t) is in $F$ , there is a final state $qr$ in $F$ such $that6(t)=qf$. Then by

the above result, $R_{q_{l}}(t)\in$ nM(LMLP), and by the definition of $C_{(I},$ $P(t)\in$ nM(LMLP).
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Conversely if $P(t)\in\cap M(LMLP)$ , there is a ground instance $P(t)arrow R_{q}(t)$ of a clause in

LMLP such that $R_{q}tt$) $\in$ nM(LMLP) and $q$ is a final state. By the above result, $6(t)=q$ ,

and hence 6(t) is in F. Q.E.D.

By the above result, in the inductive inference schema of linear monadic logic

program, we have only to consider inferring a linear monadic logic program of the

form in Definition-A.

4. Predicate characterization matrix

Definition A set oftest predicates $S$ is a finite set of trees of $\Gamma^{T}$ . The set of test clauses

is defined to be $X(S)=$ { $f(\overline{u});f\in\Gamma;,\overline{u}\in S^{i}$ , and $f(\overline{u})\not\in S$ for $i\geqq 1$ } $.$ A set ofexperiments $E$ is a

finite set of trees of $\Gamma_{\^{T}}$ . Siscalled subtree-closed ifs $\epsilon$ Simplies all subtrees ofs are

elements of S. $E$ is called $S$ -prefix-closed with respect to $S$ if $e\in E$ except $ implies

there exists an $e$
’ in $E$ such that $e=e’\cdot f(s_{1},\ldots,s_{i-1},\,s_{i},\ldots,s_{n-1})$ for some $f\epsilon\Gamma_{11}$ ,

$s_{1},\ldots,s_{n-}\iota\in S$ and $i(1\leqq i\leqq n)$ .

Definition A predicate characterization matrix is a triple $(S, E, M)$ where $M$ is a

matrix with labeled rows and columns such that

1) The rows are labeled with the elements of SUX(S).

2) The columns are labeled with the elements $ofE$ .

3)Each entry ofM is either0or l.

4) If $s_{i},$ $s_{j}\in SUX(S)$ and $e;$ , ej $\epsilon E$ and $eis_{i}=e_{j}\cdot s_{i}$ , then the $(s_{i}, e_{i})$ and ( $s_{i},$ $e_{i^{)}}$ positions in $M$

must have the same entry.

The data contained in $M$ is $D(M)=\{(e\cdot s, y)$ : $s\epsilon$ SUX(S), $e\in E$ , and the entry of $M$ is

$y\epsilon\{0,1\}\}$ . Thus we can regard $D(M)$ as a finite function mapping $E\cdot(S\cup X(S))$ to $\{0,1\}$ .

If $s$ is an element of $(SUX(S))$ , then row$(s)$ denotes the finite function $f$ from $E$ to $\{0,1\}$

defined by $fle$ ) $=DlM$)$(e\cdot s)$ .
$A$ predicate characterization matrix is called closed if every row$(x)$ of test clause

$x\in X(S)$ is identical to some row(s) of test predicate $s\epsilon$ S. $A$ predicate characterization

matri $x$ is called consistent if whenever $s\iota$ and $s_{2}$ are test predicates of $S$ such that
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row $(s_{1})$ is equal to row $(s_{2})$ , for all $f\in\Gamma_{n}$ a nd $u\iota$ , ..., $\iota\iota_{11-}1\epsilon S$ ,

row$(f(u_{1},\ldots,u_{i-1},s_{1},u:,\ldots,u_{n-1}))$ is equal to row$(f(ul,\ldots,u_{i-1},s_{2},u_{i},\ldots,u_{n-1}))$ for $()$ $i<n$

$(n\geqq 0)$ .

The ideas of the closed, consistent predicate characterization matrix and the

algorithm using this are essentially the extensions of Angluin’s ones [1] (the

extension from finite automata to tree automata and so to linear rnonadic logic

programs). $A$ sequence of following lemmas and theorems are guided by those

Angluin’s results. The idea of the characterization matrix is also related to the work

by Gold [3].

I)efinition Let $(S, E, M)$ be a closed, consistent predicate characterization matrix

such that $E$ contains$. The constructed linear monadic logic program $LMLP_{M}$ over $\Gamma$

from $(S, E, M)$ is defined with predicate set Predicate, calling predicate $P$ , and the set

of clauses $LMLP_{M}$ as follows.

Predicate $=\{R_{row(s)}(x);s\epsilon S\}$ ,

$LMLP_{M}=$ {$P(x)arrow R_{row(s)}(x);s\in S$ and $D(M)(s)=1$ }

$\cup\{R_{row(f(s_{1},\ldots,s_{n}))^{(f(x_{1},\ldots,x_{n}))(x_{1}),\ldots,R_{row(s_{II})}(x_{n});f\epsilon 1_{n}^{\tau},n}}arrow R_{row(s_{l})}>0\}$

$\cup\{R_{row(a)}(a)arrow:a\in\Gamma_{0}\}$ .

