goooboooogn
O 6550 1988 0 64-83

64

Inhductive Inference of Logic Programs

Based on Algebraic Semantics

Yasubumi SAKAKIBARA (HWE)
IIAS-SIS, FUJITSU LIMITED

Abstract In this paper we will present a new inductive inference algorithm
for a class of logic programs, called linear monadic logic programs, in the
sense that it is different from the Shapiro’s Model Inference System. It is
known that a set of trees is rational if and only if it is computed by a linear
monadic logic program, and that the rational set of trees is recognized by tree
automata. On the other hand, several efficient inference algorithms for finite
automata are developed. We will extend them to an inference algorithm for
tree automata and use it to get an efficient inductive inference algorithm for
linear monadic logic programs. The correctness, time complexity and several
comparisons of the algorithm with the Model Inference System will be shown.
1. Introduction
The study of inductive inference of logic programs was initially and mostly done
by E.Shapiro and his work is known as the Model Inference System [5,6]. He devises
a program that infers first order sentences (Horn clauses) from examples of their
logical consequences. The target of the inference is an Herbrand model. Thus
Shapiro’s algorithm (especially the diagnosis algorithm) deeply depends on the
theory of predicate logic and logic programming. In the theory of logic programming,
the least model NM(LP) of a logic program LP is taken as the mathematical
semantics, called model-theoretic semantics, for it. This semantics provides the
denotation of a predicate symbol P in a logic program LP :
D(P) = {(t1,...,tn) : P(ty,...,tn) e NM(LP)}.
D(P) is the denotation of P as determined by model-theoretic semantics. Thus model-
theoretic semantics gives a nice characterization of the set of terms computed by a
logic program.
On the other hand, algebraic semantics which connects between the theory of tree

languages and the semantics of programming languages is now well known and

recently introduced to logic programming in [4]. It studies the use of tree languages

in the semantics of logic programming. In algebraic semantics, the set of terms
computed by a logic program LP can be viewed as a tree language. That is to say, the
denotation of P, D(P)={t : P(t)c "M(LP)}, is a tree language. From the resultin (4], a
set of trees is rational iff it is computed by a linear monadic logic program, where a
- rational set of trees is a set of trees which can be recognized by some tree automaton
TA and a linear monadic logic program is a class of logic programs defined by
syntactic restrictions such that predicate symbols are monadic, the height of terms
involved is less than or equal to 1 and the variables in a term must be distinct.
Therefore, the denotation of P can be written as D(P)={t : t is accepted by a tree
automaton TA about P in LP}. Based on such an algebraic semantics, we can
establish a new inductive inference schema of logic programs so that the problem of
inductive inference of logic programs is reduced to the problem of inductive inference
of tree automata. By extending an inductive inference algorithm for finite automata
[1] to the one for tree automata, we can get an efficient inductive inference method
for logic programs. In this setting, the inductive inference algorithm can identify in
the limit a class of logic programs, linear monadic logic programs, such that the

denotation of P computed by it is equal to the one in the unknown model.

2. Basic definitions of trees

Definition Let N be the set of positive integers. Dom is a tree domain iff it satisfies
a) DomcN* and Dom is finite,

b) Dom is prefix-closed, i.e. if m, n¢N* and mn¢Dom ther: :n¢Dom,

c¢) ni¢eDom implies nj¢ Dom for 1=j=i, j¢N.

A direct successor (direct predecessor) of a node x is a node y, where y=xi (yi =x)
for i¢N. The frontier of Dom is the set of all nodes in Dom which have no direct
successors. The depth of néDom is recursively defined as:

depth(n) = '0. ifn=¢

depth(ni) = depth(n)+1 foricN.

If tis a tree domain, then depth(t) =max{depth(i) : iet}.

65

66

Definition A ranked alphabet is a pair (T, p) consisting of a finite set I and a
mapping p : '=N which defines the rank of any symbol f in I'. For such a set I', we
denote by I'y, the set {f¢T": p(f)=n} for n2 0. A tree over a finite ranked alphabet I'is a
mapping t : Dom—T', which labels the nodes of the tree domain Dom. We require the
following condition which concerns the rank function : if t(m):f of arity n=0, then
for ieN, mieDom(t) iff 1<i<n. Let the set of all trees over I' be dénoted by I'T. If teI'T,
. then the subtree of t at n, where n is in the domain of t (n¢Dom(t)), is defined as
t/n={(i, x) : (ni, x)et}. For teI'T and n¢Dom(t), the replacement at n with a tree u is
defined as t(n<u)={(m, x) : t(m) =x and n «m}U{(ni, x) : u(i)=x and i¢Dom(u)}. The
replacement (substitution) of terminal nodes labeled ceI' with a tree u is defined as
t(ceu)={(m, x) : t(m) =x and x# c}U{(ni, x) : t(n) =c, u(i)=x and i¢Dom(u)}. Let $ be
a new symbol of arity 0 that we add to I'. (T'U{$})T denotes the set of all trees over
Tu{s}. Especially we are interested in the subset Sub of (TU{$})T which is the set of
all trees te(TU{$})T such that t exactly contains one $-symbol. We use the notation

“§
.

I'sT for the Sub. For trees teI'T and seI'g”, we define an operation “-” to replace the

node labeled $ of s with t by st =s($ «t) (like concatenation of strings).

