goooboooogn

0 6550 19880 124-

124

146

n

Fea7m—3 v bV —2ETKART S5 LOFERB L EXRS

T = e o sy

Computation Mechanism and Semantics for Logic Programs

Based on Dataflow Networks

Susumu Yamasaki
Department of Information Technology

Okayama University, Tsushima, Okayama, Japan

Abstract. In this paper it 1is shown that the computation
mechanism for a logic program is realized by a dataflow
network. The network consists of two kinds of nodes and
one way transmission <channels connecting nodes. A node
of the first kind is assigned to each Horn clause and a
node of the second kind to each predicate symbol. The node
of the first kind is interpreted as able to send a ground
atom through an output channel after receiving a tuple of
ground atoms. from dinput channels, and denotes a relation
among the sequences of ground atoms. The nondeterminism
of the node, in choosing which tuple of ground atoms is
to be received and which ground atom is to be sent, is elim-
inated and ensured fair by introducing oracles, for the
network to be both sound and complete in finitely computing
a logic program. The node of the second kind is a general-
ized fair merge operator, which provides a sequence of ground
atoms to an output channel by fairly interleaving the se-
quences of idinput channels. It is necessary to realize .so-
called OR-nondeterminism essential in the deductions of
logic programs, over sequence domains of ground atoms.
The semantics of the network is given by fixpoint approach
over sequence domains. It can be thought of as a semantics

of the original logic program.

l.Introduction

There have been many discussions as to the semantics
of logic programs since M.H. van Emden and R.A.Kowalski
defined it from model-theoretic, fixpoint and operational
approaches [1,2,3,12,15,23], As far as the finite computa-
tion of 1logic programs is taken into account, the minimal
Herbrand models of them are thought of as essential, as
has already been made <clear in [3,14,23]. Suppose that
a set of Horn clauses is given as a logic program. Then,
its minimal Herbrand model is regarded as denoting the set
of all atoms derivable by finite deductions from it. Its
minimal Herbrand model is also a least fixpoint of a function
(from the power set of its Herbrand base to itself), which
is associated with the logic program.

In this paper, it is shown that the semantics of logic
programs can be defined over sequence domains from the
Herbrand base. The motivation of the present paper 1is
to study the relationship between the dataflow network and
the computation mechanism for logic programs. A dataflow

network 1is constructed as a computation mechanism for 1logic

programs. The network will consist of nodes and channels
connecting nodes. The channel transmits a sequence of ground
atoms one way. The node receives sequences of ground atoms
and sends a sequence of ground atoms. Mathematically, the

denotations of channels are finite or infinite sequences
of ground atoms. The nodes are thought of as defining rela-
tions among the sequences of ground atoms or functions of
them. The relation or function each node denotes is 1in
accordance with the behaviour of receivi . and sending se-
quences of ground atoms.

The main concern is whether or not the denotation of
a logic program, which is its minimal Herbrand model, can
be expressed over sequence domains of ground atoms. Also
we have a question of how the denotation of a logic program
could be well-defined over sequence domains.

To answer the question, we have the first kind of nodes

1

Lp]

25

each of which corresponds to a Horn clause in a given logic
program, and 1is interpreted as sending ground atoms after
receiving ground atoms, in accordance with the generation
of ground atoms from the Horn clause and received ground
atoms by bottom-up inferences. Then each node of the first
kind will be defined to, K receive input sequences of ground
atoms and send an output sequence. Next we have the second
kind of nodes which are interpreted as'fairly'merging input
sequences of ground atoms and emitting an output sequence.
Here it istmeant by 'fairness' that there is no case where
any part of any input sequence is neglected and does not
appear 1in the output for ever. The emitted sequence 1is
an input of some node of the first kind through a channel.
On the other hand, the inputs of each node of the second
kind emanate from the first kind of nodes. Each node of
the second kind fairly interleaves more than one alternative
sequences which can be an input of some node of the first
kind. It is necessary to simulate OR-nondeterminism in
the bottom-up inferences of Horn clauses, by means of se-
quences of ground atoms.