Lemma 4.1 Suppose that $(S, E, M)$ is a closed, consistent predicate characterization

matrix such that $S$ is subtree-closed and $E$ is $S$ -prefix-closed with respect to S. $\Gamma(or$ the

constructed linear monadic logic program $LMLP_{M}$ an.i $f\dot{o}r$ every $s$ in $(SUX(S))$ ,

$R_{row(s)}(s)\in\cap M(LMLP_{M})$ .
(Proob We prove it by induction on the depth of $s$ . Suppose first that the depth of $s$ is

$0$ , i.e., $s\in\Gamma_{0}$ . Since $R_{row\langle s)}(s)arrow by$ the definition of $LMLP_{M}$ , the result is clearly true.

Next suppose that the result holds for all trees in $(SUX(S))$ with depth at most $h$ . Let

$t$ in $(S\cup X(S))$ have depth $h+1$ , so that $t=fts_{1},\ldots,s_{n}$) for some trees $s\iota,\ldots,s_{n}$ over $\Gamma$ with

depth at most $h$ and some $f$ in $\Gamma_{n}$ . Since $S$ is subtree-closed, $s_{1},\ldots,s_{n}$ must be in S.

Then
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$R_{row(t)^{(t)\epsilon}}\cap M(LMLP_{M})$

$iffR_{row(f(s_{1},\ldots,s_{n}))}(f(s_{1},\ldots,s_{n}))\in\cap M(LMLP_{M})$

iff $R_{row(s_{1})}(s_{1}),\ldots,R_{row(s_{n})}(s_{n})\in\cap M(LMLP_{M})$ ,

by the definition of $LMLP_{M}$ .
By the induction hypothesis, $R_{row(s_{1})^{(s_{1}),\ldots,R_{row(s_{I)})}(s_{n})\epsilon}}\cap M(LMLP_{M})$ . Hence

$R_{row(t)^{(t)\epsilon}}\cap M(LMLP_{M})$ is true. Q.E.D.

Lemma 4.2 Suppose that $(S, E, M)$ is a closed, consistent predicate characterization

matrix such that $S$ is subtree-closed and $E$ is $S$ -prefix-closed with respect to S. For the

constructed linear monadic logic program $LMLP_{M}$ and for any tree $t$ over $\Gamma$ , there is

exactly one function value row$(s)$ such that $R_{row(s)}(t)\in\cap M(LMLP_{M})$ and $s\in S$ .
(Proof) We prove it by the induction $on$ th $e$ depth of $t$ . Suppose first that the depth of

$t$ is $0$ , i.e. $t=a\epsilon\Gamma_{0}$ . By the de $f_{1}^{\vee}nition$ of $LMLP_{M}$ , for $a\in\Gamma_{0}$ , row(a) is exactly one

function value such that $R_{row(a)^{(a)\in}}\cap M(LMLP_{M})$ and a $\epsilon$ S. Next suppose that the

result holds for all trees with depth at most h. Lettbeatree of depthh+l, so that

$t=f(u_{1},\ldots,u_{n})$ for some trees $u_{1},\ldots,u_{n}$ with depth at most $h$ and some $f$ in $\Gamma_{11}$ . There are

several clauses of the form: $R_{row(f(v_{1},\ldots v_{I1}))}(f(x_{1},\ldots,x_{n}))arrow R_{\Gamma t)\iota v(v_{1})}(x_{1}),\ldots,R_{r()\iota v(\iota_{1)})}(x_{n})$ in

$LMLP_{M}$ . However by the induction hypothesis, for each $u_{i}(1\leqq i\leqq n)$ , there is exactly

one function value, say $suchthatR_{row(s_{i})}\cap M(LMLP_{M})ands;\in$ S. Since

$(S, E, M)$ is consistent, there is only one clause $of$ the form:

$R_{row(f(s_{1},\ldots s_{n}))^{(f(x_{1},\ldots,x_{n}))arrow R_{row(s_{1})}(x_{1}),\ldots,R_{row(s_{11})^{(x_{n})}}}}$ in $LMLP_{M}$ .

Thus row $(f(sl, \ldots,s_{n}))$ is exactly one function value such that

$R_{\iota\cdot ow(f(s_{1},\ldots s_{n}))}(f(u_{1},\ldots,u_{n}))\epsilon\cap M(LMLP_{M})$, and since $(S, E, M)$ is closed, row$(f(s_{1},\ldots,s_{11}))$

is equal to row(s) for some $s$ in S. Hence there is exactly one function value row(s)

such that $R_{rowts)}(t)\in\cap M(LMLP_{M})$ and $s\epsilon$ S. Q.E.D.

Lemma 4.3 (replacement) Suppose that $(S, E, M)$ is a closed, consistent predicate

characterization matrix such that $S$ is subtree-closed and $E$ is $S$ -prefix-closed with

respect to $S$ and that $LMLP_{M}$ is the constructed linear monadtc logic program.