3. Tree automaton and linear monadic logic program
Definition A deterministic (frontier to root) tree automaton over I' is a 4-tuple
Ta=(Q,T,8, F), where
a) Q is a nonempty finite set of states,
b) I is a nonempty finite ranked alp};ébet,
¢) §=(89,01,...,6m) is a state transition function such that

Sk : Tk XQ—Q (k=0,1,...,m),
d) FcQ is the set Qf final states.

If § is a state transition function frorﬁ I X Q¥ to 29, then T4 is nondeterministic.

8 can be extended to I'T by letting :

8(f(ty,...,tx)) = 8k(f, 8(t1),...,6(tk)) for k>0 and feT,

= §p(f) for k=0 and feT'. |

The tree t is accepted by Ta iff 6(t)¢F. The set of trees accepted by T is the subset
L(TA) of I'T defined as : L(TA) ={t : 8(t)¢F}. A subset L of I'Tis called rational iff there

exists some tree automaton Tp such that L=L(Tp).

Example 1 Let I'={t, u, 7, \/}, p(t)=p(u) =0, p(—~)=1, p(\/) =2.

Let TA=(Q, T, 8, F) be a tree automaton, where Q={A, B, C}, F={A},
8o(t)=61(—,B)=82(V,A,A)=82(\/,A,B)=82(\/,A,C)=82(,B,A) =82(\/,C,A) =A,
81(—,A)=82(Vv,B,B)=B,

8o(u) =81(—,C)=82(V,B,C)=82(v,C,B) =82(v,C,C)=C.
Then L(Tp) is the set of all true logical formulae over T' interpreted by the

Kleene’s strong 3-valued connectives.
Note We reserve the predicate symbol P for the inferring predicate.
Let the least Herbrand model for a logic program LP be denoted by NM(LP).

Definition ([4]) A linear monadic logic program is a logic program in which all
predicate symbols are monadic and all the terms occurring in atomic formulas are of
‘one of the following two forms :

a)x; (i€N)

b) f(x;,,...,xi_) with f¢I'y, {i1,...,im}CN the ik being pairwise distinct.

Now we state very important theorem from {4] which connects a linear monadic

logic program with a tree automaton.

Proposition 3.1 ([4]) A set of trees is rational iff it can be computed by a linear

monadic logic program.

By the results of logic programs in [2], we can restate the above theorem as

follows.

Corollary 3.2 IfLMLP is a linear monadic logic program and P is a predicate symbol
in LMLP, then the set of trees {t : P(t)e "NM(LMLP)} is rational. Conversely, if a set of

67

68

trees T is rational, then there is a linear monadic logic program LMLP such that

T= {t : P(t)e N\M(LMLP)} for some predicate symbol P in LMLP.

Definition-A Let TA=(Q, T, 8, F) be a tree automaton. We define a set of predicate
symbols R={Rq : q€Q} in one;ﬁo-one correspondence with the set of states of the TA.
To code the computation of T, we need a clause for each transition. So,.for each {eI'n
and each n-tuple of states (qy,...,9n), we define the clause Cyq,,... g, as:

Cray,....an = Réf,qy,...,q0) F(X1,0., X)) <R (X1),....Rq, (Xn).
Another set of clauses is necessary to take care of the set of final states. So, for each
q¢F, we define the clause C'q as:

Cq = P(x)«<Rq(x).

Example 2 Let TA=(Q, T, §, F) be a tree automaton as in example 1. The

corresponding linear monadic logic program is the following set of clauses.
P(x) « RA(x).
RA(t) «.
Rc(u) «.
RA(—x) < Rp(x).
Rp(—x) « RA(x).
Ro(—x) « Re(x).
Ra(xvy) < Ra(x), Ra(y).
Ra(xvy) < Ra(x), Rp(y).
Ra(xvy) « RA(x), Rc(y).
RA(xVvy) < Rp(x), RA(y).
RaA(xvy) < Rc(x), RA(y).
Rp(xvy) < Rp(x), Rp(y).
Re(xvy) < Rp(x), Re(y).
Re(xvy) < Re(x), Rp(y).
Re(xvy) < Re(x), Re(y).

This is a logic program for determining the truth of a logical formula.

Proposition 3.3 Let TA=(Q, T, 8, F) be a tree automaton and LMLP be the
corresponding linear monadic logic program in the sense of Definition-A. Then

Rq(t)¢nM(LMLP) iff 6(t)=q. Furthermore, P(t)e nM(LMLP) iff 6(t) is in F.

69

(Proof) We prove it by induction on the depth of t. Suppose first that the depth of t is
0, i.e. t=a€l'g. By the definition of Crq, . q,, there is a clause Rg(y)(a)« in LMLP.
Then clearly Rga)(a)¢enNM(LMLP). If 8§(a)=q, then Rq(a) =Rg(a)(@) e nNM(LMLP).
Conversely if Rq(a)¢nM(LMLP), since Tp is deterministic (so 8§ is deterministic),
- 8(a)=q.