Thus, for a given logic program, we will have a network
consisting of two kinds of nodes (which receive and send
sequences of ground atoms), and channels transmitting se-
quences of ground atoms. It is different from a pure
dataflow in [13), since (1) it contains the nodes realizing
fair merging, and (2) each node of the first kind does
not denote a function but a relation and has nondeterminism
in deciding: (a) which ground atoms in sequences are to
be received, and (b) which ground atom among possible atoms
is to be sent out. We say that the network 1is complete
if the ground atom is emitted by some channel whenever it
is in the minimal Herbrand model of the given logic program.
Also, the network is said sound if the ground atom is in
the minimal Herbrand model whenever it is emitted by gome
channel. Note that the soundness and completeness of the
network are the conditions to realize the computation mecha-

anism of the originally given logic program. In order that

the network may be not only sound but also complete, it
is sufficient for each node of the first kind to be fairly
nondeterministic in deciding which ground atoms are to be
received and which ground atom is to be sent.

We have a class of fair infinite sequences of natural
numbers as oracles for each node of the first kind to be

ensured fair in the above decisions and to be determinant.

By the term: 'a fair infinite sequence of natural numbers',

it is meant that any natural number occurs in the sequence
an arbitrary number of times. We have a simple method to
provide a <class of such fair infinite sequences. Then,
the whole network is reduced to a network consisting of
nodes fairly interleaving sequences. The semantics of the
network is defined by fixpoint approach, based on the de-
notations of channels over sequence domains of ground atoms.
It can be regarded as a semantics of the originally given

logic program.

2.Preliminaries

A logic program is a finite set of Horn clauses, A Horn

clause is a clause of the form A<—Bl...Bn (n>0), where A

is either an atom or empty, and Bl""’Bn are atoms,
An atom 1is an expression of the form P(tl,...,tm) where
P is a predicate symbol and tl,...,tm are terms.

A term 1is defined recursively: (i) a variable 1is
a term; (ii) f(tl,...,tk) (k>0) is a term if f 1is an
k-place function symbol and ty,...,t, are erms. (A O-place

function symbol is a constant symbol.)

A substitution is a finite set of the form'{xlltl,..”
xnltn}, wvhere each X5 is a variable and each ti is a term
such that there is no occurrence of X4 in ti. For a substi-
tution o and an atom A, Ao 1is an atom obtained by substi-
tuting terms in O for all the variables of O occurring in

A simultaneously.

127

128

Given a logic program S, the Herbrand universe Hu(S)

of S is defined as follows:

{a | a2 is a constant symbol in S}
H0= if S contains at least one constant in S,
{b} (b: some constant symbol) otherwise,

Hi=Hi_1\J{f(tl,...,tn)lf: a function symbol in S, tjé'Hi—l}’
Hu(s)=\J, ¢, H

I

i

where w is the set of all natural numbers.
The Herbrand base HS of S is
HS={P(t1,...,tm)]P: a predicate symbol in S, tjE:Hu(S)}.

Given a set F, #F means the cardinal number of F.

3.Network Constructed from Logic Program
3.1.0utline of Network

We shéll have a method of transforming 1logic programs

into networks consisting of nodes and one way channels.

There are two kinds of nodes in a network. we assign
a node of the first kind to each Horn clause A<—Bl...Bm
(m>0). The node is attached to an output channel, say,
C and m input channels, say, Cl,...,Cm. The node is inter-

preted as able to send out a ground atom A6 to the output
channel C after receiving a tuple of ground atoms Bﬁ s e ey
Rﬁ from the input channels Cl""’cm’ respectively, where
6 is a substitution. This assignment is in accordance with
the generation of A6<f from {A<—Bl...Bm, B16<—,...; Bm6<—}.
In general, there are possibly more than one tuples of ground
atoms to be received. Also, there is nondeterminism in
sending a ground atom every time the node receives a tuple
of ground atoms.

The output channel of a node for a Horn clause H1 will

be related to an input channel of another node for a Horn

clause H2 if the procedure name (head) of H1 has the same

predicate symbol as that of some atom in the procedure body

of HZ' Because the ground atoms sent out by the former
node for Hl can be received by the 1latter for H2. There
are possibly more than one output channels, say, Dl""’

Dp’ to be related to an input channel, say, D of the node

for H2. To get ground atoms emanating from the channels
Dl"' "Dp through the input channel D, it 1is effective to
have a node which has, as inputs, the relevant output chan-
nels Dl""’Dp and, as an output, the input channel D, inter-
leaving its input sequences from Dl""’Dp to provide an
output sequence to D. The interleaving is 'fair' in the

sense that there is no case where any segment of any input
sequence 1is neglected and does not appear in the output.
Such a node is refered to as the second kind in the following
context. Thus, the output channel of a node of the first
kind will be an input channel of a node of the second kind
and vice versa. Since all the atoms transmitted through
Dl""’Dp and D are regarded as having the same predicate
symbol, it is seen that a node of the second kind should
be defined in accordance with the predicate symbol.

