84

goooboooogn
O 6550 19880 84-103

An Algebraic Method For Verifying

Progress Property of Communication Protocols

WOE O X & 0 g — ¥
Teruo HIGASHINO', Kenichi TANIGUCHI', Tadao KASAMI',
O # 5 B =

Mamoru FUJI1* and Masaaki MORI'?'

+ : Department of Information and Computer Sciences,

Faculty of Engineering Science., 0Osaka University, Toyonaka, Osaka 560. JAPAN
+t+ : Department of Management Science,
Faculty of Economics, Shiga University., Hikone, Shiga 522. JAPAN

ABSTRACT In this paper, a method is presented for verifying the progress property of a

communication protocol whose specification is described algebraically in a style of an
"abstract sequential machine”, and Stenning’s data transfer protocol is used as a running
example. At first. the set of sequences of states is introduced. and several theorems

(invariants) on the specification are verified by algebraic methods, and then, they are
transformed into the theorems for the sequences of states. Next, such a hypothesis as "if the
packets with the same contents have been retransmitted repeatedly, at least one of them will be
eventually received by the receiver” is also formulated as theorems for the sequences of states.
Finally, by wusing those theorems and several axioms which denote inference rules of Temporal
logic, the formula (term) which expresses the progress property is proved to be true by using

our interactive verification support system for algebraic specifications.

1. INTRODUCTION

In order to specify a protocol formally and to verify the correctness of the protocol. the
protocol must be exactly specified. There have been some approaches to specifying protocols
such as state machine approach, the high-level programming language approach and algebraic
approach [1,2,3.4.5,6]. ¥e have algebraically specified protocols such as the HDLC procedures
and Stenning’s Data Transfer Protocol [3] (for short, SDT protocol) in a style of an “abstract
sequential machine” [6,7]. and verified some theorems (invariants) on the specifications, for
example. a theorem on SAFENESS property of the protocols, etc. [6,8].

To specify a protocol in a style of an abstract sequential machine, we introduce a set of
abstract states of the whole communication system as a sort, state transition functions
corresponding to the basic operations of the protocol such as transmission/reception of the
stations, and output functions which extract necessary information from an abstract state
Each abstract state is represented as the sequence of state transition functions. The
semantics of output functions is given by axioms which describe relations to be held between the
values of output functions at the state just before the execution of a state transition function
and those at the state just after its execution.

Algebraically specifying a protocol in a style of an abstract sequential machine has the
following advantage : The meaning of a description is defined formally and concisely because of

using the congruence relation [13] only. and therefore its verification is carried out formally

85

in the same framework as the algebraic specification. And, by using output functions, it
overcomes the problem of state explosion where the state machine approach would require a large
number of states. In general, the high-level programming language (an ordinary procedural
language) approach has such a drawback that protocol procedures are specified uniquely and
therefore the non-deterministic behaviors can’t be described naturally. But, in our nmodel,
basic operations such as transmission/reception behaviors of each station are specified as
operations independent of the other behaviors in a quite natural way.

There have been some studies [11,12,14.16] on the DEADLOCK-free property and PROGRESS
property of protocols that the packets sent out from the sender will be eventually received by
the receiver. In this paper. we present a method to formally carry out verification of
PROGRESS property of a protocol that is algebraically specified in a style of an abstract
sequential machine, and apply the method to SDT protocol.

As for verification of PROGRESS property., we describe the notion of Temporal logic
algebraically. First we consider a sequence of states which are reachable from the present
state by executing allowable behaviors successively, and second we verify some invariants which
hold on any state in a sequence of states and those which hold between the state just before the
execution of a state transition function and the state just after its execution. These
invariants are represented as theorems [10] on the algebraic specification: And then, we
transform these theorems into the the theorems for the sequences of states by using some
transformation rules which will be introduced in Section 3.2.3. Furthermore. such hypotheses
on stations and communication lines that the sender will eventually send a packet if the
transmission of the packet is allowed repeatedly and that communication lines are not in cut-off
state are formulated as the properties for the sequences of states. Then., we try to prove a
predicate that asserts PROGRESS property of SDT protocol to be true by using the the transformed
theorems, hypotheses on stations and communication lines, and the axioms which denote inference
rules on operators "[]"(always), " O (eventually) and "(O"(next) in Temporal logic

In our formalism, we can treat the verification of PROGRESS'property in the same framework as
the algebraic specification of SDT protocol. Since we use our interactive verification
support system for verification of theorems on a given algebraic specification [10] which
provides such facilities as term reduction (by axioms which are regarded as rewrite rules) and a
decision procedure for Presburger arithmetic, the whole verification works are carried out
formally. Here. SDT protocol is used as a verification example, because SDT protocol is
considerably complicated one where the occurrence of loss. corrur*ion. duplication and/or re-
ordering of packets in transit are taken into account, and is suitable in scale for exaﬁining
our verification method. and moreover we have already proved some theorems on the algebraic

specification of SDT protocol necessary for verifying PROGRESS property [8].

2. AN ALGEBRAIC SPECIFICATION OF THE WHOLE COMMUNICATION SYSTEM
2.1 AN ABSTRACT SEQUENTIAL MACHINE MODEL

For specifying the whole communication system algebraically, we introduce a sort "state”
vhich denotes the set of states of the whole communication system, and represent basic

operations such as transmission or reception in a station as "state transition functions” of the

vhole communication system. There is a constant "INITIAL" in sort "state” which corresponds to
the initial state of the whole communication systen. For a state transition function g,
g(s,i].....in) denotes the resulting state when state transition function g with parameter

z}/

Qo
o

iys--.+iy 1is executed at state s. Here, a state is considered as a sequence of basic
operations (state transition functions) applied on INITIAL. That is. a state is represented as
a term consisting of state transition functions and INITIAL. Ve also introduce ’output

functions” which extract some information such as the value of a register or the data to be sent
next in each station from a state. The semantics of those functions is given by axioms.
Axioms describe relations between the values of output functions at the state just before the
execution of a state transition function and those at the state just after its execution
For éxample. an output function, say. "f may have the axioms of the following form :
(1) fCINITIAL) ==
(2) f(gls.iy....ip)) == IF £,(s) = fols)tl THEN £(s)+1 ELSE f(s)

- Here, "g" denotes a state transition function. "s” a variable of sort state. and "i;".....7i,"
variables of sorts other than sort state, respectively. The axiom (1) defines the initial
value of output function f. and the axiom (2) defines the value of output function f at state
g(s,i),...iy) by using the values of output functions at state s (f(s), fl(s)Aand fo(s), etc.)
and some operators and/or values (IF-function, =, + and 1, etc.) of Base algebra [6.7]. For
every pair of output function f and state transition function g, axioms in the form of (2) are
described. .

In the set of states (terms of sort state) of the abstract sequential machine stated above.
there may exist meaningless states, for example, which are reachable from the initial state by
executing only receiving behaviors. To distinguish valid states (meaningful states) from
meaningless states, we introduce a special output function "Valid” which indicates whether or
not the present state is reachable from the initial state by executing only allowable actions
successively, and regard states such that the value of function Valid is TRUE (FALSE) as valid
states (meaningless states) of the protocol. ¥e describe the validity of the states by the

folloving form of axioms

(1’) Valid(INITIAL) == TRUE

(2') Valid(g(s.ij....i,)) == IF Valid(s) THEN P(s.iy.....i,) ELSE FALSE
Here, P(s,il..‘..in) is a term of sort bool which consists of output function symbols, variables
s.iy..... i, and some operator symbols and/or values (IF-function., =, +, TRUE, FALSE. 0.1, etc.)
il""'in is allowable at a state s if and only if the state s is a valid state and predicate
P(s.iy,....i,) is TRUE at state s. For example, if "g" is a state transition function which
represents a receiving action and P(s.ij,....i) is "f(s))0", then the axiom shows that

receiving action g is executable when the value of output function f is greater than 0.