Next suppose that the result holds for all trees with depth at most h. Let t be a
tree of depth h+1, so that t=f(uy,...,up) for some trees uy,...,u, with depth at most h
and some fel',. For the if part, assume that 8(t)=q. By the definition of 6§,
8(t) =56(f(uy,...,un)) =6(f,8(uy),...,6(un)) =q. By the definition of the clause Crq, . q.
there is a clause Rg(f,5uy),...,5(u,)(f(X1,....xn)) «Reu,)(x1),...,R8(u,)(Xxn) in LMLP. For
1=i=n, by the induction hypothesis, Rg(y;)(ui)¢ "NM(LMLP) iff 8(u;) = 8(u;). The right-
hand side of this statement is obviously true. Thus Rg(u,)(uj)¢"M(LMLP), and so
R&(1,6(uy),...,5(u,))(f(u1,...,un))¢NM(LMLP). Then

Rq(t) =Rg(t)(t), by the assumption,

=Rs(f(uy,...,u)f(u1,...,un))
=R5(£,8(uy),...,5u,))(f(ug,...,un)), by the definition of 8.
Hence Rq(t)enM(LMLP).

For the 'only-if part, aséume that Rg(t)enM(LMLP). Then
Rq(f(uy,...,un))enM(LMLP). For Rq(f(uy,...,un)), there is a ground instance
Rs(f,qy,...,q)(F(u1,...,un)) <Rq,(u1),...,Rq (un) of a clause in LMLP such that
8(f,q1,...,qn) =q and Rq](ul),...,an(un)EﬂM(LMLP). By the induction hypothesis,
8(uj)=q;j(1=i=n). Then

8(t) =8(f(uy,...,un))

=68(f,8(uy),...,6(up)), by the definition of 8,
=8(f,q1,...,9n)
=q.

This completes the induction.

Furthermoz_‘e, if 6(t) isin F_, there is a final state qrin F such that 6(t)=qy. Then by
the above result, Rq(t)¢nNM(LMLP), and by the ’deﬁnition of C, P(t)éhM(LMLP).

70

Conversely if P(t)e nM(LMLP), there is a ground instance P(t)«-Rq(t) of a clause in
LMLP such that Rq(t)¢enM(LMLP) and q is a final state. By the above result, §(t)=q,
and hence 8(t)isin F. Q.E.D.

By the above result, in the inductive inference schema of linear monadic logic
program, we have only to consider inferring a linear monadic logic program of the

form in Definition-A.

4. Prediéate characterization matrix

Definition A set of test predicates S is a finite set of trees of I'". The set of test clauses
is defined to be X(S)={f(a) : fel'j, 0eS', and f(0)¢S for i=1}. A set of experiments E is a
finite set of trees of I'sT. S is called subtree-closed if s¢S implies all subtrees of s are
elements of S. E is called $-prefix-closed with respect to S if e€E except $ implies
there exists an e’ in E such that e=e’-{(sy,...,si—1,%,Si,...,sn—1) for some ¢TI,

"S1,..»Sn—1€Sandi(l=i=n).

Definition A predicate characterization matrix is a triple (S, E, M) where M is a
matrix with labeled rows and columns such that
1) The rows are labeled with the elements of SUX(S).
2) The columns are labeled with the elements of E.
3) Each entry of M is either O or 1.
4) If si, sj€ SUX(S) and e;, ej€E and ej-s; =ejs;j, then the (sj, ej) and (sj, ej) positionsin M
must have the same entry.
The data contained in M is D(M)={(e's, y) : s¢ SUX(S), e¢E, and the entry of M is
y€{0, 1}}. Thus we can regard D(M) as a finite function mapping E-(SUX(S)) to {0, 1}.
If s is an element of (SUX(S)), then row(s) denotes the finite function f from E to {0, 1}
defined by f(e) =D(M)(e-s). ‘

A predicate characterization matrix is called closed if every row(x) of test clause
x€X(S) is identical to some row(s) of test predicate s¢S. A predicate characterization

matrix is called consistent if whenever s) and sg are test predicates of S such that

71

row(sy) 1is equal to row(sg), for all fel'y and wuy,...,u,_ €S,
row(f(uy,...,uj - 1,81,u4,...,un—1)) is equal to row(f(uy,...,u; _1,82,u;,...,un 1)) for 0--i<in

(n=0).

The ideas of the closed, consistent predicate characterization matrix and the
algorithm using this are essentially the extensions of Angluin’s ones [1] (the
extension from finite automata to tree automata and so to linear monadic logic
programs). A sequence of following lemmas and theorems are guided by those
Angluin’s results. The idea of the characterization matrix is also related to the work

by Gold [3].

Definition Let (S, E, M) be a closed, consistent predicate characterization matrix
such that E contains $. The constructed linear monadic logic program LMLP) over I’
from (S, E, M) is defined with predicate set Predicate, calling predicate P, and the set
of clauses LMLP)y as follows.
Predicate ={Rrow(s)(X) : s€S},
LMLPM = {P(x) «Rrow(s)(x): s€S and D(M)(s) =1}
U{Rrow(f(sy,...,s,) (X 15.-,¥n)) < Rrow(s)(X1),-..,Rrow(s,) (xn) : f€1'y, n > 0}
U{Rrow(a)(a) & : a€lg}.

Lemma 4.1 Suppose that (S, E, M) is a closed, consistent predicate characterization
matrix such that S is subtree-closed and E is $-prefix-closed with respect to S. For the
constructed linear monadic logic program LMLPwy and for every s in (SUX(S)),
Rrow(s)(s)€ NM(LMLPy).