The above network is a dataflow network and is regarded
as a computation mechanism. The network is formally

Net=(NC, N C)

M’
where NC and NM are sets of nodes such that they are disjoint
and C(:NCxNMLJNMxNC is a set of channels. Note that N

C
is the set which consists of the nodes refered to as the

first kind. NM is the set of the nodes «: the second kind.

We construct a network NetS for a given 1logic program
S, and define 1its semantics in order that NetS may Dbe
a legal computation mechanism of S. To do so, several nota-

‘tions as to the logic program S‘are necessary.

AtomS denotes the set of atoms the forms of which appear

in Horn clauses of S. PredS means the set of predicate

129

130

symbols appearing in S.

S
(3.1) right: S-—>2Atom and left: S—>Atomsk)[¢} are de-
fined as follows:
right(A(—Bl...Bm)={Bl,...,Bm} for A<—B1...Bm€ S.
_ _{ A if A is not empty,
lefr (A< Bl"'Bm)—{ ® otherwise, for A<-B;...B €35,

where ¢ 1is a special symbol not in Atom nor in Pred

(The purpose of using & will be explained later.)

(3.2) PRED: AtomSU {0}->Pred U{®) is defined by
S
{PRED(P(t;,...,t))=P for P(tl,...,tm)é Atom”,
PRED(¢)= 0.

Before formally defining the construction of a network
NetS=(NC, NM’ C) from a logic program S, we have an outline

as to the connections among nodes.

Firstly, we shall have an illustrated node in NC for

a Hormn clause A<—B1...Bm in S such that each Ci is an input
channel from a node in NM for PRED(Bi) (1<ilm}), and CO is
an output channel to a node ijip NM for PRED(A).

in N .
¢ C, in Ny

Fig.l Connection of a node in Nc‘with channels

n1€NM nzéNC n3€NM
P=PRED(A) A<-B1...Bm di: Q=PRED(Bi)

Fig.2 Connections among nodes

Secondly, we shall assign a node to each predicate symbol
in Preds or . ¢ 1is necessary to define a node inp NM’ to
which the nodes corresponding to goal statements ‘(Horn
clauses whose heads are empty) are connected. As illus-

trated in Fig. 2, if a node n,in NM is defined for a predi-

cate symbol P or ®, and a node n, in NC is defined for

a Horn clause of the form A<—Bl...Bm such that PRED(A)=P,

then the output channel of the node n, is an input channel

of ny. On the other hand, an output channel of a node

n
is connected with a node n, in NC’ if the predicate symboi
for nq is in an atom of the procedure body of a Horn clause
for n,. There may be more than one output channels of each
node in NM' But they are regarded as emanating from one
output port of the node in NM’ since all the output channels

denote the same sequence of ground atoms. There is no output
channel of the node for ¢.

3.2.Formal Definition of Network

S
Formally, the construction of a network Net =(NC,NM,C)

from a logic program S is

(3.3) to define mappings in: NC—>2C, out:“NC—>C,

IN: NM—>2C and OUT: NM—>2C, and

bijections Clause: S->N. and Merge: PredSL){®}—>N

C M

such that
(1) for H € S,
(i) BE€right(H)
iff (Merge(PRED(B)),Clause(H))éEin(Clause(H)),
(ii) out(Clause(H))=(Clause(H),Merge(left(H))), and
(2) for PéPredSUN’},
(i) P appears in right(H) for HES
iff (Merge(P),Clause(H)) & OUT(Merge(P)),
(ii) P=PRED(left(H)) for HES '
iff (Clause(H),Merge(P))&E IN(Merge(P)).

Example 1 Let S be {N(0)<X-, N(s(x))<-N(x)}, where N is
a predicate symbol, O is a constant symbol, s is a function
symbol and x is a variable.

Then NM={Merge(N)}, since there is only one predicate sym-
bol N in S. NC= {nl,nz} » where ny= Clause(N(O0)<X-) and

n2=C1ause(N(s(x))<=-N(x)).