2.2 AN ALGEBRAIC SPECIFICATION OF SDT PROTOCOL

Stenning’s Data Transfer Protocol [3) (for short SDT protocol) defines actions of two
processes. a sender and a receiver., by means of Pascal-like programming language. and the term
"packet” is used to denote a unit sent by the sender or the receiver. A packet sent by the
sender consists of a message and a sequence number attached to the message. and a packet sent by
the receiver, <called an acknowledgement packet. conéists of only a sequence number, which means
that all messages with sequence numbers up to this number have been received and released to a
sink of the receiver correctly. It is assumed that sequence numbers may increase infinitely.
The sender gets a message from a source and sends a packet to the receiver through a

communication line. The receiver in turn accepts the packet from the line., releases the

o

87

received message to a sink, and acknowledges its correct reception by sending an acknowledgement
packet to the sender via another communication line. Since the communication lines are

unreliable, it 1is assumed that packets traveling in either direction may be completely lost

corrupted, duplicated and/or reordered. It is also assumed that there are no undetected
transmission errors (i.e.. that corruptions can be detected by a checksum test on a received
packet). Any received packet which fails the checksum test is immediately discarded and is
therefore effectively “lost in transit”. In order to ensure correct deli?ery of a packet

\under such environment, SDT protocol uses a conventional positive acknowledgement/retransmission
on timeout technique.

An algebraic specification of SDT protocol is shown in Table 1. In Table 1. state
transition functions "TRANSM", "RETRANSM", "RECA", and "FINDTO" are introduced corresponding to
basic actions "transmission”., “retransmission”., “reception” and “timeout”™ of the sender.
respectively. As for the receiver. a state transition function "RECM&TRANSA" which corresponds
to basic action "reception of a message and transmission of an acknowledgement” is introduced.

As output functions, we introduce four types of output functions described below
{1] The output functions corresponding to the functions (or predicates) which are introduced in

[3] to define the behavior of the stations.
(1-1) The output functions of the sender

e highest_sent(s) : It denotes the sequence number of the highest numbered packet sent so far
at state s.

e lowest_unacked(s) : It denotes the sequence number of the lowest numbered packet sent by the
sender and still requiring acknowledgement from the receiver at state s.

* timer_running(s,i): It indicates whether or not the timer for the packet with sequence number
i is running at state s.

* retrans_mode(s) : It indicates whether or not state s 1is in retransmission mode due to the
occurrence of timeout.

e retrans_position(s) : It denotes the sequence number of a packet to be retransmitted
subsequently at state s.

« THS : It is an abbreviation of “Transmitter Window Size” and it is the maximum number of

(1-2) The output functions of the receiver .

» next_required(s) : It denotes the sequence number of a packet to be received by the receiver
such that all packets numbered up to the sequence number minus one have been correctly
received by the receiver at state s.

» already_received(s, j): It indicates whether or not the packet with sequence number i has been
correctly received by the receiver at state s.

[2] The output functions corresponding to the functions (or predicates) which are introduced in
{3] to verify some assertions on the behavior of SDT protocol.
(2-1) The output functions of the sender and the receiver

« SNB(i) : SMB is an abbreviation of "Source Message Buffer” and it denotes the messages held
in a source of the sender. Message SMB(i) is sent from the sender as the packet with
sequence number i.

e rmb(s, j) : It denotes the message which was receiVed as the packet with sequence number j
and released to a sink of the receiver.

(2-2) The output functions of the communication lines

88

Table 1 : An algebraic specification of Stenning’'s data transfer protocol (PART 1)

text STENNING .
project primitives ;{the declaration to use the operators and/or values of Base algebra)

define seq_number := nn_integer ;

label constructors :
state -) INITIAL :
~) TRANSM(state)
-) RETRANSM(state . seq_number) ;
-) BECA(state , seq_number) :
-) FINDTO(state . seq_number) :
-) RECM&TRANSA(state . seq_number , seq_number):
endlabel constructors ;
label output_functions :
seq_number -) highest_sent(state)
-) lowest_unacked(state) ;
bool -) timer_running(state . seq_number) :
-) retrans_mode(state) ;
seq_number -) retrans_position(state) ;
nn_integer -) k(state)
seq_number -) S(state ., nn_integer) :

data -) datapart(state , nn_integer) :
seq_number -) next_required(state) ;

bool -) already_received(state.. seq_number) ;
data =) rmb(state . seq_number) ;

nn_integer -) p(state)
seq_number -) A(state . nn_integer) :
endlabel output_functions :

bool -) exist_S(state . seq_number)
-) exist_A(state . seq_number) ;
data -) data_S(state , seq_number) ;

nn_integer -) pos_S(state . nn_integer . seq_number) :
-) pos_A(state . nn_integer . seq_number) :

seq_number -) pos_r(state . seq_number) ;

bool -} Valid(state)

data -) SMB(seq_number)

data -) NULL

seq_number -) THS ;

state H

seq_number

nn_integer

1.h, i, j.a:

B o w

’
’

AX1 : highest_sent(INITIAL) == 0 ;

AX2 : lowest_unacked(INITIAL) == H

AX3 : timer_running(INITIAL,n) == FALSE :
AX4 : retrans_mode(INITIAL) == FALSE :
AXS : retrans_position(INITIAL) == :
AX6 : kK(INITIAL) == ;

AXT7 : SCINITIAL. m) == H

AX8 : datapart(INITIAL.m) == NULL :
AX9 : next_required(INITIAL) == 1 ;
AX10 : already_received(INITIAL.n) == FALSE :
AX11 : p(INITIAL) == 0 :

AX12 : ACINITIAL.m) == H

AX13 : rmb(INITIAL.n) == NULL :

AX14 : Valid(INITIAL) == TRUE :

AX15 : highest_sent(TRANSM(s)) == highest_sent(s)+l

AX16 : for each "Q in ('RETRANSM(s.h) . "RECA(s.j) , 'FINDTO(s,n)")
highest_sent(Q) == highest_sent(s)
AX17 : lowest_unacked(RECA(s,j)) == if j)-=lowest_unacked(s) then j+1 else lowest_unacked(s) :
AX18 : for each 'Q in ('TRANSM(s)' ., RETRANSM(s.h)’ . 'FINDTO(s,n)"),
lowest_unacked(Q) == lowest_unacked(s) ;

AX19 : timer_running(TRANSM(s),n) == n=highest_sent(s)+l OR timer_running(s,n) ;
AX20 : timer_running(RETRANSM(s,h).n) == n=h OR timer_running(s,n)

89

Table 1 : An algebraic specification of Stenning’s data transfer protocol (PART 11)

AX21
AX22

AX23
AX24
AX25
AX26
AX27
AX28

AX29
AX30
AX31
AX32
AX33
AX34
AX35
AX36
AX37

AX38

AX39
AX40
AX41
AX42

AX43

AX44

AX45
AX46
AX47
AX48
AX49
AX50

AX51

AX52

AX53

AX54
AX55

: exist_S(s,i)
: exist_A(s. j)
: data_S(s, i)

: pos_S(s,m, i)
: pos_A(s.m, i)
: pos_r(s.n)

: timer”running(F[NDTO(s,1),n) == if highest_sent(s))=n AND n)=1

then FALSE else timer_running(s.n) ;

: timer_running(RECA(s, j).n) == if j)n AND n)=lowest_unacked(s)

then FALSE else timer_running(s.n) ;

: retrans_mode(RETRANSM(s.h)) == if highest_sent(s)=h then FALSE else retrans_mode(s) ;
: retrans_mode(RECA(s, j)) == if jo>highest_sent(s) then FALSE else retrans_mode(s) ;
: retrans_mode(FINDTO(s,n)) == TRUE : .