Suppose that $R_{row(s)}(t)\in\cap M(LMLP_{M}),$ $R_{row(s’)}(t’)\in\cap M(LMLP_{M})$ and row(s) $=row(s’)$
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for $s,$ $s$
’ in $(SUX(S))$ and trees $t,$ $t$

’ over $\Gamma$ . $\Gamma$’ or $e$ in $E,$ $P(e\cdot t)\in\cap M(LMLP_{I\backslash 1})if/$

$P(e\cdot t’)\epsilon\cap M(LMLP_{M})$ .
(Proof) We prove it by induction on the depth of $ in $e$ . When $e$ is $, if

$P(e\cdot t)=P(t)\in\cap M(LMLP_{M})$ , then there is a ground instance $P(t)arrow R_{lOW(s_{0})(t)}$ of a

clause P$(x)arrow R_{row(s_{0})}(x)inLMLP_{M}suchthatR_{row(s_{0})}(t)\in\cap M(LMLP_{I\backslash I})ands_{()}\epsilon$S. By

lemma 4.2, row$(s_{0})=row(s)$ . By the assumption, row $(s_{0})=row(s’)$ and

$R_{row(s’)}(t’)\in\cap M(LMLP_{M})$ . Hence $P(t’)\in\cap M(LMLP_{M})$ . Interchanging the roles of $s$

and s’and oftand t’, we obtain the converse.

Next suppose that the result holds for all $e$ in $E$ where the depth of$ is at most $\iota_{1}$ .

Let $e$ be an element of $E$ where the depth of$ is $h+1$ . Since $E$ is $\- pref_{1}^{\vee}x$-closed with

respect to $S,$ $e=e’\cdot f$( $s_{1},\ldots,s_{i-1}$ ,$,si $\cdots,s_{n-}l$ ) for some $f\in I_{n}^{\urcorner},$ $s_{1},\ldots,s_{n-1}\in S,$ $i(1\leqq i\leqq n)$ and

some $e$
’ in $E$ where the depth of$ is $h$ . Since $(S, E, M)$ is closed, there is some so in $S$

such that row$(s_{0})=row(s)$ . Then $R_{row\langle s_{0})}(t)\epsilon\cap M(LMLP_{M})$ and by lemma 4.1,

$R_{row(s_{1})}(s_{1}),\ldots,R_{row(s_{n-1})^{(s_{n-1})\in}}\cap M(LMLP_{M})$ . By the definition of $LMLP_{M}$ , there is a

clause of the form

$R_{row(f(s_{1},\ldots,s_{i-1},s_{0},s_{i},\ldots,s_{n-1}))}tf(x_{1},\ldots,x_{n}))arrow R_{low(s_{1})}(x_{1}),\ldots,R_{IOW(s_{0})}(x;),\ldots,R_{row(s_{\downarrow\iota-1})}(x_{n})$

\‘in $LMLP_{M}$ and so $R_{roW(f(s_{1},\ldots,s_{i-1},s_{0},s_{i},\ldots,s_{11-1}))}(f(s_{1},\ldots,si-1t,s_{i},\ldots,s_{n-1}))\in\cap M(LMLP_{M})$.

Since $rowls_{0}$ ) $=row(s’)$ and $R_{row\langle s’)}(t’)\epsilon\cap M(LMLP_{M})$ ,

$R_{row(f(s_{1},\ldots,s_{i-1},s_{0},s_{i},\ldots,s_{n-1}))}(f(s_{1},\ldots,s_{i-1},t’,s_{i},\ldots,s_{n-1}))\epsilon\cap M(LMLP_{M})$.

By the induction hypothesis, $P(e’\cdot f(s_{1},\ldots,s_{i-1},t,s_{i},\ldots,s_{11-1}))\epsilon\cap M(LMLP_{M})$ iff

$P(e’\cdot f(s_{1},\ldots,s_{i-1},t’,s_{i},\ldots,s_{n-1}))\in\cap M(LMLP_{M})$ . $Therefo^{r\circ}P(e\cdot t)\in\cap M(LMLP_{M})$ iff

$P(e\cdot t’)\in\cap M(LMLP_{M)}$ . Q.E.D.

Theorem 4.4 Suppose that $(S, E, M)$ is a closed, consistent predicate characterization

matrix such that $S$ is subtree-closed and $E$ is $S$ -prefix-closed with respect to S. Then

the constructed linear monadic logic program $LMLP_{M}$ agrees with the data in M.

That is, for every tree $s$ in $(SUX(S))$ and $e$ in $E,$ $P(e\cdot s)\in\cap M(LMLP_{M})if[D(M)(e\cdot s)=1$ .
(Proof) We prove it by induction on the depth of$ in $e$ . When $e$ is $ and $s$ is any

element of $(S\cup X(S))$ , by lemma 4.1, $R_{I0W(e\cdot s)}(e\cdot s)=R_{row(s)^{(S)\in}}\cap M(LMLP_{M})$ . If $s$ is in
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$S$ , then by the definition of $LMLP_{M},$ $P(x)arrow R_{10w(s)}(x)$ in $LMLP_{M}$ iff $D(M)(s)=1$ .