1

31

132

For N(0)<- in S, the condition (i) of (1) in (3.3) is satis-
fied, since right(N(0)<-) and in(nl) are empty. The con-
dition (ii) of (1) is that out(n1)=(n1,Merge(N)).
For N(s(x))<-N(x) in S, (i) N(x) & N(s(x))<=-N(x) iff
(Merge(N),ng) e in(nz), and (ii) out(n2)=(n2,Merge(N)).
For NE Pred"™,
(i) N appears in right(N(s(x))<-N(x))
iff (Merge(N),nz)EZOUT(Merge(N)), and
(ii) N=PRED(left(N(O0)<-))
iff (nl,Merge(N))éfIN(Merge(N)) and
N=PRED(left(N(s(x))<-N(x)))
iff (nz,Merge(N))éfIN(Merge(N)).
Thus, Nets=({n1,n£ , Merge(N) ,{Cl,Cz,C3}) is illustrated
as follows:
o

e .

- % O)
12 Mergzzﬁj\t>

S

Fig.3 A network Net
3.3.Denotations of Channels

To consider the semantics of the network Nets, we first
have a domain D=HS(J{D}(J{T} for the denotations of channels.
Intuitively speaking, T denotes a time delay and 1is the
same as the hiaton introduced in [20,24]. 1 means that
there is no output from the node in NC even if it receives
a tuple of ground atoms. [represents that there exists
no atom.

For D, D ® denotes the set of all finite and infinite
sequences from D. L ‘is the empty sequence which is regarded
as an element of D7, For u €D° and pPEwW, u(p) means the

(p+1)-th element of u.

-8 -

To get a sequence. by eliminating 1 from a given sequence

in D, we define a function E: Dm~>(HSU[D])oo recursively:
(3.4) E(L)=L; E(tu)=u; E(au)=aE(u) (a#t).

Note that uv denotes a concatenation of u and v as sequences,
(e o)
for u, vE€D .

The denotations of channels are defined in Dw.

Then a relation on (Da>)#in(n) and Dm is assigned to each
n in NC.

Assume that n=Clause(H) for H:A(—Bl...B”léES. Let the
denotations of channels in in(n) be qu,...,uHméf D*, where
#in(n)=m. Also let the denotation of out(n) be VHEE)

We define VH(p) for pe w as follows:
Intuitively speaking from_the point of view of operational
approach, the (p+l)-th symbol of Vy» Sent out as an output
of n, is in the set the member of which is the expression
of the form Ao€HSU{D} if each BiO matches (qi+1)~t_:h
symbol of E(uHi) (qiﬁp), received through a corresponding
input channel. It is assumed that the output sequence of

length p depends on only the input sequences up to length

p, for the simplicity of further treatments. To denote
an m-tuple (ql,...,qm) by a natural number q which is larger
than each element of the tuple, we define a bijection

m .

Im. w->w such that if Im(p)—(pl,...,pm) then pigp. On

the other hand, to get the i-th element of an m-tuple,
. . . . m_ N

we define a projection Jm PR > w by Jm,i(pl""’pm) Py~

Formally, 1let

U
(3.5) VH(p)é a<p OutH(q)
if the set in the right-hand side is not empty, and

‘VH(p)=T otherwise, for pé&uw,

wvhere

133

134

(3.6)
Outy(a)={A0 in Hg | Fo: E(UHi)(Jm,i(Im(Q)))=BiO’ 1<idm}
if A is not empty,
Outp(q)=0
if A is empty and
for some ¢ E(uHi>(Jm,i(Im(Q)))=BiO’ 1<i<m, and
OutH(q)=T otherwise.

Thus, in (3.5), there is nondeterminism, in deciding

VH(p) for p€w , due to:

(i) which positions of input: sequences are chosen for
the matching with the right-hand side's atoms of H, and
(ii) which element is chosen as an output among the set

kﬁ(p OutH(q), for the selected positions of inputs.

#IN(n)_>Dm

Also, a function (D m) is assigned to n€ N
8

M
as follows:

As already mentioned, n has only one port from which
the output channels emanate, and all the output channels
are regarded as denoting the same sequence. We refer to
the fair merge functions, which are based on the dmerge
function in {19,20].

For any set K, K® means the set of all finite and infinite
sequences from K, containing the empty sequence J_K.