(Proof) We prove it by induction on the depth of s. Suppose first that the depth of s is
0,i.e., s€I'g. Since Rpow(s)(s)« by the definition of LMLPyy, the result is clearly true.
Next suppose that the result holds for.all trees in (SUX(S)) with depth at most h. Let
t in (SUX(S)) have depth h+1, so that t={{(sy,...,s,) for some trees sy,...,sp over I' with
depth at most h and some f in I',. Since S is subtree-closed, sj,...,sp must be in S.

Then

72

Rrow(t)(t)e "M(LMLPwm)
iff Rrow(f(sy,...,s,)(f(S1,...,8n) € NM(LMLP 1)
iff Rrow(s;)(S1),...;Rrow(s,)(sn)€ "NM(LMLP),
by the definition of LMLPyy.
By the induction hypothesis, Rrow(s;)(S1),....Rrow(s,)(sn)€ TM(LMLPy;). Hence
Rrow(t)(t)e NM(LMLPy) is true. Q.E.D.

- Lemma 4.2 Suppose that (S, E, M) is a closed, consistent predicate characterization
matrix such that S is subtree-closed and E is §-prefix-closed with respect to S. For the
constructed linear monadic logic program LMLPM and for any tree t over I, there is
exactly one function value row(s) such that Ryow(s)(t)¢ "NM(LMLPy) and s€S.

(Proof) We prove it by the induction on the depth of t. Suppose first that the depth of
t is 0, i.e. t=a€ely. By the definition of LMLP)y, for a¢T'g, row(a) is exactly one
function value such that Ryow(a)(@a)¢ "NM(LMLP)) and a€S. Next suppose that the
result holds for all trees with depth at most h. Let t be a tree of depth h+ 1, so that
t=1f(uy,...,up) for some trees uy,...,u, with depth at most h and some fin I';,. There are
several clauses of the form : Ryow(f(v,,...v, N(f(X1,....xn) < Reyow(v (X 1), Rrow(v,)(Xn) in
LMLPpy. However by the induction hypothesis, for each u;j (1=i=n), there isexactly
one function value, say row(s;), such that Ryow(s,)(u;)¢e "M(LMLPy) and si€S. Since
(S, E, M) is consistent, there is only one clause of the form:
Rrow(f(sy,...s,)f(X15e0,¥n)) < Rrow(s (X 1),...,Rrow(s,)(xn) in LMLPy.

Thus row(f(sy,...,sp)) is exactly one function value such that
Rrow(f(sy,...s,)(f(u1,...,un))¢ NM(LMLPy), and since (S, E, M) is closed, row(f(sy,...,sn))
is equal to row(s) for some s in S. Hence there is exactly one function value row(s)

such that Rpow(s)(t)¢ NM(LMLPpy) and s¢S. Q.E.D.

Lemma 4.3 (replacement) Suppose that (S, E, M) is a closed, consistent predicate
characterization matrix such that S is subtree-closed and E is $-prefix-closed with
respect to S and that LMLPy is the constructed linear monadic logic program.

Suppose that Ryow(s)(t)¢ "M(LMLPM), Rrow(s)(t)¢NM(LMLPM) and row(s) =row(s’)

fors, s’ in (SUX(S)) and trees t, t over I'. For e in E, P(e-t)eNM(LMLPy) iff

P(e-t)¢e NM(LMLPpw).

(Proof) We prove it by induction on the depth of $ in e. When e is §, if
P(e-t)=P(t)¢ "M(LMLPy), then there is a ground instance P(t)«<R;ow(s,)(t) of a
- clause P(x)«Rrow(sy)(x) in LMLPpM such that Rrow(s,)(t)¢ "NM(LMLPy) and sp€S. By
lemma 4.2, row(sg)=row(s). By the assumption, row(sg)=row(s’) and
Rrow(s)(t)€NM(LMLPM). Hence P(t)¢ NM(LMLPy). Interchanging the roles of s
and s’and of t and t’, we obtain the converse.

Next suppose that the result holds for all e in E where the depth of § is at most h.
Let e be an element of E where the depth of $ ish+1. Since I is $-prefix-closed with
respect to S, e =¢’-f(sy,...,5i - 1,$,8i,...,sn — 1) for some f¢I'y, sy,...,sn —1€S, i (1=i=n) and
some e’ in E where the depth of $ is h. Since (S, E, M) is closed, there is some sg in S
such that row(sg) =row(s). Then Ryow(s,)(t)¢ NM(LMLPy) and by lemma 4.1,
Rrow(s)(51)s--sRrow(s, _1)(Sn— 1D€NM(LMLPy). By the definition of LMLPy;, there is a
clause of the form
Rrow(f(sy,...8; _ 1,505 80 - VT XL Xn)) < Riow(s (X 1), . Reow(sg)(Xi)se- s Rrowts, _ (Xn)
in LMLPy and 50 Rrow(((sy,....si_1,50,80....50 - 1S 1ee0s8i = 1,4:80,0.,8n — 1)) ENM(LMLPy).
Since row(sg) =row(s’) and Ryow(s)(t) € "M(LMLP),

Rrow(f(sy,...8i _1,50Sis.:5n_ 1 NS 181 — 1,E84,...,8n — 1)) €NM(LMLP).