: retrans_mode(TRANSN(s)) == retrans_mode(s) ;

: retrans_position(RETRANSM(s,h)) == retrans_position(s)tl ;

: retrans_position(RECA(s, j)) == if j)retrans_position(s)

then j else retrans_position(s) o

: retrans_position(FINDTO(s,n)) == n ;

: retrans_position(TRANSHM(s)) == retrans_position(s) ;

: for each "Q in (“TRANSM(s)’ , 'RETRANSM(s,h)”). k(Q) == k(s)+i :
: for each "Q in ("RECA(s,j) . 'FINDTO(s.n)) ., k(Q) == k(s) ;

: S(TRANSM(s).m) == if m=k(s)+] then highest_sent(s)tl else S(s.m) ;
: S(RETRANSM(s,h).m) == if m=k(s)+1 then h else S(s,m) ;

: datapart(TRANSM(s).m) == if m=k(s)+1 then SMB(highest_sent(s)tl) else datapart(s,m) ;
: datapart(RETRANSM(s,h).,m) == if m=k(s)+1 then SHB(h) else datapart(s.m);
: for each "Q in ("RECA(s,j) , “FINDTO(s.n)).

for each f in (S, datapart), f(Q.m) == f(s.m) ;

: next_required(RECM&TRANSA(s, i, j)) == if i-next_required(s)

then pos_r(s,itl) else next-required(s) :

: already_received(RECH&TRANSA(s, i, j),n) == if i=n then TRUE else already_received(s.n);
: rmb(RECM&TRANSA(S, i, j),n) == if i=n then data_S(s,i)’else rmb(s,n) :
: p(RECM&TRANSA(s, i, j)) == p(s)+l ;

: A(RECM&TRANSA(s, i, j).m) == if m=p(s)+1 then j else A(s,m) ;

: for each f in (highest_sent , lowest_unacked , retrans_mode . retrans_position , k).

f(RECM&TRANSA(s, i, j)) == f(s)
for each g in (timer_running . S, datapart),
- g(RECH&TRANSA(s, i, j).a) == g(s,a) ;

: for each 'Q in ("TRANSM(s)" , ’“RETRANSM(s.h)’ ', 'RECA(s,j)’ ., 'FINDTO(s,n)),

begin

for each f in (next_required , p) ., f(Q) == f(s) ;
for each g in (already_received . A, rmb), g(Q.a) == g(s,a) ;
end:

== NOT(pos_S(s.k(s), i)=0) :

== NOT(pos_A(s.p(s), j)=0) :

datapart(s, pos_S(s,k(s).i)) ;

if m=0 then 0 else if S(s.m)=i then m else pos_S(s,m-1,i) ;
if m=0 then 0 else if A(s,m)=i then m else pos_A(s,m-1,i) ;
if already_received(s,n) then.pos_r(s,n+l) else n ;

EUI I | B)

"o

: Valid(TRANSN(s)) == if Valid(s) then NOT(retrans_mode(s*‘ AND

‘ T¥S-1)highest_sent(s)-lowest_unacked(s)
else FALSE

: Valid(RETRANSN(s,h)) == if Valid(s) then retrans_mode(s) AND h=retrans_position(s)

else FALSE ;

¢ Valid(RECM&TRANSA(s, i, j)) == if Valid(s)

then exist_S(s, i) AND
{(i=next_required(s)) AND (j=pos_r(s,it1)-1) OR

NOT(i=next_required(s)) AND (j=next_required(s)-1)}

else FALSE ;

: Valid(FINDTO(s,n)) == if Valid(s) then timer_running(s.n) else FALSE :
: Valid(RECA(s, j)) == if Valid(s) then exist_A(s, j) else FALSE ;

end STENNING

90

* k(s) : It denotes the number of packets sent by the sender. Let pj.pg..-..py(g) be the
sequence of packets sent by the sender (pl is the first packet and Pk(s) is the last packet
sent by the sender). ¥e call packet p; "the i-th packet”™ sent by the sender.

« S(s.n) : It denotes the sequence number of n-th packet sent by the sender.

* datapart(s.n) : It denotes the message of n-th packet sent by the sender.
* p(s) : It denotes the number of packets sent by the receiver.
« A(s.m) : It denotes the sequence number of m-th acknowledgement packet sent by the receiver.
[3] Auxiliary functions
In [3], a few assertions concerning the receiving procedures of messages or acknowledgements
are expressed by using existential quantifiers. However, existential quantifiers cannot be used
“directly in our axiom. Here. we newly introduce auxiliary functions "exist_S", “exist_A" and
"data_S” which correspond to the Skolem functions, in order to delete existential quantifiers
and variables bounded by them appeared in the assertions.
"Pos_S", "pos_A" and "pos_r" are auxiliary functions which are introduced to recursively
define the functions "exist_S", "exist_A" and "next_required”., respectively.
[4]A special function "Valid”
As stated in Section 2.1, the value of function "Valid™ is TRUE for a state which is
reachable from the initial state by executing allowable operations successively. and FALSE when

an unallowable operation has been executed at least once

2.3 VERIFICATION OF STATIC PROPERTIES

For a term P of sort bool, let (xl.....xn} be the set of distinct variables occurring in P.
For simplicity, we write P(xl....,xn). Let P(dl..",dn) denote the term obtained from
P(xy.....x,) by substituting values dy.....d, for variables xj.....x,, respectively (d; must be
a value of the sort of xi). Here, a value of a sort is represented by a term (constructor
term) consisting only of special function symbols (constructors) of the sort. For example. 1in
Table 1, TRUE, FALSE and 0,1,2,... are constructor terms of sort bool and nn_integer,
respectively. All state transition functions described in Section 2.2 are constructors of sort

state. Therefore, constructor terms of sort state are INITIAL, TRANSMESCINITIAL).
For terms t and t' without variables and an axiom system E. we write t¥=t if and only if t
has the congruence relation [13] with t’ under E.
¥e write P(xy..... xn)ifTRUE and call P(xl,....xn)%?TRUE "a theorem” of the axiom system E,
if and only if it holds that P(dl dn)i?TRUE for any value d; of the sort of X§ (1IZin).
In our abstract sequential machine model, properties which we want to verify are described
as the following form.
[Valid(s) 2 Q(s.xp.....xp) ¥ TRUE]
(here, s is a variable of sort state and x; (1=i<n) is a variable of a sort other than
state.)
The verification 1is wusually carried out by using structural induction on the depth of
nesting of terms of sort state {5,6,10]. _
In Table 2, we list some theorems which we have already proved on the algebraic specification
of SDT protocol in Table 1 [8]. For example, the following property (Theorem 11)
Valid(s) AND i{next_required(s) 2 equal(rmb(s.i), SNB(i)) ¥ TRUE
asserts that the contents of data received at the receiver equal to those sent from the sender

for all data with sequence numbers less than the value of function next_required.

91

_Table2 Theorems which _we have proved on the algebraic specification of SDT protocol in Table 1

Theoreml : Valid(s) AND timer_running(s, i)
D highest_sent(s)=i £ TRUE
Theorem2 : Valid(s) AND k(s)=n AND n=1
D highest_sent{(s)=S(s.n) % TRUE
Theoremd : Valid(s) 2 lowest_unacked(s)tTWS)highest_sent(s)
¥ TRUE
Theorem4 : Valid(s) AND p(s)=n AND n=1
7 D next_required(s)=A(s.n) ¥ TRUE
Theorem5 : Valid(s) AND already_received(s, i)

D highest_sent(s)=i ¥ TRUE

Theorem6 : Valid(s) 2 highest_sent(s)+l=next_required(s)
¥ TRUE

Theorem7 : Valid(s) 2 next_required(s)=1lowest_unacked(s)
¥ TRUE

Theorem8 : Valid(s) AND timer_running(s, i)
D i=lovest_unacked(s) ¥ TRUE
Theore!ng : Valid(s) AND k(s)=n AND n=1 _
O equal(datapart(s,n), SMB(S(s.n)))
¥ TRUE

Theorem10: Valid(s) AND already_received(s.i)

‘ D equal(rmb(s.i).SMB(i)) % TRUE

Theoremll: Valid(s) AND i(next_required(s)
D equal(rmb(s.i).SMB(i)) ¥ TRUE

However. Theorem 11 doesn’'t assert that packets will be received by the receiver. In

Section 3, we discuss PROGRESS property of SDT protocol.

3. VERIFICATION OF PROGRESS PROPERTY

In this section, we present a verification of "PROGRESS prorerty” of SDT protocol that the-
packets sent out from the sender will be eventually received by the receiver.

In Section 3.2, we formulate the above PROGRESS property in terms of sequences of states in

" the abstract sequential machine. To verify a property of sequences of states, it is

convenient to use the notations of Temporal logic [11] which provides operators for representing

the present and future states. ¥e introduce the concept of Temporal logic into our formalism.