Hence $P(s)\in\cap M(LMLP_{M})$ iff $D(M)(s)=1$ . If $s$ is in X(S), then since $(S, E, M)$ is closed,

row(s) $=row(s’)$ for some $s$
’ in $S$ , and $P(x)arrow R_{row(s’)}(x)$ in $LMLP_{M}$ iff $D(M)(s’)=1$ , and

so $P(x)arrow R_{row\langle s)^{(X)}}$ in $LMLP_{M}$ iff $D(M)(s)=1$ . Hence $P(s)\epsilon\cap M(LMLP_{N1})$ iff

$D(M)(s)=1$ .
Next suppose that the result holds for all $e$ in $E$ where th $e$ depth of$ is at most $h$ .

Let $e$ be an element of $E$ where the depth of$ is $h+1$ . Since $E$ is $-prefix-closed with

$re$spect to $S,$ $e=e’\cdot f(s\iota,\ldots,s_{i-}\iota,\,s_{i},\ldots,s_{n-1})$ for some $f\epsilon\Gamma_{n},$ $s_{1},\ldots,s_{n-1}\in S,$ $i(1\leqq i_{=}n)$ and

some $e$
’ in $E$ where the depth of$ is $h$ . For any element $s$ of $(SUX(S))$ , since $(S, E, M)$

is closed, there is an element $s$
’ in $S$ such that row(s) $=row(s’)$ . By lemma 4.1,

$R_{row\langle s)}1s)\in\cap M(LMLP_{M})$ and $R_{row(s’)}(s’)\in\cap M(LMLP_{M})$ . Then by replacement lemma

4.3,

$P(e\cdot s)\in\cap M(LMLP_{M})$

iff $P(e\cdot s’)\epsilon\cap M(LMLP_{M})$

iff $P(e’\cdot f(s_{1},\ldots,s_{i-}\iota,\,s_{i},\ldots,s_{n-1})\cdot s’)\epsilon\cap M(LMLP_{M})$

iff $P(e’\cdot f(s\iota,\ldots,si-ts’,s_{i},\ldots,s_{n-1}))\epsilon\cap M(LMLP_{M})$ .

By the induction hypothesis,

$P(e’\cdot f(s_{1},\ldots,s_{i-1},s’,s;,\ldots,s_{n-1}))\epsilon\cap M(LMLP_{M})$ iff $D(M)(e’\cdot f(s_{1},\ldots,s_{i-1},s’,s_{i},\ldots,s_{I1-1}))=1$ .

Since row(s) $=row(s’)$ and $(S, E, M)$ is consistent,

row$(f(s_{1},\ldots,s_{i-1},s’,s_{i},\ldots,s_{n-1}))=row(f(s_{1},\ldots,s_{i-1},s,s_{i},\ldots,s_{I1-1))}$

and hence $D(M)(e’\cdot f(s_{1},\ldots,s_{i-1},s’,s;,\ldots,s_{n-1}))=D(M)(e’\cdot f(s_{1},\ldots,s_{i-1},s,s_{i},\ldots,s_{n-1}))$ ,

and since $e’\cdot f(s\iota,\ldots,s_{i-1},\,s_{i},\ldots,s_{n-1})=e$ is in $E,$ $D(M)(e’\cdot f(s\iota,\ldots,s_{i-1},s,s_{i},\ldots,s_{I1-1}))$

$=D(M)(e\cdot s)$ . Therefore $P(e\cdot s)\in\cap M(LMLP_{M})$ iff $D(M)(e\cdot s)=1$ . Q.E.D.

For the proo$f$ of the next result, for a tree automaton $T_{\Lambda}=(Q, \Gamma, 6, F)$ we extend 6

to $(\Gamma\cup Q)^{T}$ by letting: $6(q)=q$ for $q\in Q$ , where $Q$ is considered as a set of O-ary constant

symbols. In this definition, if $q=6(s)$ for $q\in Q$ and $s\in\Gamma^{T}$ , then $6(t(xarrow q))=6(t(xarrow s))$ for

$t\in\Gamma^{T}$ and $x\epsilon$ Dom(t).
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Theorem 4.5 Suppose that $(S, E, M)$ is a closed, consistent predicate characterization

matrix such that $S$ is subtree-closed and $E$ is $-prefix-closed with respect to S.

Suppose that the constructed linear monadic logic program $LMLP_{M}f\dot{r}om(S, E, M)$

has $n$ predicates. If $T_{\Lambda}=(Q, \Gamma, 6, F)$ is any tree automaton which agrees with the data

in $M$ that has $n$ or fewer states and LMLP$r_{1_{\Lambda}}$ is a corresponding linear monadic logic

program in the sense ofDefinition-A, then $LMLP_{M}$ is isomorphic to $LMLP_{I^{1}\wedge}’$ .