{O,l}w means the set of all infinite sequences from{0,1}.
®© o w ©

K:K xK x{0,1} ->K

is defined by

dmerge

v dmergek(u,J_K,16)=dmergeK(J—K,u,OG):J_K,
(3.7) dmergeK(au,v,OG):admergeK(u,V,G) for a€KX,
dmergeK(u,bv,16)=bdmergeK(u,v,5) for beKX.
(3.8) For 6€(0%011%)”, FM 9.
such that FMK’G(u,v)=dmergéK(u,v,6). -

a (o0 foe} .
K XK ->K means a function

K,6

FM is said a fair merge function. Note that (0*011*)w

- 10 -

means the set of all infinite sequences from the set denoted
by (0%011%), That 1is, each sequence of (O*Oll*)w contains
unbounded occurrences of both O and 1. Thus FMK’ 6(u,v)
provides a sequence w by interleaving u and v without neg-
lecting any segment of them.

Let FM(p,a) (p>2) mean a function of p inputs, which
is defined by connecting some p-1 fair merge functions,
as illustrated in Fig. 4, where a &€(0(0%011%))p-l such

= S
that &, Jp—l,i(a)' D,0,

FM

FM

FuD Op- | :
D ' p

Fig.4 A function composed of p-1 fair merge functions

As easily seen, FM(p) provides a sequence by interleaving
p input sequences fairly, that is, without neglecting any
segment of any input sequence. The function denoted by
FM(p) is called a generalized fair merge function.

Finally FM(#IN(n),an) is assigned to the node n in NM'
That 1is, each node in NM is idinterpreted as a generalized

fair merge function.

3.4 .Fair Nondeterminism in Network

The denotations of <channels, satisfying thé relations
and functions assigned to the nodes, should guarantee the
soundness and completeness of the network NetS computing
a given 1logic program S. Here soundness means that any
ground atom provided by any output channel is a member of
the minimal Herbrand model of S. Completeness means that
any member of the minimal Herbrand model of S is emitted
by some output channel.

For the soundness and completeness of Nets, nondetermi-
nism in (3.5) is now eliminated and a function satisfying

(3.5) will be assigned to each node in NC‘

- 11 -

135

136

We shall need fairmness in such nondeterminism. It means
that any positions of input sequences are chosen for the
matchings of right-hand side's atoms in the Horn clause,
in a finite time, and any element able to be sent out is

really emitted in a finite time. The fairness requires

_that any m-tuple of positions is selected an arbitrary number

of times if one of the input sequences is infinite. Accord-
ingly, any possible member is emitted an arbitrary number
of times. To indicate an m-tuple of the positions of m
input sequences, it is sufficient to have only natural anumber
if we use the bijection Im. Next we want an infinite se-
quence in which any natural number appears an arbitrary
number of times, in order to denote the sequence of fairly
selected m-tuples of positions concerning input sequences

for each node in NC.

Definition 1 We say that a sequence in wm is fair if any

pEw occurs an arbitrary number of times in the sequence.

w . ..
Note that w . means the set of all infinite sequences from

w.

To get a class of fair sequences 1in ww, we construct
a simple network by the way as illustrated below, where
P 0% is defined for 06 €(07011%)% by (3.8) and T:w’->uw” is
an operator defined recursively: T('Lw)=—1-w; T(au)=s(a)T(u)

(a€w, uéwm) for the successor function s.
w,08
FM ©
5¢° 0

T

Fig.5 A network to provide fair infinite sequence
&

Let Sf(S be the sequence generated by the aléove netwdork,
w w
that is, by the recursion equation: Sf‘S =FM 0 (0 ,T(Sf).

Proposition 1 Let 6 €(0%011%)¥. Then

(1) Sf(‘S is fair.
(2) 5.8(3)<i for j€u.

Proof (1) Sf6=0u for some ué€& wm, since SfG(O) comes

w,08

from the ‘input ov through FM Now let Occur(k,h) mean

that k occurs, in u, h times.
(i) It is seen that Occur(O,h) for any h€&€w , because

w w, 06

0" is an input of FM and O appears in its output an

arbitrary number of times.

(ii) Assume that for some h, Occur(n,h) for n<k. Then,

since k+1 should be an output of T, and at the same time
8

an input of FMw’O , Occur(k+1,h). By mathematical induction,

for some h€w, Occur(k,h) for any k.

(ididi) Since Occur(0,1) from (i), it follows from (ii)
that Occur(n,l) for any n € w, Suppose that Occur(k,h) for
any k. Since k should be an output of T, k-1 should
be an input of T, that is, k-1 occurs, in u, as many times
as k. Thus Occur(k-1,h). Finally Occur(O,h). It follows
from (i) that Occur(0,h+1). Therefore, there 1is no case
that Occur(k,h+1) does not hold. This completes the induc-
tion step. That ié;"Occur(k,h) for any k and any h.