3.1 TEMPORAL LOGIC

In Table 3. we describe the notion of Temporal logic algebraically. First, a new sort
"formula” which denotes the set of formulas of Temporal logic is introduced into the algebraic
specification of SDT protocol in Table 1. Next, three modal operators ("["(always), O
"(eventually), "O"(next)), logical symbols (TRUE, FALSE, AND. OR. NOT. >) and some atomic predicate

5

92

Table 3 : An algebraic specification to verify PROGRESS property of SDT protocol (PART 1)

text PROGRESS_PROPERTY
include STENNING ;{the declaration to use the subtext STENNING}
formula -) formula = formula | formulal :
formulal -) formulal O formulal | formula2 :
formula2 -) formula2 OR formula2 | formula3 :
formulad -) atomic | TRUE | FALSE ;
-) formula3 AND formula3d | NOT(formula) ;
-y OC formula) | OC formula) | OC formula)
-) (formula) ;

bool -) Val(formula , SEQ) :
state -)» car(SEQ) :

SEQ -) cdr(SEQ) :

SEQ L

nn_integer m ;

state S

formula X zZ
seq_number i . j n, h

IRl : [O(x AND y) = ([J(x) AND [J(y)) == TRUE :

IR2 : x 2 O(x) == TRUE

1IR3 : [Ox D Ox) ok Oy)) 2 O(x > J(x) o0rR O(y)) == TRUE
IR4 : [x 2 y) D OO(x) 2 Oly)) == TRUE

IRS : Of(x) 0R O(y) = O(x OR y) == TRUE :

IR6 : O(x) D O(x OR y) == TRUE :

IR7T : <OWOM)) orR O(x) D O([J(x)) == TRUE

IR8 : [O(x 2 y) D ((O(x) > [J(y)) == TRUE :

IR : [J(x AND O(x) D y) > ([O(x) 2 [O(y)) == TRUE :

IR10 : [J(x) > [OJ(O(x)) == TRUE :

IR11 : NOT(O(x)) 2 Q(NOT(x)) == TRUE :

IR12 : OOx)) 2 OJ(x)) == TRUE :

IR13 : [OJ(x) > O(O(x)) == TRUE ;

IR14 : NOT((x) AND [J(NOT(x))) == TRUE :

IR15 : [J(x OR y) D (O((x)) oR O([I(y)) OR (LJ(O(x)) AND O(Oy)))) == TRUE
IR16 : O((Ox))) = [(O(x)) == TRUE

IR17 ¢ (SO = (O((x)) == TRUE

IR18 : CO(O(x)) = O(x) == TRUE ;

IR19 : O(O(x AND y)) = (O([(x)) AND O([(y))) == TRUE

1IR20 : [(O(x) 2 Oy = WD) 2 OCO(y))) == TRUE

R21 : OO G)) 2 Oy = OO M) 2 OO (y))) == TRUE
1R22 : (O (x AND y)) D [O(O(x)) AND [J(O(y)) == TRUE

LRl : x 2 (x OR y) == TRUE ;

LR2 : TRUE AND x == x

LR3 : FALSE OR x == x

LR4 : x AND y D x == TRUE

LRS : TRUE 2 x == TRUE :

LR6 : NOT(NOT(x)) == x H

LR7 : TRUE = x == x

LR8 : (x 2 (y 2 z)) = ((x AND y) 2> z) == TRUE :

LR : ((x D z) AND (y 2 2)) = ((x OR y) D z) == TRUE :

LR10 : ((x 2 y) AND (y D 2z2)) D (x D z) == TRUE :
LR11 : NOT(x OR y) = (NOT(x) AND NOT(y)) == TRUE :

LR12 : NOT(x AND y) = NOT(x) OR NOT(y)) == TRUE :
LR13 : x AND y ==y AND x

LR14 : x OR y ==y OR «x :

LRIS : x = y ==y = X

LR16 : [J(TRUE) == TRUE

VL1 : Val(TRUE,w) == TRUE

VL2 : Val(FALSE.w) == FALSE .

VL3 : Val(x AND y, w) == Val(x,w) AND Val(y,w) :
VL4 : Val(x OR vy, w) == Val(x.%) OR Val(y.w) ;
VL5 : Val(NOT(x) , w) == NOT(Val(x.w)) ;

VL6 : Val(x > y. w) == Val(x,w) 2 Val(y.w) ;

end PROGRESS_

AND
PROPERTY

NOT(timer_running(s,i))

AND already_received(s,i) :

).

Table 3 : An algebraic specification to verify PROGRESS property of SDT protocol (PART I1)
VL7 Val((O(x) . %) == Val(x.w) AND Val([J(x), cdr(w))
VL8 Val(O(x) . w) == Val(x.w) OR Val(O(x), cdr(w))
vLe : Val(O(x) , %) == Val(x,cdr(w)) ;
VLIO @ Val((x) , w) == Val(x,w)
VLIl @ Val(x =y, w) == (Val{x,w) 2 Val(y.w)) AND (Val(y.w) 2 Val(x.w)) :
for each 'Q in (" TRANSN' . 'RETRANSM{ seq_number 1 . ’'RECA[seq_number 1’
"FINDTO{ seq_number] , 'RECM&TRANSA[seq_number . seq_number]’
begin
atomic -) last_Q
-) ok_Q ;
bool -) last_Q(state)
-) ok_Q(state) :
end;
for each "Q in ("INITIAL "RETRANSM(s. i)’ , 'RECA(s,i) , 'FINDTO(s.i)’
” RECM&TRANSA(s, i, j)) .,
LAl last_TRANSM(Q) == FALSE ;
for each 'Q in (" INITIAL " TRANSM(s)’ "RECA(s. i) ., 'FINDTO(s,i)’
" RECM&TRANSA(s, i, j)) .
LA2 last_RETRANSM{n](Q) == FALSE :
for each "Q in ("INITIAL" , 'TRANSM(s)' ., 'RETRANSM(s,i)" , 'FINDTO(s,i)’
" RECM&TRANSA(s.i.j)),
LA3 last_RECA[n](Q) == FALSE ;
for each "Q in ("INITIAL" ., *TRANSM(s) ., 'RETRANSM(s.i)’ . ’“RECA(s.i)’
. " RECM&TRANSA(s. i, j))
LA4 last_FINDTO[n](Q) == FALSE :
for each 'Q in ('INITIAL’ . ~TRANSM(s)' ., 'RETRANSM(s,i)” , “RECA(s.i) .
"FINDTO(s. i)),
LAS last_RECM&TRANSALn. h](Q) == FALSE ;
LAG last_TRANSM(TRANSN(s)) == TRUE ;
LA7 last_RETRANSM[n](RETRANSM(s.,i)) == n=i
LAS8 last_RECA{n](RECA(s,i)) == n=i ;
LA9 : 1last_FINDTO[n](FINDTO(s,i)) == n=i ;
LA10 : 1last_RECM&TRANSA[n, hJ(RECM&TRANSA(s,i.j)) == (n=i) AND (h=j):
0K1 ok_TRANSM(s) == Valid(TRANSN(s))
0K2 ok_RETRANSM[{n](s) == Valid(RETRANSM(s,n)) ;
0K3 ok_RECA[n](s) == Valid(RECA(s.n)) ;:
0K4 ok_FINDTO[n](s) == Valid(FINDTO(s,n)) ;
0K5 ok_RECM&TRANSA[n, h](s) == Valid(RECM&TRANSA(s.n,h)) :
for each "Q in ("TRANSMN , 'RETRANSM[il ., 'RECALi) , ’FINDTO[i) " RECM&TRANSAL,
begin
AT1 Val(last_Q.w) == last_Q(car(w)) :
AT2 Val(ok_Q,w) == ok_Q(car(w)) ;
end.
for each "R™ in ("Q" , "Q ", "Ql" ., "Q2" . Q3" ., "Q4" , "@5")
begin
atomic -) R[seq_number 1 ;
bool -) R(state , seq_number) :
AT3 Val(R[i},w) == R(car(w),i) ;
end:
AT4 : Q(s,i) == Valid(s) AND lowest_unacked(s)=i ;
ATS Q (s,i) == Valid(s) AND lowest_unacked(s))i ;
AT6 Qi(s,i) == Valid(s) AND lowest_unacked(s)=i AND highest_sent(s)+1(=i :
AT7 Q2(s,i) == Valid(s) AND lowest_unacked(s)=i AND highest_sent(s)+1)i
AND timer_running(s.i) AND NOT(already_received(s.i)) ;
AT8 Q3(s, i) == Valid(s) AND lowest_unacked(s)zi AND highest_sent(s)+1)i
) : AND NOT(timer_running(s,i)) "AND NOT(already_received(s.i)) :
ATS Q4(s, i) == Valid(s) AND lowest_unacked(s)=i AND highest_sent(s)+1)i
AND timer_running(s,i) AND already_received(s,i) :
AT10 : Q5(s.i) == Valid(s) AND lowest_unacked(s)=i AND highest_sent(s)+1)i

94

symbols (details are described in Section 3.2.2 and 3.2.3) are introduced as functions whose
range are sort formula. A formula of Temporal logic is represented by a term consisting of
only above modal operators, logical symbols and atomic predicate symbols. And several inference
rules of Temporal logic are introduced as axioms (the axioms IRIL,.... IR22 and LR1,...,LR16).