(Proofi We prove it by exhibiting an isomorphism 4). First define, for each $q$ in $Q$ ,

row(q) to be the finite function $f$ from $E$ to $\{0,1\}$ such that $f(e)=1$ iff $6(e\cdot q)$ is in F.

Since $T_{A}$ agrees with the data in $M$ , for each $s$ in $(SUX(S))$ and each $e$ in $E,$ $6(e\cdot s)$ is in

$F$ iff $D(M)(e\cdot s)=1$ , so row$(6(s))$ is equal to row(s) in $(S, E, M)$ . Hence as $s$ ranges over

all ofS, row(6(s))ranges over a11the e1ements of Q, $soT_{\Lambda}musthaveatleastnst\prime ltes$ ,

i.e., it must have exactly $n$ states. Thus, for each $s$ in $S$ there is a unique $q$ in $Q$ such

that row(s) $=row(q)$ , namely, 6(s). Next define for each $s$ in $S,$ $\phi(row(s))$ to be {) $(s)$ .

This mapping is one-to-one and onto. Then extend $\Phi$ to define for each predicate in

$LMLP_{M,\Phi}(R_{row(s))}$ to be $R_{\phi(row(s))}$ . We must verify that it preserves the clauses. For

each $s_{1},\ldots,s_{n}$ in $S$ and $f\in\Gamma_{n}$ , let $s$ be an element of $S$ such that row$(f(s_{1},\ldots,s_{11}))=row(s)$ .

Then

$\phi(R_{row(f(s_{1},\ldots,s_{n}))}(x))=R_{\phi(row(f(s\downarrow,\ldots,s_{\downarrow\tau})))}(x)$

$=R_{\phi(row(s))}(x)$

$=R_{6ts)}(x)$

Also,

$R_{6(r,6ts_{1}),\ldots,6(s_{n}))^{(X)=R_{6(f(s_{1},\ldots,s_{I1}))^{(X)}}}}$

Since 6(s) and $6(f(s_{1},\ldots,s_{n}))$ have identical row values, namely row(s) and

row$(f(s_{1},\ldots,s_{n}))$ , they must be the same state of $T_{\Lambda}$ . Hence the mapping $\Phi$ carries the

clause $R_{row(f(s_{1},\ldots s_{n}))}(f(x_{1},\ldots,x_{n}))arrow R_{row(s_{1})}(x_{1}),\ldots,R_{row(s_{n})}(x_{n})$ in $LMLP_{M}$ to the clause

$R_{6(f,6(s_{1}),\ldots,6(s_{n}))}(I(x_{1},\ldots,x_{n}))arrow R_{6(s_{1})}(x_{1}),\ldots,R_{6(s_{11})}(x_{n})$ in $LMLP_{T_{\Lambda}}$ .

Since if $P(x)arrow R_{row(s)^{(X)}}$ for some $s$ in $S$ , then $D(M)(s)=1$ , and since $\phi(row(s))$ is

mapped to a state $q$ with row(q) $=row(s)$ , it must be that $q$ is in $F$ and hence

$P(x)arrow R_{q}(x)$ . Conversely, if row(s) is mapped to a state $q$ such that $P(x)arrow R_{q}(x)$ is in
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$LMLP_{T_{\Lambda}}$ , then since $q$ is in $F$ and row(q) $=row(s),$ $D(M)(s)=1$ , so $P(x)arrow R_{row\langle s)}(x)$ is in

$LMLP_{M}$ . So we conclude that the mapping $\Phi$ preserves the clauses. Q.E.D.

5. Inductive inference algorithm for linear monadic logic programs

First we confirm th $e$ inductive inference schema of linear monadic logic

programs. The problem is to identify the denotation of $t1_{1}e$ predicate $P$ in the

unknown model. That is, in our setting the problem is to infer a linear nionadic logic

program LMLP such that the denotation of $Pin\cap M(LMLP)$ is equal to th $e$ one in the

unknown model.

Let the unknown model for some linear monadic logic program be denoted by $M_{U}$ .

(Algorithm IL of inductive inference fo $r$ linear monadic logic programs)

Input: An oracle $EX()$ for a sufficient set of examples (or facts of ground atoms) of
the predicate $P$ in $M_{U}$ ,

An oracle MEMBER$(P(t))$ on a ground atom $P(t)$ as input for a nlembership query
to output 1 or $0$ according to whether $P(t)$ is true in $M_{L1}$ ,