(2) If =0, then the proposition holds, since Sfé =0u.
Assume that Sfd(h)ih for h<k. Since S: (k)+1 or O can be

the input of FMw’Oa, Sfd(k+1)§k+1. This completes the induc-
tion step.

Q.E.D.

Observing (3.5), (3.6) and Proposition 1, we see that
Sfd(p)gp is used to denote a natural number in accordance
with an m-tuple of positions of input sequences for the de-
cision of vH(p). For each natural number q corresponding
to an m-tuple of positions, the set OutH(q), whose member

can be emitted to the output channel, is determined by (3.6).

To have a correspondence of such a natural number q with

Outﬁ(q) and to enumerate the members in OutH(q), we define

(3.9) a function Ry: gy ->(2Hg) s)

H:

such that RH(q) is a injection from OutH(q) to w , and
RH(q)(A)<#OutH(q) for A in OutH(q)_

- 13 -

1237

Now assume that for p0<p1<...éu) Sf6 (p0)=Sf6 (p1)=...
Then OutH(SfG(pO))=0utH(Sfd(pl))=... . To provide any member
in OutH(Sf (po)), it is sufficient to enumerate its members

-1
by Ry(Sg8(pg))7t w—>0ut,(& (py)) and by .Y (0),
SfY(l),..., on the basis of some fair sequence SfY.

To get iE w from’Sfééamw and Sfé(pi), we define
Ord: (w®)->(w->w)
by

(3.10) 0rd (5,0 ()=#(r] s.8(r)=s,5()}-1.
Then, Ry S¢2(p,))75 T 0ra(s) (p)))
=R C Se%(py) DT 8T).

Finally, by eliminating nondeterminism in (3.5), a func-

tion to be assigned to the node Clause(H) is defined by

: -1
(3.11) vy (p)=R,(S O(p))7 (s, Y(ord(s %) (p)))
if the right-hand side is defined, and

vy(p)= 1T otherwise, for p€u,
where § and Y are in (0%011%)%,

From now on, given a network NetS for a logic program
S, it 1is assumed that the function .is defined by (3.11)
to each node in NC and a generalized fair merge function

is assigned to each node in NM‘
4,.Soundness and Completeness of Network for Logic Program
In this section, we show that the network NetS is a legal

computation mechanism in the sense that it is both sound

and complete.

Definition 2 Let HS be the Herbrand base of a logic program
5. 1g: 2tMs)52(Hg)

To(I)= {AoéHS[Jdo: A<-B,...B, € S,{Blo,...,Bko}CI }
for 1€2U19) . Let Sem(8)=n (I]Tg(1)C 1) .

is defined by

Note that Sem(S) is the minimal Herbrand model [23].
We have the formal definition of soundness and completeness

in the following.

Definition 3 Assume the network NetS=(NC,NM,C) for a logic
program S={H1,...,Hk}. NetS is sound if left(Hi)G (6: sub-
stitution), which appears in out(Clause(Hi)), is in Sem(S).

NetS is complete if left(Hi) 0 € Sem(S) (6 : substitution)

necessarily appears in out(Clause(Hi)).
(For 1left, see (3.1). For Clause and out, see (3.3).)

We have the following proposition, which states the

soundness and completeness of the network NetS

Proposition 2 Given a logic program S={ Hl,...,Hk} and
Nets, left(Hi)6€ESem(S) iff left(Hi)e appears in the channel
out(Clause(Hi)), for a substitution 8.

Proof Note that Sem(S)=\Jj€u) TSj(¢) (¢ : the empty set)
[3,23].

(=>: completeness) It is proved, by mathematical induc-
tion on j such that left(H)eéiT J(d)) that 1eft(Hi)6 appears
in out(Clause(H)Y).