In our formalism, if PETRUE holds for a term P of sort formula, then the formula P is shown
to be TRUE by using typical inference rules of Temporal logic (for example, those in [11]).

Next. we define sequences of states and the interpretation of atomic predicate symbols (the
values of atomic predicate symbols for each sequence of states). For convenience sake, we use

the following notations:

For a state transition function g (g#INITIAL) with k parameters whose sorts are s;.....s;. a
-value (term) t of sort state (for short. state t) and values aj,....ap of sorts sy,...sy
respectively., let glaj.....a]J(t) denote g(t.ay..... ap)- ¥e call each glay..... al Tr
-function”. Let I denote the set consisting of all r -functions (in general, T may be
infinite).

Ve call state t satisfying Valid(t)F TRUE "a valid state”. If t and a(t) (¢ &€T) are both
valid states. then we denote this by t =) a(t) and call @ (t) a next state of state t.

In general, there doesn’t necessarily exist at least one next state for any valid state t.
But, in case of SDT protocol., there existé at least one next state for any valid state t. That
is, the following property holds :

Ja&€Tl (Valid(t) D Valid(a(t)) ¥ TRUE} ---(3-1)

We have verified this property by using structural induction on the depth of nesting of terms
of sort state [9].

{The sequences of stateé]

If Vi(i=0) s;=)s;;; holds for a infinite sequence w(Z[sys;...s,...]) of states, then we
call v "a valid sequence’. In Table 3, a new sort "SEQ" which denotes the set of valid
sequences are introduced. ¥e assume that all states in w(éé[sosl...sn...]) are valid states
and that Vi(i=0) s;=)s;; holds for the given infinite sequence W(&[sys;...s,...]) of states.
Fe call the first state sy in a valid sequence w(éé[sosl-.-sn..-]) "a present state” and denote
it by car(w). k

SEQ isn’t empty by property (3-1).

[Atomic predicate symbols and their values)

Suppose that a term P(s,al,az,.‘.,ak) of sort bool satisfies the followiqg (1) and (2).

(1) s is a variable of sort state.
(2) aj.ag,....ay are values whose sorts are other than sort state.

Ve introduce P[al.....ak] as an atomic predicate symbol if the value of the term
P(t,al.....ak) is defined as TRUE or FALSE for any valid state t. The value of an atomic
predicate symbol P[al,...,ak] is defined as follows:

For a infinite list w(éé[soslsz...sn....]) of states, let Val(P.w) denote the value of the

formula P for the infinite list w of states, and cdr(w) denote the infin;te list [5152"5n1‘] of
states which is removed the present state sy from the infinite list w(Z[sgs;. - s, .- 1) of
states. In this paper, for any atomic predicate symbol P[al,...,ak] and valid sequence w(Z
[sgsy---sp -+ 1) Val(Plaj..... ap).w) is defined as the value of P(sg.ag. - ap)-

¥e also define the value of a formula which contains modal operators and/or logical symbols

as follows:
We define that Val(QO(P),w) is equivalent to Val(P,cdr(w)) for any formula P. And, we also

define that Val([J(P),w) is equivalent to Val(P,w) AND Val([J(P),cdr(w)), and that Val(
(P).w) is equivalent to Val(P,w) OR Val(C(P),cdr(w)). These definitions of the values
of formulas are described as the axioms VLI, VL2...., VL1l in Table 3. If the value of a
formula (term of sort formula) Q for any valid sequence (term of sort SEQ) is TRUE, then we
denote it by "Val(Q.w)TRUE" (v is a variable of sort SEQ)

In Table 3. seven kinds of atomic predicate symbols Qlil,
Q[il.Qifi).@2[i}. @3[i). 4[i].Q5(i)) are introduced. The meanings of these atomic predicate
symbols are described in Section 3.2.2 and 3.2.3.

For example, since we define Q(s,i) as follows

Q(s,i) = Valid(s) and lowest_unacked(s)=i
then Q[1), @[2].... are atomic predicate symbols. Q[i] is an atomic predicate symbol which
indicate whether the value of lowest_unacked at present state is "i” or not.

¥e also introduce two kinds of special atomic predicate symbols "last_a” and "ok_a . The
meanings of last_«a and ok_« are as follows :

(A) last_a : The predicate symbol which indicates whether the last action at the present state

is a or not. The value of last_a is defined as the axioms LAl,LA2,.... LA10 in Table 3.

(B) ok_a : The predicate symbol which indicates whether the execution of action a is allowed
at the present state or not. ¥e define the value of ok_a as the axioms OK1,0K2,...0K5 in
Table 3.

3.2 THE PROCESS OF THE VERIFICATION OF PROGRESS PROPERTY

In this section. we explain the process of verifying PROGRESS property of SDT protocol.

3.2.1 PROGRESS PROPERTY OF SDT PROTOCOL

The axioms of the algebraic specification (Table 1) of SDT protocol and its theorems (Table
2) state that every packet with a sequence number less than the value of “next_required” has
been received correctly by the receiver but theApacket with the sequence number equal to the
value of "next_required” has not yet received. Hence, we can express the property that “SDT

protocol will progress™ as follows :
"The value of function "next_required” grows unboundedly.”

Theorem 7 in Table 2 states that the value of function next_required is always greater than
or equal to that of function lowest_unacked which denotes the lowest sequence number that the
sender has sent the packet of the sequence number but not yet r-ceived the acknowledgement of
receﬁtion of the packet from the receiver. Therefore, if the value of function lowest_unacked
grows unboundedly, the value of function next_required does, too. In this paper. we show the
Vvalue of function lowest_unacked grows unboundedly.

But, in general, a specification of a protocol doesn’t contain the following hypotheses (Al)
and (A2) for the stations and the communication lines, respectively :

(Al)If the transmission/retransmission of a_packet with the same sequence number (whose sequence
number is identical) is allowed repeatedly. then the action transmission/retransmission will
be eventually done.

(A2)If packets with the same sequence number have been retransmitted repeatedly, at least one of
them will be eventually received by the receiver.

In order to verify PROGRESS property, such hypotheses as (Al) and (A2) are necessary. In

Section 3.2.2, these hypotheses are formulated algebraically. In Sections 3.2.3 and 3.2.4, we

/2

96

show the following two properties :
(1) Consistency of the hypotheses that there exists at least a valid sequence satisfying the

given hypotheses.
(2) PROGRESS property that the value of function lowest_unacked grows unboundedly for any valid

sequence satisfying the given hypotheses.

3.2.2 THE HYPOTHESES FOR THE STATIONS AND COMMUNICATION LINES
In this section., we describe how to express the hypotheses for the stations and communication
lines algebraically.
There are two types of actions at each station in SDT protocol. One is an active action such
as "transmission” or “retransmission”, and the other is a passive action such as "reception”.
In general, for the execution of a passive action (such as “reception” in a station), it is

necessary to have executed some active action (such as transmission in the other station) in

advance. We call such an active action a " A -action”™ for the passive one. TRANSN and
RETRANSM{il are A -actions for RECM&TRANSA[i.j] and RECM&TRANSA[i,j] is an A -action for
RECALj].