Output:Asequence ofconjectures oflinear monadic logic program,
I’rocedure:
$S:=\emptyset;E:=t}$ ; LMLP: $=\emptyset$ ; Examples: $=\otimes$ ;

do forever
add an example EXO to Examples;
while there is a negative example $-P(t)\epsilon$ Examples such that $LMLP\vdash P(t)$

or there is a positive example $+P(t)\epsilon$ Examples such that $LMLP\vdash$} $P(t)$ ;

add $t$ and all its subtrees to $S$ ;
$ex$ tend $(S, E, M)$ to $E\cdot(S\cup X(S))$ using MEMBER;

repeat
if $(S, E, M)$ is not consistent

then find $s_{1}$ and $s_{2}$ in $S,$ $f\in F_{I1},$ $u_{1},\ldots,u_{n-1}\in S,$ $e\in E$ , and $i(1\leqq i\leqq n)$ such that
row$(s_{1})$ is equal to row$(s_{2})$ and $D(M)(e\cdot f(u_{1},\ldots,u_{i-1},s_{1},u_{i},\ldots,u_{n-1}))$

$\neq D(M)(e\cdot flu_{1},\ldots,u_{i-1},s_{2},u_{i},\ldots,u_{n-1));}$

add $e\cdot f(u\iota,\ldots,u_{i-1},\,u_{i},\ldots,u_{n-t})$ to $E$ ;

extend $(S, E, M)$ to $E\cdot 1S\cup X(S))$ using MEMBER;

if $(S, E, M)$ is not closed;

then find $f(\overline{u})\epsilon X(S)$ for $\overline{u}\in S^{n}$ and $f\in\Gamma_{n}$ such that row$(f(\overline{u}))$ is different
from row(s) for all $s\in S$ ;

add $f(\overline{u})$ to $S$ ;
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extend $(S, E, M)$ to $E\cdot(S\cup X(S))$ using MEMBER;
until $tS,$ $E,$ $M$) is closed and consi $ste$nt;
LMLP: $=LMLP_{M}$ ;

end;
output LMLP;
end.

In the above algorithm, the operation of “extend $(S, E, M)$ to $E\cdot(S\cup X(S))$ using

MEMBER” is the operation to extend $D(M)$ by asking membership queries for

missing elements. We call an example $t$ presented by the oracle EX a counter-

example when the last conjecture $LMLP_{M}$ does not agree with $t$ .

Example 3 Suppose the unknown linear monadic logic program is the one of

example 2. Then the algorithm IL identifies the following linear monadic logic

program from 2 examples $\{+t, -u\}$ after asking 23 membership queries.

(Predicate characterization matrix)

$\Gamma_{\lrcorner}^{I}$

’

$S$ ’

$X(S)$

(The identified linear monadic logic program)
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Predicate $=\{R_{row(t)}(x), R_{row(u)}(x), R_{row(\neg t)}(x)\}$

$LMLP_{M}=\{P(x)arrow R_{row(t)}(x)$ .
$R_{row(t)}(t)arrow$ .
$R_{row(u)}(u)arrow$ .
$R_{row(\neg t)}(\neg x)arrow R_{row(t)}(x)$.
$R_{row(t)}(xy)arrow R_{row(1)}(x),$ $R_{row(t)}(y)$ .
$R_{row(t)}(\neg x)arrow R_{row(\neg t)}(x\rangle$ .
$R_{row(t)}(x\vee y)arrow R_{row(\neg t)}(x),$ $R_{row\langle t)}(y)$ .
$R_{row(t)}(xy)arrow R_{row(t)}(x),$ $R_{Iow\langle\neg t)}(y)$ .
$R_{row(\neg t)}(x\vee y)arrow R_{row(\neg t)}(x),$ $R_{row(\neg\iota)}(y)$ .
$R_{row\langle u)}(\neg x)arrow R_{row\langle u)}(x)$ .
$R_{row(t)}(xy)arrow R_{row(u)}(x),$ $R_{row(t)}(y)$ .
$R_{row(u)}(x\vee y)arrow R_{row(u)}(x),$ $R_{row\langle\neg t)}(y)$ .
$R_{row(t)}(xy)arrow R_{row(t)}(x),$ $R_{row(u)}(y)$ .
$R_{row(u)}(x\vee y)arrow R_{row(\neg t)}(x),$ $R_{row(u)}(y)$ .
$R_{row(u)}(x\vee y)arrow R_{row(u)}(x),$ $R_{tow(u)}(y).$ }

6. Correctness apd complexity

To see that th$e$ algorithm IL is correct, i.e. the algorithm IL identifies a linear

monadic logic program LMLP in the limit such that $\{t : P(t)\in\cap M(LMLP)\}$ is the

denotation of $P$ by $M_{U}$ , it is enough for us to show that the constructed predicate

characterization matrix $(S, E, M)$ during th$e$ running of the algorithm IL is a closed,

consistent one such that $S$ is subtree-closed and $E$ is$-prefix-closed with respect to $S$ ,

and that the while loop of the algorithm IL is executed at most in finite time during

the running of the algorithm IL.

Lemma 6.1 Let $tS,$ $E,$ $M$) be a predicate characterization matrix such that $S$ is

subtree-closed and $E$ is $S$ -prefix-closed with respect to S. Let $n$ be the number of

different values of row(s) for $s$ in S. Any deterministic tree automaton which agrees

with the data in $M$ must have at least $n$ states.