(i) Assume that left(H) & TS ()< Sem(S). Then there

exists a Horn clause Hi of the form A<-. Tius, if left(Hi)e6
HS’ then left(Hi)e € OutH (q) for any q. It means that
1eft(Hi)6 appears in out%Clause(Hi)), since the fairness

in the choice of outputs is guaranteed.
(ii) Assume that any element of Tsh(¢ YC Sem(S) appears
in out(Clause(H)) for some H if h<j. Now let 1eft(Hi) 6 €
J+l(¢). Also suppose that H. —1eft(H Y<~ B1 Then,
Blw, B U] GZTS (¢) (h<j) for some substltutlon 1 VY such
N - 15 -

13

g

140

that 1eft(Hi) 6=(1eft(Hi)w o for some substitution g.
By the induction hypothesis, Bllb,‘..,Bm’w are emitted by
output channels. Therefore, they are all® in input channels
of Clause(Hi) through the nodes in NM. Since the tuple
(Blw ”"’Bm. P) of ground atoms is necessarily selected as
a received %uple by 'fairness', 1eft(Hi)6 should be provided
by Clause(Hi), due to 'fairness' in deciding the outputs.
This completes the induction step.

(<=: soundness) (i) Assume that Hi=1eft(Hi)<—. By
(3.11), any output of Clause(Hi) takes the form 1eft(Hi) &
HS for a substitution 6. Thus, left(Hi)GGESem(S).

(ii) Assume that Hi=1eft(Hi)<—Bl"'Bm. (mi>0) and that
any ground atoms appearing in the inpu% channels of the
node Clause(Hi) are 1in Sem(S). If left(Hi)B appears in
out(Clause(Hi)), then there exist Dl""’Dm. in the idinput
channels of Clause(Hi) such that Dj=Bj6 for 1jmi. By
the definition of Sem(S), if Dl""’Dm, are in Sem(S), then
1eft(Hi)6 is in Sem(S). 1

(iii) Any ground atom, appearing in an input channel of
any node in‘NC, has appeared in the output channel of some
node in NC via a node in NM' It follows from (i) and (ii)
that 1eft(Hi)6 is in Sem(S), as far as it appears in the
output channel of Clause(Hi).

Q.E.D.

5.Semantics of Network for Logic Program

In the previous section, it was seen that the network
NetS is both sound and complete. It means that the network
is a legal finite-computation mechanism and its semantics
can be regarded as a semantics of the original logic pro-

gram .S.
A fixpoint semantics of the network NetS is well-defined.

We shall see this. Suppose NetS=(NC,NM,C) and C={C1,...,Ck}.

The denotations of Cl""‘ and Ck are assumed to be Upseoos

- 16 -

and Uy respectively.

Let E be the function defined in (3.4). we say a function
f: (D YP'->D%® is asynchronous if f(E(vl),...,E(vm))=

f(vl,...,vm), that 1is, if f is dinsensitive to occurrences

oo

of T. It is evident from (3.6) and (3.11) that the function

assined to each node in NC is asynchronous.
A partial order [on D is defined by:
(o0 0
ulCv for u, v in D iff v=uw for some w in D .
© m
It is extended to act on (D)" (m>1):
(ul,...,um)[:(vl,...,vm) iff up[’_’vp for 1<p<m.

The least upper bound of a set FC:(Dm)m is the element
u such that

(i) vCZu for any v in F, and

(ii) if vCw for any v in F, then u[ZTw.

The least upper bound of F is denoted by |} F. We see that
any chain {VOC:V1[:...[:vn[:..J over (Dw)m has a least

upper bound,

Definition 4 f: (Dw)m—>D00 is continuous iff, for any chain

(vo=vi= s Ve), EQUE v Ji€uwh)= LTE(v;) i€).

Proposition 3 Assume that we have ithe network NetS=

(NC,NM,{ Cl""’ck }), where the denotation of Ci is uy
(1<i<k). Then, for i=1,...,k, there exists either a general-
ized fair merge function or an asynchronous, continuocus

, L penk L pe ~
function fi' (D7) " ->D" such that ui—fi(ul,...,uk).

Proof It is sufficient. for the proof to show that each

- 17 -

142

node in NC is continuous. (Note that the function assigned
to each node in NC is asynchronous, as already mentioned.
Obviously each node in NC denotes a generalized fair merge
function.) In (3.9), RH(Sf (p))—1 is a surjection from
w to OutH(Sf (p)), which is the set depending
on E(qu),...,E(uHm) for the node Clause(H). By Proposi-
tion 1, Sfd(p)Sp. Thus, VH(p) is a function of the tuple
obtained by truncating the denotation of each input channel
up to length p+l. Therefore we could put ui=fi(ul"'°’uk)
for fi: (Dw)k—>Dw, which is concerned with the node whose
output channel has the denotation u, - Now 1let v[p] be
v(0)v(l)...v(p) for vED .
Since fi(ul[p],...,uk[p]) C:fi(ul""’uk) for any pé& w,
LJ{fi(ul[p],...,uk[p])lpém}C: fi(ul,...,uk)
=f (LU{(u lp),..,u [p])]pew}).
On the other hand, for any p€uw,
u,lpl=f, Cupyenu) plf (uylpl,oooyu e,
since ui(p) is determined by ul[q]“..,uk[q] for some q<p,
based on (3.11). Thus,
£, (L Cuplp)yeyuy [P [pEWI)=, (ug,ennyuy)
=L (upyeeyu)pllp€w}
CUCE (uylpl,eu pD]pew) .