In this paper. we give the following two hypotheses.
(B1)If the execution of an active action such as transmission is allowed repeatedly. then the
action will be done eventually.
(B2)If the A -action for a passive action has been done repeatedly arid the execution of the
passive action is allowed repeatedly, then the passive action will be done eventually. []
Let 1 denote the set of sequence numbers. By using predicate symbols last_a and ok_«a
introduced in Section 3.1, we express the above hypotheses as follows:
{The formal definition of the hypothesis (B1)]
If a given valid sequence w satisfies the hypothesis (B!), then
Val (CH(C(ok_a)) D O(last_a). w)ETRUE
holds for any active action o« & (TRANSM. FINDTO[i]. RETRANSN[i]) | i€ 1I}. That is. the
following (B-1), (B-2) and (B-3) hold for any valid sequence w satisfying hypothesis (Bl):
(B-1) Val(IJ([J(O (ok_TRANSK)) 2 O (last_TRANSM)), w)E TRUE
(B-2) Vi€ { Val([J([J(O(ok_RETRANSK[i])) >
<{(last_RETRANSN(i1)), w)EF TRUE }
(B-3) Vi€l{ val(O(O(O ok _FINDTOLi])) D
O (last_FINDTOLi])), w)F TRUE)
From now, the above (B-1), (B-2) and (B-3) are abbreviated as Val(Bl.v)§TRUE.
Vi€l {Val(Byli). w)FTRUE}. Vi€l{Val(B3[il. w)FTRUE}. respectively.
[The formal definition of the hypothesis (B2)]
If a given valid sequence w satisfies the hypothesis (B2)., then
Val(CI(O(O(tast_a) AND [O(O(ok_8)
, > O(last_B)). w)ETRUE
holds for any passive action [& {RECM&TRANSA{i.j]. RECA[j) | i, j€1I} and each A -action
« (executable repeatedly) for B. That is, if hypothesis (B2) holds. then the following (B-4)
and (B-5) hold for any valid sequence w satisfying hypothesis (B2):
(B-4) Vi, i€l {
Val([J(O(O (1ast _RETRANSMLi 1)) AND [J(< (ok _RECM&TRANSALi. j1))
2> O(last_RECN&TRANSALi, j1)). w)FTRUE)

€O
-

(B-5) Vi, j€l {

Val([J([J((1ast _RECM&TRANSALi. j1)) AND

[J(O (ok_RECAL§1)) D O (last_RECA[j1)), w)FTRUE |}

Hereafter. the above (B-4) and (B-5) are abbreviated as Vi, j&I{Val(B,[i,j]. w)FTRUE}.
Vi, j€1{Val(Bgli.jl. w)FTRUE}. respectively.

In case of SDT protocol, the receiver sends tﬁe acknowledgement whose value is between i and
i+TWS (TWS means the transmitter window size (see Section 2.2)) when the receiver has received
‘the packet with a sequence number "i’. Let Val(B[i],w) denote the logical product of
Val(By.), Val(Bylil.w). Val(Bglil.w). Val(By[i.il.w). Val(Byli.it1}.w)..... Val(B4[i.itTNS]. %),
Val(Bgli. il.w), Val(Bgli,itll.w)...., Val(Bgli. i+TWS].). If the hypotheses (B-1) to (B-5)
hold, then Yk€1{Val(B[k]).w)ETRUE} holds. ¥e define that if Val(B[i), w)ZETRUE holds for a
valid sequence w, then the valid sequence w satisfies the hypotheses necessary for the
transmission/reception of the packet with a sequence number "i’.

In this paper. we prove PROGRESS property of SDT protocol by showing that the following
condition [PR] holds.

[PR] For any valid sequence w (.—":‘[sosl...sm...sn...]) such that Val(B[jJ, w)F TRUE holds for any
sequence number j in I, the following (A) and (B) hold.

(A) There exists a sequence number i such that lowest_unacked(so)=i§TRUE.

(B) For any sequence number i and valid state s, in ¥ such that lowest_unacked(sm)=i-§TRUE

holds. there exists a valid state s, in ¥ such that m(n and lowest_unacked(sn)>i?TRUE.

From the axioms AX2, AX17, AX18 and AX43 in Table 1, the value of lowest_unacked(s) is
defined for any valid state s. Then. for any valid state sy there exists a sequence number "i~
such that lowest_unacked(so)=i§TRUE holds. That is, the condition (A) holds.

Let Q[i] and Q [i] denote the atomic predicate symbols such that

Val(Q[i].) FQ(car(w).i)

Q(t. i) £ Vvalid(t) AND lowest_unacked(t)=i ---(3-2)
Val(Q' [i]. w)FQ (car(w), i)
Q (t.i) £ Valid(t) AND lowest_unacked(t))i ---(3-3)

and let C[i) denote the formula such that
clil 2 [Jli] 2 &' iy ---(3-4)
Ve formulate the condition (B) as follows :
For any valid sequence ¥ such that Vi€ [{Val(B(jl.#)ZTRUE} holds,

Val(c[il),)F TRUE holds. ---(3-5)
In Sections 3.2.3 and 3.2.4, we prove (3-6) as the sufficient condition for (3-5).
Val(B{i).w) O Val(Cl[il, w)2TRUE ---(3-6)

3.2.3 LEMMAS NECESSARY FOR THE VERIFICATION OF PROGRESS
PROPERTY OF SDT PROTOCOL
In this section, we describe hovw to find out the lemmas necessary for the verification of
PROGRESS property of SDT protocol and present them in the form of "VaI(Ah[i].v)“‘g‘”TRUE".
First, we classify valid states where the values of function "lowest_unacked” are equal to
some sequence number (say, "i”). That is., we split the set {t|Q(t,i)FTRUE} as follows :
(A) The subset where the packet with sequence number "i” hasn't yet been transmitted from the

sender.
(B) The subset where the packet with sequence number "i” has been already transmitted but not

98

yet been received by the receiver.

(C) The subset where the packet with sequence number "i” has been already received by the
receiver and the acknowledgement has already been sent by the receiver. but hasn't yet been
received by the sender.

Furthermore. vwe split (B) (or (C)) into the following (Bl) and (B2) (or (Cl) and (C2))
depending on whether timeout has occurred or not.

(B1) The subset of (B) where timeout hasn’t occurred

(B2) The subset of (B) where timeout has occurred. The sender is preparing retransmission of
the packet with a sequence number "i”.

(C1) The subset of (C) where timeout hasn’t occurred

(C2) The subset of (C) where timeout has occurred.

Ve represent the these five subsets (A), (Bl1),(B2),(Cl),(C2) as Situation(1),...,Situation(5).
respectively.

We formulate the these five subsets using the following five predicates Q1(t,i),..., Q5(t.i)
such that for each k (1=<k=<5) and state t. Qk(t,i)FTRUE holds if and only if t is in
Situation(k).

(1)Q1(t,i) £ Valid(t) AND lowest_unacked(t)=i

N AND highest_sent(t)+1=i
(2)Q2(t, i) & Valid(t) AND lowest_unacked(t)=i
AND highest_sent(t)+1)i AND timer_running(t,i)
AND NOT(already_received(t,i))
(3)Q3(t, i) = Valid(t) AND lowest_unacked(t)=i
AND highest_sent(t)+1}i AND NOT(timer_running(t,i))
AND NOT(already_received(t,i))
(4)Q4(t, i) & Valid(t) AND lowest_unacked(t)=i
AND highest_sent(t)+1)i AND timer_running(t, i)
AND already_received(t, i) ’
(5)Q5(t. i) = Valid(t) AND lowest_unacked(t)=i
AND highest_sent(t)#1)i AND NOT(timer_running(t,i)))
AND already_received(t, i) {1

Since Q1(t,i) OR Q2(t.i) OR ... OR Q5(t.i) ¥ Valid(t) AND lowest_unacked(t)=i, it follows

from the definition of Q(t.i) that
Q(t, i) ¥ Qi(t.i) OR Q2(t.i) OR ... OR Q5(t.i) ' ; ---(3-7)
¥e introduce new situation (named Situation(6)) where the value of lowest_unacked(t) is

greater than "i” at any valid state t in Situation(6). From (3-3) in Section 3.2.2, Q (t.i)F

TRUE holds for any state t in Situation($)

Now, let C' [i] be defined by

C'[i] & [J(Q1lil or Q2(i]l OR ... OR Q5[i] 2> OQ'[iD)
val(Qk[il.w) £ Qk(car(w),i) (1=<k=5)

From (3-4), (3-6) and (3-7), "Val(B[il].w)DVal(C[i). w)ZFTRUE" (C(i)2[(Q[i]1>CQ [i])) holds
if and only if "Val(B[il].w)DVal(C [i], w)3TRUE™ holds.

For any two Situation(i) and Situation(j) such that i#j. we examine whether there exists a
r -function « such that for any state t in Situation(i), @ (t) belongs to Situation(j). If
there exists such a 7 -function, then we say that Situation(j) is a successor of Situation(i).