(Proob Let $T_{A}=(Q, \Gamma, 6, F)$ be a deterministic tree automato$n$ whi$ch$ agrees with the

data in M. Suppose that $s_{1}$ and $s_{2}$ are elements of $S$ such that row$(s_{1})$ and row$(s_{2})$ are

distinct. Then there exists $e$ in $E$ such that $D(M)(e\cdot s_{1})\neq D(M)(e\cdot s_{2})$. Since $T_{A}$ agrees

with the data in $M$ , exactl$y$ one of $6(e\cdot s_{1})$ and $6(e\cdot s_{2})$ is in F. Thus $6(s_{1})$ and $6(s_{2})$ must
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be distinct states because $T_{A}$ is $\det e$rministic. Since $6(s)$ takes on at least $n$ different

values assranges over S, $T_{A}$ must have at leastn states. Q.E.D.

Lemma 6.2 The while loop of the algorithm IL is executed at most in finite time

during the running ofthe algorithm IL.

(Proofi Let $n$ be the number of states in the minimum state deterministic tree

automaton $T_{A}$ for the denotation of the predicate $P$ in the unknown model. Firstly

we will show that whenever a predicate characterization matrix $(S, E, M)$ is not

consistent or not closed, the number of distinct values row$(s)$ for $s$ in $S$ must increase.

If $(S, E, M)$ is not consistent, then since two previously equal row values, $\iota\cdot ow(s_{1})$ and

$rowls_{2})$ , are no longer equal after $E$ is augmented, the number of distinct values

row$(s)$ for $s$ in $S$ must increase by at least one. If $(S, E, M)$ is not closed and a tree $f(\overline{u})$

is added to $S$ , then since row$(f(\overline{u}))$ is different from row(s) for all $s$ in $S$ before $S$ is

augmented, the number of distinct values row(s) must increase by atleast one.

Next we will show that whenever a tree $t$ and all its subtrees are added to $S$ and

$(S, E, M)$ is extended because $LMI_{\lrcorner}P_{M}$ does not agree with $t$ , the extended closed,

consistent predicate characterization matrix $(S’, E’, M’)$ have $at$ least one more

different row values than $(S, E, M)$ . Assume that $(S, E, M)$ and $(S’, E’, M’)$ have the

same number of different row values. Then both must have the same row values.

Since(S’, E’, M’)is closed and consistent, each oftand all its subtrees plays the same

role in $(S’, E’, M’)asanelementsinS\subseteq S’ whichhasthesamerowvalueasit$ . Hence

from $(S, E, M)$ and from $(S’, E’, M’)$ , a same linear .iionadic logic program is

constructe$d$ , i.e. $LMLP_{M}=LMLP_{M},$ . However, by theorem 4.4, $LMLP_{M’}$ agrees with $t$

while $LMLP_{M}$ does not agree with $t$ . This is a contradiction.

Then by these and lemma 6.1 and theorem 4.5, $(S, E, M)$ can be not consistent or

not closed at most n-l times and a counter-example is added to $S$ at most $n$ times

during the running of the algorithm IL. Thus whenever the condition of the while

loop becomes true, the algorithm IL eventually makes $a$ next conjecture in finite
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time, and the condition of the while loop becomes true at most $n$ times. Therefore,

the while loop is executed at most in finite time. Q.E.D.

By the above result, it follows that the algorithm IL makesa sequence of at most

$n$ conjectures.

Lemma 6.3 The conjectures which the algorithm IL mahes are correct for the facts
hnown by the oracles EX and MEMBER.

(Proof) We will show that each predicate characterization matri $x(S, E, M)$ which the

algorithm IL constructs during the running ofit isaclosed, consistent one such that

$S$ is subtree-closed and $E$ is -prefix-closed with respect to $S$ . In the algorithm IL,

there are three operations which extend the row or the column of(S, E, M). When t

and all its subtrees are added to $S,$ $S$ obviously remains subtree-closed. If $(S, E, M)$ is

not consistent, then for some $f\in\Gamma_{n},$ $u_{1},\ldots,u_{n-1}\in S,$ $e\epsilon E$ , and $i(1\leqq i<_{-}- n)$ ,

$e\cdot f(u_{1},\ldots,u_{i-1},\,u;,\ldots,u_{n-1})$ is added to E. In this case, $Eremains\- pref_{1}^{\vee}x$ -closed with

respect to S. If $(S, E, M)$ is not closed, then for some $\overline{u}\in S^{n}$ and $f\in\Gamma_{n},$ $f(\overline{u})$ is added to S.