By the induction hypothesis, P(e’-f(s1,...,si - 1,t,8i,...,sn — 1)) "M(LMLPy) iff
P(e’f(s1,...,8i — 1,t",Sis..,Sn— 1)) ENM(LMLP)). Therefore P(e-t)e NM(LMLPy) iff
P(e-t)¢NM(LMLPy). QE.D.

Theorem 4.4 Suppose that (S, E, M) is a closed, consistent predicate characterization
matrix such that S is subtree-closed and E is $-prefix-closed with respect to S. Then
the constructed linear monadic logic program LMLPy agrees with the data in M.
That is, for every tree s in (SUX(S)) and e in E, P(e-s)e "NM(LMLPy) iff D(M)(e-s)=1.

(Proof) We prove it by induction on the depth of $ in e. When e is § and s is any
element of (SUX(S)), by lemrﬁa 4.1, Ryow(e-s)(€'S) =Ryow(s)(s) ¢ TM(LMLPpM). Ifsisin

-10-

73

74

S, then by the definition of LMLPy, P(x)<Ryow(s)(x) in LMLPy iff D(M)(s)=1.
Hence P(s)e NM(LMLPyy) iff DIM)(s)=1. If sis in X(S), then since (S, E, M) is closed,
row(s) =row(s’) for some s’ in S, and P(x)« Rpow(s)(x) in LMLPy iff D(M)(s’) =1, and
so P(x)« Rrow(s)(x) in LMLPy iff D(M)(s)=1. Hence P(s)¢e NM(LMLPy) iff
D(M)(s)=1.

Next suppose that the result holds for all e in E where the depth of $ is at most h.
Let e be an element of E where the depth of $ is h+ 1. Since E is $-prefix-closed with
respect to S, e =¢"{(sy,...,5{ - 1,3$,Si,...,5n — 1) for some feT'y, s1,...,5n~1€S,1 (1=i= n) and
some ¢’ in E where the depth of $ is h. For any element s of (SUX(S)), since (S, E, M)
is closed, there is an element s’ in S such that row(s)=row(s’). By lemma 4.1,
Rrow(s)(s)€ NM(LMLPM) and Ryow(s)(s)€ "M(LMLPy). Then by replacement lemma
4.3,

P(e-s)¢e NM(LMLPy)

iff P(e-s’)¢ "NM(LMLPy)

iff P(e’f(sy,...,8i = 1,9,Si,.-.,Sn— 1):S) e NM(LMLPp)

iff P(e’-f(sy,...,Si - 1,5",Si,..-,5n — 1)) € TM(LMLPyv).

By the induction hypothesis,

P(e’f(sy,...,5i = 1,5,Si,-.-,Sn — 1 NENM(LMLP) iff DIM)(e’f(s1,...,5i = 1,S,Si,--,Sn—1)) = 1.
Since row(s) =row(s’) and (S, E, M) is consistent,

row(f(sy,...,Si — 1,5",Siy...,Sn— 1)) =row({(sy,...,Si — 1,S,Si,...,Sn = 1))

and hence D(M)(e’f(sy,...,Si — 1,8,Si,...,Sn — 1)) = D(M)(e’-[(s7,...,8{ — 1,5,Si,.-»Sn — 1)),

and since e’ f(sy,...,si—1,%,5i,...,sn—1)=¢e is in E, D(M)(e’-f(sy,...,Si - 1,5,Sis--sSn— 1))

=D(M)(e-s). Therefore P(e-s)e "\M(LMLPp) iff D(M)(e's)=1. Q.E.D.

For the proof of the next result, for a tree automaton TAo=(Q, I', §, F) we extend &
to (FT'UQ)T by letting : 8(q) =q for q¢ Q', where Q is considered as a set of 0-ary constant
symbols. In this definition, if q=8(s) for q¢Q and s€I'T, then 8(t(x<q)) =8(t(x «s)) for
te'T and x¢Dom(t).

-11-

Theorem 4.5 Suppose that (S, E, M) is a closed, consistent predicate characterization
matrix such that S is subtree-closed and E is $-prefix-closed with respect to S.
Suppose that the constructed linear monadic logic program LMLPyM from (S, E, M)
has n predicates. If TA=(Q, T, 6, F) is any tree automaton which agrees with the data
- in M that has n or fewer states and LMLPr, is a corresponding linear monadic logic
program in the sense of Definition-A, then LMLP\ is isomorphic to LMLPp,.