The following (1) to (3) are the theorems in the algebraic specification of SDT protocol

99

which représent what Situations are successors of Situation(1l). These theorems have been
proved formally by using our interactive verification support system [10].
(1Y [QI(t.i) D ok_TRANSM(t) F¥ TRUE]
(2) [QI(t.i) > Q2(TRANSM(t),i) ¥ TRUE]
(3) For any r -function «a
[Q1(t, i) > {NOT(Valid(a(t))) OR
QI a(t), i) OR Q2(a(t), i)} ¥ TRUE] [
Theorems (1) and (2) represent that the action of transmission (TRANSM) is allowed for any
state t in Situation(1l), and that if TRANSM is done, then the state just after the execution of
TRANSM belongs to Situation(2). And theorem (3) represents that if any valid action is done
then the state just after the execution of the action belongs to Situation(l) itself or its
successor Situation(2).
In this paper, we transform the following three types of theorems (A), (B) and (C) into the
following theorems (A"), (B') and (C’'), respectively.
(A) [P(t.i) ¥ TRUE]
(B) [P(t.i) D P (a(t).i) ¥ TRUE]
(C) For any r -function «
[P(t.i) D P (a(t) i) ¥ TRUE]

(A" [val(CJ(P(il). w)3FTRUE]

(B") [val([J(P[i) AND O(last_a) 2 O(P' [i1)). w)FTRUE]

(¢’ [val((PLi]l 2 O(P’ [i1)). w)FETRUE] {1

The soundness of these transformation rules follows from the axioms in Table 3.

For example. the above theorems (1) to (3) are transformed into the following theorenms.

(1" [val([JQ1li] > ok_TRANSM), w)¥FTRUE]

(2" [val([dJ(Q1li) AND O(last_TRANSK) > O(Q2[i1)), w)FTRUE]

(3°) [val([O<Q1ilil > (O1lil) or O«Q2[il)»). w)FETRIE]

¥e have also proved the theorems of types (A), (B) and (C) related to Situation(2) to
Situation(5), and then transformed them into the theorems of types (A"), (B') and (C). In
Table 4, we give the list of 30 theorems written in the form of “Val(A,[il.w)ETRUE"(1=<h=30)

3.2.4 THE PROCESS OF VERIFICATION
In this section, we describe how to prove the consistency of hy~otheses and PROGRESS property
described in (3-6) in Section 3.2.2.
For the consistency of the hypotheses, we give the valid sequence W which is described below
Now, let f (ééfoflfz...fn_lfn...) denote the sequence of 7 -functions such that
f £ INITIAL
TRANSM RECM&TRANSA[1,1] RECA[1]
TRANSM RECM&TRANSA[2, 2] RECA[2]

3

and let W(éésoslsz..sn...) denote the sequence of states such that
V= £ £,(fg) fo(8;(Fg)) ... £ (G (£ (£g))...)) ...

100

Table 4: Lemmas used for verifying PROGRESS property of SDT protocol
Lemma 1: Val([J(QL[il> ok_TRANSH).w)ETRUE
Lemma 2: Val([J(Q1[il AND O(last_TRANSM)DO(Q2[i])). w)3FTRUE
Lemma 3: Val({J(QI{i)D(O(Q1I[i1) orR O(Q2[il1))). v)FTRUE
Lemma 4: Val([J(Q2[il>ok_FINDTO[il), w)FFTRUE
Lemma 5: Val([](Q2[il> (ok_RECM&TRANSA[i.i] OR ok _RECM&TRANSA[i.it1]
OR -~ OR ok_RECM&TRANSA[i, i+TWS1)), w)FETRUE
Lemma 6: Val([J(Q2[il AND O(last_FINDTO[i])DO(Q3[il)), w)FTRUE
‘Lemma 7: Val([](Q2[i] AND (last_RECM&TRANSA[i,i] OR last_RECM&TRANSA[i, i+l]
OR -+ OR last_RECM&TRANSALi, i+T¥S1)2>O(Q4[il)). w)ETRUE
Lemma 8: Val([J(Q2[i12(O(Q2[i]) 0R O(Q3[i]) 08 O(Q4[i1))), w)FTRUE
Lemma 9: Val([J(Q3[il>ok_RETRANSM[il), w)¥FTRUE
Lemmal0O: Val([J(Q3[i]l> (ok_RECM&TRANSA[i.i] OR ok_RECM&TRANSALi,it1]
OR -~ OR ok_RECM&TRANSA[i.i+T¥S])). w)¥FTRUE
Lemmall: Val([](Q3[i) AND O(last_RETRANSN[i})2>((Q2[il)), w)FTRUE
Lemmal2: VaI(D(QS[_i] AND (last_RECM&TRANSA[i,i] OR last_RECM&TRANSA[i,it1]
OR - OR last_RECM&TRANSALi, i+T¥S$))D(O(Q5[i1)). w)FTRUE
Lemmal3: Val([J(Q3[i1D(O(Q2[iD) oR OQ3lil) oR O(Q5[i1))), w)FTRUE
Lemmald: Val([J(Q4[i]Dok_FINDTO[i]). w)FTRUE
Lemmal5: Val([J(Q4[i)>.(ok_RECM&TRANSA[i,i] OR ok_RECM&TRANSA[i,it1]
OR -~ OR ok_RECM&TRANSA[i.i4+T¥S1)). w)¥FTRUE
Lemmal6: Val([J(Q4[i]>(ok_RECA[i] OR ok_RECA[itl]
OR ----- OR ok_RECA[i+TWS])). w)FTRUE
Lemmal7: Val([J(Q4[i) AND O(last_FINDTO[i]) 2 O(Q5[i])). w)ZETRUE
Lemmal8: Val([J(Q4[i] AND (O<{(last_RECA[il) OR O(last_RECA[it1])
OR -~ OR O(last_RECALi+THSINDOQ [i1)), w)FFTRUE
Lemmal9: Val({3(Q4[i]D(O(Q4li]) OR O(Q5[i]) oR OQ [i1))). w)BFTRUE
Lemna20: Val([J(Q5[i]> ok_RETRANSM[il). w)¥TRUE
Lemma21: Val([J(Q5[i]> (ok_RECM&TRANSA[i,i] OR ok _RECM&TRANSA[i.it1]
OR ------ OR ok_RECM&TRANSA[i, i+TWS1)). w)¥FTRUE
Lemma22: Val([J(Q5(i}> (ok_RECA[i] OR ok_RECA[it1]
OR -+ OR ok_RECA[i+T¥S])), w)FTRUE
Lemma23: Val([J(Q5[i] AND O(last_RETRANSK[i))DO(Q4[il)), w)FTRUE
Lemma24: Val([J(Q5[i) AND ((O(1last_RECA[i]) OR O(last_RECA[it+1])
OR - OR O(last_RECALi+TWNSI))DOQ [i1)). w)FTRUE
Lemrna25: Val([J(Q5[i12(O(Q4li) or O5Li1) 0B O(Q [i1))), w)FTRUE
Lemma26: Val({J(Q2[iJ>NOT(Q1[i]) AND NOT(Q3[il)). w)¥FTRUE
Lemma27: Val([J(Q3[iJDNOT(Q1[i]) AND NOT(Q2{il)).w)¥¥TRUE
Lenma28: Val([J(Q4[iJDNOT(Q2[il) AND NOT(Q3[il) AND NOT(Q5[i})), w)FFTRUE
Lemma29: Val([J(Q5[iJ>NOT(Q2[i]) AND NOT(Q3[il) AND NOT(Q4[i])).w)FTRUE
Lemma30: Val([J(Q [i]JDNOT(Q4[i]) AND NOT(Q5[i1)), w)FTRUE