In this case, $S$ remains subtree-closed. Since the repeat loop is repeated as long as $(S$ ,

$E,$ $M$ ) is not closed and consistent, by lemma 6.2, each constructed $tS,$ $E,$ $M$ ) must

eventually be closed and consi $s$ tent. Thus each constructed $tS,$ $E,$ $M$ ) during the

running of the algorithm IL isaclosed, consistent one such thatS is subtree-closed

and $E$ is $-prefix-closed with respect to S. ‘rhen by theorem 4.4, the conjectures of

linear monadic logic program which the algorithm IL makes are correct for the facts

known by the oracles EX and MEMBER. Q.E.D.

Now we conclude the following theorem.

Theorem 6.4 The algorithm IL identifies in the limit a linear monadic logic program

LMLP such that $\{t;P(t)\epsilon\cap M(LMLP)\}$ is equal to the denotation of$P$ in $M_{U}$ .

Next we will analyse the time complexity of the algorithm IL. By lemma 6.2, the

while loop of the algorithm IL is executed at most in a finite time. Then how much
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time $doeS$ the while loop consume during the running of the algorithm IL. That

depends partly on the size of the examples presented by the oracle EX. We will

analyze the running time of the while loop as a function of $n$ , the number of sta tes in

the minimum tree automaton for the denotation of the predicate $P$ in the unknown

model, and $m$ , the maximum size of any counter-examples presented by EX during

the running of the algorithm IL, where the size of an example is the number of

symbols in its textual representation. We will show that its running time is bounded

by a polynomial in $m$ and $n$ . Let $k$ be the cardinality of the alphabet $\Gamma$ and $d$ be the

maximum arity of the function symbols in F. We may assume $d–>1$ .

Whenever $(S, E, M)$ is discovered to be not closed, one element is added to S.

Whenever $(S, E, M)$ is discovered to be not consistent, one element is added to E. For

each counter-example $t$ of size at most $m$ presented by the oracle EX, at most $m$

subtrees are added to S. Since the predicate characterization matrix is discovered to

be not consiste $nt$ at most n-l times, the total number of trees in $E$ cannot exceed $n$ .

Since the predicate characterization matrix is discovered to be not closed at most

n-l times, and there can be at most $n$ counter-examples, the total number of trees in

$S$ cannot exceed $n+mn$ . Thus, the maximum cardinality of $E\cdot(S\cup X(S))$ is at most

$n((n+mn)+k(n+mn)^{d})=O(m^{e1}n^{d+1})$ .
Now we consider the operations in the while loop executed by the algorithm IL.

Checking the predicate characterization matrix to be closed and consistent can be

done in time polynomial in th$e$ size of the matrix and must be done at most $n$ times.

Adding a tree to $S$ or $E$ requires at most $O(m^{d}n^{d})$ membership queries to extend th $e$

matrix. When the predicate characterization matrix is closed and consistent,

$LMLP_{M}$ may be constructed in time polynomial in the size of the matrix, and this

must be done at most $n$ times. A counter-example requires the addition of at most $m$

subtrees to $S$ , and this can be also happen at most $n$ times.

Therefore, the total time which the while loop consumes during the running of the

algorithm IL can be bounded by a polynomial function $ofm$ and $n$ .
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On the other hand, the check whether a conjecture agrees with an example, i.e.

$LMLP\vdash P(t)$ or not, in the condition of the while loop is decidable and is performed in

steps of the example’s size. Then by the above result, we can conclude that the

algorithm IL infers a conjecture of a linear monadic logic program consistently and

requests a new example in time polynomial in 1, $m$
‘ and $n$ after the last example has

been added, where 1 is the number of examples knowIl at the time of the request and

$m$
’ is the maximum size of those 1 known examples.

7. Concluding remarks

We remark on $re$ lated work. Shapiro’s Model Inference System (MIS for short)

$[5,6]$ is the excellent and only existing system to infer logic programs or Herbrand

models in first order logic using the concept of identification in the limit defined by

Gold. MIS can infer a large class oflogic programs (h-easy models), but ours only for

a restricted class of logic programs. However our algorithm IL has several unique

features compared with MIS. (1) As we mentioned in th $e$ introduction, our algori thm

IL is based on algebraic semanti$cs$ and the target of the inference is a tree language

$\backslash computed$ by a logic program, and hence it is different from Shapiro’s approach and is

not model inference. (2)In general, it is not easy to analyse the time complexity of

inductive inference algorithm, and neither in MIS. We have shown in the last

section the time complexity of our algorithm IL in the very clear manner. (3) Our

algorithm IL is based on the constructive method, while MIS is based on the

enumerative method, where the constructive method systematically use examples to

construct the conjecture and the enumerative method use th$em$ to select a conjecture

in enumeration. It is said that the constructive method is in general more efficient

than the enumerative method. (4) In our algorithm IL, the predicate symbol $P$ and

its interpretation are only given as the observational language and the oracle, and

any information about th$e$ hypothesis language is not given. The algorithm IL

automatically generate$s$ other predicates whenever they are needed. However in

MIS, all predicates used to construct the conjectures and those intended
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interpretations must also be given as the hypothesis language and the oracle, and

this is often referred to as the problem about theoretical terms ofMIS.
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