(Proof) We prove it by exhibiting an isomorphism ¢. First déﬁne, Jfor each q in Q,
row(q) to be the finite function f from E to {0, 1} such that f(e)=1 iff 8(e-q) is in F.
Since T agrees with the data in M, for each s in (SUX(S)) and each e in E, 6(e-s) is in
F iff D(M)(e's) =1, so row(8(s)) is equal to row(s) in (S, E, M). Hence as s ranges over
all of S, row(8(s)) ranges over all the elements of Q, so TA must have at least n states,
i.e., it must have exactly n states. Thus, for each sin S there is a uniqﬁe qin Q such
that row(s)=row(q), namely, 8(s). Next define for each s in S, cb(fow(s)) to be &(s).
This mapping is one-to-one and onto. Then extend ¢ to define for each predicate in
LMLPy, $(Rrow(s)) to be Rgrow(s)). We must verify that it preserves the clauses. For
each siq,...,spin S and ¢TIy, let s be an element of S such that row(f(sy,...,s;)) =row(s).
Then

SRrow(f(sy,...,s)(X) = Rep(row(f(sy, ..., s,))(X)
= Ry(row(s)(x)
= R(s)(x)
Also,

R(1,5(sy),...,8(s,))(X) = Ré(f(sy,...,5,))(X)
Since 8(s) and 8(f(s1,...,sn)) have identical row values, namely row(s) and
row(f(si,...,5n)), they must be the same state of TA. Hence the mapping ¢ carries the
clause Rrow(f(sy,...s) X1, Xn)) < Rrow(s)(X1),.... Rrow(s,)(Xn) in LMLPM to the clause
R5(£,58(sy),...,8(s,)) (f1X1,...,Xn)) < R(s,)(X1),...,Ro(s,)(Xn) in LMLP'I‘A.

Since if P(x)<Ryow(s)(x) for some s in S, then D(M)(s)=1, and since ¢(row(s)) is

mapped to a state q with row(q)=row(s), it must be that q is in F and hence

P(x)«Rq(x). Conversely, if row(s) is mapped to a state q such that P(x)«<Rq(x) is in

-12-

7b

LMLPr,, then since q is in F and row(q) =row(s), D(M)(s) =1, so P(x) <Ryow(s)(x) isin
LMLPM. So we conclude that the mapping ¢ preserves the clauses. Q.E.D.

5. Inductive inference algorithm for linear monadic logic programs

First we confirm the inductive inference schema of linear monadic logic
programs. The problem is to identify the denotation of the predicate P in the
unknown model. That is, in our se£ting the problem is to infer a linear monadic logic
program LMLP such that the denotation of P in N"M(LMLP) is equal to the one in the

unknown model.

Let the unknown model for some linear monadic logic program be denoted by My.

(Algorithm IL of inductive inference for linear monadic logic programs)

Input : An oracle EX() for a sufficient set of examples (or facts of ground atoms) of
the predicate Pin My,
An oracle MEMBER(P(t)) on a ground atom P(t) as input for a membership query
to output 1 or 0 according to whether P(t) is true in My,
Output : A sequence of conjectures of linear monadic logic program,
Procedure:
S:=@; E:={$}; LMLP := @; Examples:= &;
do forever
add an example EX() to Examples;
while there is a negative example —P(t)¢ Examples such that LMLP + P(1)
or there is a positive example +P(t)¢Examples such that LMLP H P(t);
add t and all its subtrees to S;
extend (S, E, M) to E-(SUX(S)) using MEMBER;
repeat
if (S, E, M) is not consistent
then finds; andsgin S, fel'y, uy,...,un_1€S, ek, and i (1=1=n) such that
row(sy) is equal to row(sg) and D(M)(e-f(uy,...,uj —1,81,Uj,...,un—1))
#D(M)(e-f(uy,...,uj_1,52,uj,...,un—1));
add e-f(uy,...,ui—1,%,u;,...,un 1) to E;
extend (S, E, M) to E-(SUX(S)) using MEMBER,
if (S, E, M) is not closed;
then find f(2)eX(S) for a€S" and feI'y, such that row(f(1)) is different
from row(s) for all s¢S;
add f(a) to S;

13-

71

extend (S, E, M) to E-(SUX(S)) using MEMBER;
until (S, E, M) is closed and consistent;
LMLP := LMLPy;
end;
output LMLP;
~end.

In the above algorithm, the operation of “extend (S, E, M) to E<(SUX(S)) using
MEMBER” is the operation to extend D(M) by asking membership queries for
missing elements. We call an example t presented by the oracle EX a counter-

example when the last conjecture LMLP); does not agree with t.

Example 3 Suppose the unknown linear monadic logic program is the one of
example 2. Then the algorithm IL identifies the following linear monadic logic

program from 2 examples {+t, —u} after asking 23 membership queries.

(Predicate characterization matrix)

((]E”

—(3)

=]

“S” -_ t

tvt
—(—t)
(vt
tv(—t)
“XB)” | (=owv—b

u

u\/t
u\/(—t)
tvu
(—t)vu
u\/u

SO | [O= [S| O || === S| O =] €A
Cloloio|Io|olm |l |Clc|m=

(The identified linear monadic logic program)

-14-

78

Predicate = {Rrow(t)(X), Rrow(u)(X), Rrow(—t)(x)}

LNILPM = {P(X) « Rrow(t)(X).
Rrow(t)(t) €«
Rrow(u)(u) €«
Rrow(=)(7%X) « Riow(t)(%).
Reow(t)(xVY) < Rrow(1)(X), Rrow(t)(y).
Rrow(t)(X)) « Rrow(- t)(X).
Rrowt)(xVY) < Reow(—1)(X), Reow(t)(y)-
Rrow(t)(XVY) < Rrow(t)(X), Rrow(—-1)(¥).
Rrow(—t)(xXVy) < Rrow(—1)(x), Rrow(—1)(y)-
Rrow(u)(7 %) < Rrow(u)(x).
Rrow(t)(XVY) « Rrow(u)(X), me(m)(y).
Rrow(u)(XVY) « Rrow(u)(x), R‘row(-)(y).
Rrow(t)(xVY) < Rrow(t)(X), Rrow(u)(y)-
Rrow(u)(XVY) < Rrow(—t)(X), Rrow(u)(y).
Rrow(u)(XVY) < Rrow(u)(%), Rrow(u)(y). }