That is. W denotes the sequence of states which are reachable from the initial state INITIAL by
executing the actions fl.fg»..., successively. ¥e can prove that ¥ is a valid sequence, and
that W is satisfied all hypotheses on stations and communication lines[9].
For verifying PROGRESS property (Val(B{il.w) 2 Val(C' [i). w)®TRUE). we introduce constant K
which represents an arbitrary sequence number. and verify
Val(B[K]. %) D Val(C' [K].w) ¥ TRUE. ----(3-8)
~ Even if B{K) and C' [K] are replaced by. say, B{10] and C'[10]. respectively, the process of
the verification is the same. Thus, we conclude that Val(B[il].w) D Val(C’ [i), w)Z¥TRUE holds
To verify (3-8). we use 30 lemmas (Val(Ah[i].w)ifTRUE (1=h=30)) described in Section 3.2.3
Let E' denote the axiom system such that
E' £ {axioms IRl...IR22,LR1....LR16,VL1,... VL1l of the axiom system in Table 3}
+ {val(A,[K), w)==TRUE|I=h=30} + {Val(Bj[K].w)==TRUEIl;;j;;5}
[f we can show that
Val(C’ (K], %)) ¥ TRUE ----(3-9)
holds by using axiom system E'. then we can conclude that (3-8) holds.
The outline of the inference process to show that (3-9) holds is as follows :
{ INFERENCE PROCESS]
By "Val(Ag[K).w)==TRUE" in E’ and inference rule IR3 and VL6 in Table 3, it follows that
val([3(Q, [K12[J(Q [X]) OR < (QqylR1)), w)F TRUE --- Fy
By "Val(A,;[K],w)==TRUE" and "Val(By.w)==TRUE" in E’ and several inference rules in Table 3.
it follows that

Val([J([J(Q; [K1)D> O (1ast_TRANSH)), w)F TRUE -~ Fy
By "Val(Ag[K].w)==TRUE" in E' and several inference rules, it follows that

Val([]([](QI[K]) AND <>(last_TRANSK):><>(02[K])).w)i?TRUE --- Fy
By Fy.Fg.Fg. it follows that

Val([](Ql[K]:><>(02[K])).w)i?TRUE --- Ty

Similarly, followings hold:
By 'Val(As{K].w)==TRUE” in E' and several inference rules. it follows that

Val(D(Qg[K]DD(Qz[K]) OR <>(Q3[K]) OR 0(04[K])).')§TRUE --- Fg
By 'Val(A13[K].w)==TRUE~ in E' and several inference rules, it follows that
Val([3(Qz[RID[I(Q3[R]) 0R O(QylR]) OR O(QgIKI)). w)FTRUE --- Fg

By Fy and Fg, it holds that
Val([J((Qe[K] OR Q3[KD)D
<>([](Q2[K])) OR <>([](Q3[K]))
OR (CJ(O(Qe[RD)) AND [O(O(Qg0R1)
0R O(Q LK1 OR O(Qg[K1)), w)F TRUE --- Fq
By applying "(Val(Ah[K].w)==TRUEIh=4,6,27)" and 'Val(B3.w)==TRUE" in E to Fq. Fq is
simplified as follows:
~ val([J((Qy[KR] OR Q3(K1)D
O(O(Qg[KD)) 0R ([J(O(QelKI)) AND [J(O(Qg[K1)))
0R O(Qu[K1) OR O(QglK1)). w)FTRUE --- Fg
Furthermore. by applying "{Val(A [K]. w)==TRUEIh=9.11,26)" and "Val(By.w)==TRUE" in E' to Fg.
it reduces to
Val([J((Qy[K] OR Q3[KD)D
(OO QD)) AND [3(O(Qg[R1))

‘”\(J

101

102

0R O(Qq[R]) OR O(Q5(K1)). w)E TRUE --- Fyg
By applying "(Val(Ah[K],v)==TRUE(h=5.7,10.12.28,29)" and "Val(By, w)==TRUE" in E' to Fg it
reduces to
Val(D((QZ[K] OoR QKD >)
or O (Qu[K1) OR <>(Q5[K])).w)i?TRUE . --- Fyo
Similarly. by using "{Val(A,[K].w)==TRUE|h=4,..30}" and ”{Val(Bj,w)==TRUE| j=2,3.4,5}" in E’
we have .
val([J((Qu[K] OR Q5[K]):><>(Q'[K])).v)i?TRUE --- Fpy
By F4.Fyg and Fyy, it follows that
val([J((Q,[K] OR Qy[K] OR Q3[K] OR Q4[K] OR Q5[K1)D

<$(Q [K1)), w)FETRUE --- Fyg
that is, ,
Val(C'[K].%)) F TRUE o _
holds. The details are omitted. {1
a. CONCLUSI1ON

In this paper, we have presented a method for verifying PROGRESS property of a protocol whose
specification is described algebraically in a style of an abstract sequential machine. and
applied the method to SDT protocol. The good feature of our method is that whole verification
works can be carried out formally and mechanically. Our method can be applied for some
verification problems such that the properties to be proved are formulated in the form of
"Val(P, w)¥TRUE".

¥We have proved the theorems (lemmas) necessary for the verification of PROGRESS property of
SDT protocol by using our interactive verification support system. For decreasing the vwork
load .in carrying out the verification process by ﬁsing inference rules of Temporal logic, we
have a plan to build decision procedures for an subclass of Temporal logic in our verification

support systen.
REFERENCES

(1] G.V.Bochmann and C. A. Sunshine. “Formal methods in communication protocol design,” IBEE
Trans. commun., vol.COX-28, pp. 624-631, Apr. 1980.

[2] A S.Danthine. “Protocol representation with finite-state models.” IEEE Trans. Commun. .
vol. COM-28, pp. 632-643, Apr. 1980.

[3] N.V.Stenning, "A data transfer protocol.” Comput. Networks, vol.1l, pp. 99-110, Sept. 1976.

(41 G.D.Schuitz, D.B.Rose. C.H.West and J.P.Gray, ~“Executable description and validation of
SNA, " 1EEE Trans. Commun., vol.COM-28. pp. 632-643, Apr. 1980.

[5] C.A.Sunshine. D. H. Thompson, R.W.Erickson. S.L.Gerhart and D. Schwabe, “Specification and
verification of communication protocols in AFFIRM using state transition models.” IEEE
Trans., Software Eng.. vol. SE-8. pp. 460-489, Sept. 1982.

[6] T Higashino., M.Mori, YVY.Sugiyama, K.Taniguchi and T.Kasami. "An algebraic specification of
HDLC procedures and its verification,” IEEE Trans. Software Eng., vol.SE-10, pp. 825-837
Nov. 1984.

[7] Y.Sugiyama, K. Taniguchi and T.Kasami, ~A-specification defined as an extension of a base

(8]

(9]

10]
(1]
[12]

[13]

[14]

[15]

(161

103

algebra. "Trans. I1ECE Japan. vol.64-D, pp- 324-331, Apr. 1981 (in Japanese).

T. Kudo. T. Higashino, ‘M.Higuchi. K. Taniguchi. T.Kasami and M. M¥ori, "An algebraic
specification of Stenning’s data transfer protocol and its verification.” in Proc. Tech
Group Automaton. Lang.. IECE Japan, Rep. AL83-64. Jan. 1984, pp. 93-105 (in Japanese).

T. Higashino. K. Taniguchi and T.Kasami. "Verification of progress properties of an algebraic
specification of Stenning’s data transfer protocol,” in Proc. summer LA sympo. Theoretical
Computer Science, pp.102-111, July 1985 (in Japanese)

T. Higashino, T.Kudo. S.Nawata, Y.Sugiyama and K. Taniguchi, "Verification support system for
algebraic specifications,” Trans. IECE Japan., vol.67-D. pp. 472-479, Apr. 1984(in Japanese)
B. T. Hailpern, “Verifying concurrent processes using temporal logic,” Lecture Notes bin
Computer Science 129 : Springer Verlag, 1982.

B. T. Hailpern and S.Owicki. “Verifying network protocols using temporal logic.,” in Proc.
Trends and applications 1980, [EEE Comput. Society. pp.-18-28, 1880.

J. A. Goguen. J. V. Thatcher and E. G. Fagner. "An initial algebra approach to the specification.
correctness and implementation of abstract data types.” in Current Trends in Programming
methodology. vol. IV, R.T. Yeh. Ed. Engledwood Cliffs, NJ: Prentice-Hall, 1978.

R. L. Schwartz and P.M Melliar-Smith, "From state machine temporal logic : specification
methods for protocol standards.” IEEE Trans. commun.. vol. COM-30. pp.2486-2496, Dec. 1982
T. Higashino, K. Taniguchi, T.Kasami. M.Fujii and M. Mori, "Verification of progress property
of algebraically specified communication protocols.” Trans. IECE Japan, vol. 69-D,1471-1480
Oct. 1986 (in Japanese).

Y.T Yu and M. G. Gouda, "Deadlock detection for class of communicating finite state machines.”

[EEE Trans. Commun., vol.COM-28, pp.2514-2518. Dec. 1982.

N
',