6. Correctness and complexity

To see that the algorithm IL is correct, i.e. the algorithm IL identifies a linear
monadic logic program LMLP in the limit such that {t : P(t)eNM(LMLP)} is the
denotation of P by My, it is enough for us to show that the constructed predicate
characterization matrix (S, E, M) during the running of the algorithm IL is a closed,
consistent one such that S is subtree-closed and E is $-prefix-closed with respect to S,
and that the while loop of the algorithm IL is executed at most in finite time during

the running of the algorithm IL.

Lemma 6.1 Let (S, E, M) be a predicate characterization matrix such that S is
subtree-closed and E is $-prefix-closed with respect to S. Let n be the number of
different values of row(s) for s in S. Any deterministic tree automaton which agrees
with the data in M must have at least n states.

(Proof) Let TA=(Q, T, 8, F) be a deterministic tree éutomaton which agrees with the
data in M. Suppose that s; and sg are elements of S sﬁch that row(s;) and row(sg) are
distinct. Then there exists e in E such that D(M)(e-s1)# D(M)(e-s2). Since T agrees

with the data in M, exactly one of 8(e'sy) and 8(e-sg) is in F. Thus §(sy) and 6(s2) must

-15-

be distinct states because Tp is deterministic. Since 8(s) takes on at least n different

values as sranges over S, TA must have at least n states. Q.E.D.

Lemma 6.2 The while loop of the algorithm IL is executed at most in finite time
during the running of the algorithm 1L,

| (Proof) Let n be the number of states in the minimum state deterministic tree
automaton TA for the denotation of the predicate P in the unknown model. Firstly
we will show that whenever a predicate characterization matrix (S, E, M) is not
consistent or not closed, the number of distinet values row(s) for sin S must increase.
If (S, E, M) is not consistent, then since two previously equal row values, row(s) and
row(sg), are no longer equal after E is augmented, the number of distinct values
row(s) for s in S must increase by at least one. If (S, E, M) is not closed and a tree {(11)
is added to S, then since row(f(a)) is different from row(s) for all s in S before S is
augmented, the number of distinct values row(s) must increase by at ieast one.

Next we will show that whenever a tree t and all its subtrees are added to S and
(S, E, M) is extended because LMLP) does not agree with t, the extended closed,
consistent predicate characterization matrix (S’, E’, M’) have at least one more
different row values than (S, E, M). Assume that (S, E, M) and (S’, E’, M’) have the
same number of different row values. Then both must have the same row values.
Since (S’, E’, M) is closed and consistent, each of t and all its subtrees plays the same
role in (S, E’, M’) as an element s in SCS’ which has the same row value as it. Hence
from (S, E, M) and from (S, E’, M’), a same linear .nonadic logic program is
constructed, i.e. LMLPy=LMLP)'. However, by theorem 4.4, LMLP)p agrees with t
while LMLPy does not agree with t. This is a contradiction.

Then by these and lemma 6.1 and theorem 4.5, (S, E, M) can be not consistent or
not closed at most n—1 times and a counter-example is added to S at most n times
during the running of the algorithm IL. Thus whenever the condition of the while

loop becomes true, the algorithm IL eventually makes a next conjecture in finite

-16-

79

8u

time, and the condition of the while loop becomes true at most n times. Therefore,

the while loop is executed at most in finite time. Q.E.D.

By the above result, it follows that the algorithm IL makes a sequence of at, most

n conjectures.

Lemma 6.3 The conjectures which the algorithm IL makes are correct for the facts
known by the oracles EX and MEMBER.

(Proof) We will show that each predicate characterization matrix (S, E, M) which the
algorithm IL constructs during the running of it is a closed, consistent one such that
S is subtree-closed and E is $-prefix-closed with respect to S. In the algorithm IL,
there are three operations which extend the row or the column of (S, E, M). When t
and all its subtrees are added to S, S obviously remains subtree-closed. If (S, E, M) is
not consistent, then for some fe¢I'y, uj,...,un—_1€S, ecE, and i (1<i<=n),
e-f(uy,...,u; - 1,$,ui,...‘,un_ 1) isadded to E. In this case, E remains $-prefix-closed with
respect to S. If (S, E, M) is not closed, then for some q¢S" and fel'y, f(a) is added to S.
In this case, S remains subtree-closed. Since the repeat loop is repeated as long as (S,
E, M) is not closed and consistent, by lemma 6.2, each constructed (S, E, M) must
eventually be closed and consistent. Thus each constructed (S, E, M) during the
running of the algorithm IL is a closed, consistent one such that S is subtree-closed
and E is $-prefix-closed with respect to S. Then by theorem 4.4, the conjectures of
linear monadic logic program which the algorithm IL makes are correct for the facts

known by the oracles EX and MEMBER. Q.E.D.
Now we conclude the following theorem.

Theorem 6.4 The algorithm IL identifies in the limit a linear monadic logic program

LMLP such that {t : P(t)e NM(LMLP)} is equal to the denotation of P in My.

Next we will analyse the time complexity of the algorithm IL. By lemma 6.2, the

while loop of the algorithm IL is executed at most in a finite time. Then how much

17-

time does the while loop consume during the running of the algorithm IL. That
depends partly on the size of the examples px;esented by the oracle EX. We will
analyze the running time of the while loop as a function of n, the number of states in
the minimum tree automaton for the denotation of the predicate P in the unknown
- model, and m, the maximum size of any counter-examples presented by EX during
the running of the algorithm IL, where the size of an example is the number of
symbols in its textual representation. We will show that its running time is bounded
by a polynomial in m and n. Let k be the cardinality of the alphabet I" and d be the
maximum arity of the function symbols in I' We may assume d>1.

Whenever (S, E, M) is discovered to be not closed, one element is added to S.
Whenever (S, E, M) is discovered to be not consistent, one element is added to E. For
each counter-example t of size at most m presented by the oracle EX, at most m
subtrees are added to S. Since the predicate characterization matrix is discovered to
be not consistent at most n—1 times, the total number of trees in E cannot exceed n.
Since the predicate characterization matrix is discovered to be not closed at most
n —1 times, and there can be at most n counter-examples, the total number of trees in
S cannot exceed n+ mn. Thus, the maximum cardinality of E-(SUX(S)) is at most

n((n +mn)+k(n +mn)¥) =0(mn?+?),

Now we consider the operations in the while loop executed by the algorithm 1L.
Checking the predicate characterization matrix to be closed and consistent can be
done in time polynomial in the size of the matrix and must be done at most n times.
Adding a tree to S or E requires at most O(m‘n?) membership queries to extend the
matrix. When the predicate characterization matrix is closed and consistent,
LMLPM may be constructed in time polynomial in the size of the matrix, and this
must be done at most n times. A counter-example requires the addition of at most m
subtrees to S, and this can be also happen at most n times. |

Therefore, the total time which the while loop consumes during the running of the

algorithm IL can be bounded by a polynomial function of m and n.

18-

82

On the other hand, the check whether a conjecture agrees with an example, i.e.
LMLP~P(t) or not, in the condition of the while loop is decidable and is performed in
steps of the example’s size. Then by the above result, we can conclude that the
algorithm IL infers a conjecture of a linear monadic logic program consistently and
requests a new example in time polynomial in 1, m’ and n after the last example has

been added, where 1 is the number of examples known at the time of the request and

- m’ is the maximum size of those] known examples.

7. Concluding remarks

We remark on related work. Shapiro’s Model Inference System (MIS for short)
[5,6] is the excellent and only existing system to infer logic programs or Herbrand
models in first order logic using the ;concept of identification in the limit defined by
Gold. MIS can infer a large class of logic programs (h-easy models), but ours only for
a restricted class of logic programs. However our algorithm IL has several unique
features compared with MIS. (1) As we mentioned in the introduction, our algorithm
IL is based on algebraic semantics and the target of the inference is a tree language
‘computed by a logic program, and hence it is different from Shapird’s approach and is
not model inference. (2) In general, it is not easy to analyse the time complexity of
inductive inference algorithm, and neither in MIS. We have shown in the last
section the time complexity of our algorithm IL in the very clear manner. (3) Our
algorithm IL is based on the constructive method, while MIS is based on the
enumerative method, where the constructive method systematically use examples to '
construct the conjecture and the enumerative method use them to select a conjecture
in enumeration. It is said that the constructive method is in general more efficient
than the enumerative method. (4) In our algorithm IL, the predicate symbol P and
its interpretation are only given as the observational language and the oracle, and
any information about the hypothesis language is not given. The algorithm IL
automatically generates other predicates whenever they are needed. However in

MIS, all predicates used to construct the conjectures and those intended

-19-

interpretations must also be given as the hypothesis language and the oracle, and

this is often referred to as the problem about theoretical terms of MIS.

Acknowledgements
\ The author would like to thank Dr. T.Kitagawa, the president of IIAS-SIS, Dr.
H.Enomoto, the director of IIAS-SIS, for giving him the opportunity to pursue this
work and helping him. He is deeply grateful to Dr. T.Yokomori for reading the draft
and giving him many valuable comments. Discussions with the colleagues
Y.Takada and H.Ishizaka were also very fruitful.
This is part of the work in the major R&D of the Fifth Generation Computer

Project, conducted under program set up by MITI.

References

[1] Angluin,D., Learning regular sets from queries and counter-examples, Yale DCS
TR-464,1986. To appear in Information and Computation. '

[2] van Emden,M.H., Kowalski,R.A., The semantics of predicate logic as a
programming language,J. ACM 23 (1976), 733-742.

[3] Gold,E.M., Complexity of automaton identification from given data, Information
and Control 37 (1978), 302-320.

[4] Marque-Pucheu,G., Rational set of trees and the algebraic semantics of logic
programming, Acta Informatica 20 (1983), 249-260.

[6] Shapiro,E., Algorithmiq program debugging, MIT Pres<, 1983.

[6] Shapiro,E., Inductive inference of theories from facts, Yale DCS TR-192, 1981.

-20-

83