This completes the continuity of fi'

L D,6 . .
Proposition 4 FM”’" is continuous.

$

Proof By (3.8), FMD’ (u,v)=dmerge(u,v, §). Note that

dmerge(J_,v,061)=dmerge(u,J_,162)=_L. Therefore, for any
chain {(uo,vo)C:(ul,vl)E:...}, whose least upper bound ‘is
(u,v),L]{FMD'G(ui,vi)}EFMD’d(u,v)=FMD’6([_I{(ui,vi)liéw 1),
On the other hand, because of the fairness of FM ' °, for
any pEw there exists i such that FMD'é(u,v)[p]E:FPJD'6
Therefore ,
A2 O (U (v) i €wd)=Fn® O cu,v)

e % v) pllpew

[:LJ{FMD’é(ui,vi)Iié-w}.
This completes the continuity of FMD’d. Q.E.D.

- 18 -

(ui,vi).

It follows from Propositions 3 and 4 that for a network
NetS=(NC,NM,{ C}(,...,Ck }) there is a continuous function
fS: (Dw)k—>(Dm) such that each uy is the denotation of
Ci and fs(ul,...,uk)=(fl(ul,...,uk),...,fk(ul,...,uk)).

By the elementary theory as to continuous functions, there

exists a least fixpoint fifo of fS. Indeed, it is not
hard to see that fifo=U{fsl(_L,...,_L)|i&m}, where
fsl(J_,...,J_) is defined recursively:

£0, L)=, ., 1),

£) i-1

g (L,..., 1) fS(fS (L,...,L)).

For the least fixpoint fifo=(U1,...,Uk), (E(Ul)""’E(Uk))

can be regarded as a behaviour (semantics) of the network
NetS. Because of the soundness and completeness of NetS

computing S, it 1is also interpreted as a semantics of S,

which is defined using the sequence domain (HSL}{D})

6.Concluding Remarks

In this paper, a ‘'dataflow network was constructed as
a computation mechanism for a given logic program. It con-
sists of nodes and channels. The channel transmits and
denotes a sequence of ground atoms. The node receives and

sends sequences of ground atoms, denoting a relation among
them or a generalized fair merge function. Although each
node in accordance with a Horn clause denotes a relation
and has nondeterminism in receiving and sending ground atoms,
the nondeterminism can be eliminated by introducing oracles
baéed on fair infinite sequences of naturai numbers in order
that the network may be both sound and complete as a compu-
tation mechanism. Here it 1is meant by soundness and com-
pleteness that any member is in the minimal Herbrand model
of the original 1logic program iff it 1is emitted by some
channel in the network. Then the whole network is re=

garded as a continuous function of a tuple of denotations

14

-

144

of channels. Eliminating time delay in the least fixpoint
of the continuous function, we have a semantics of the
network, which can be a semantics of the original logic
program. This is the primary result of the paper.

The network of this paper is expected to be a basis on
which we can perform the translation of logic programs into
some functional language programs, say, dataflow language
programs (in [4]).

As another aspect, it is shown that the computation of
the constructed network corresponds to the "all-solutions"
mode of Prolog over sequence domains, since the network

is both sound and complete in computing a given logic pro-

gram.
In this paper, the network deals with only sequences
of ground atoms. We have a significant problem of how the

network should be established in order that goal statements

containing variables and answer substitutions can be com-
puted. In [25], we have dealt with semantics of a Horn
sentence, denoting the set of substitutions with which

atoms are derivable by unit_deduction from the Horn sentence,
to get a direct correspondence between the semantics of
the Horn sentence and fhe answer set concerned with its
computation. Combining the treatment in that paper with
the primary result of this paper, we can have a method to

solve the problem, although it seems very awkward.

Acknowledgement

This was inspired by Professor Park's work. The author
is greatly indebted to Professor Park for the suggestions
on fair nondeterminism during the visits to University of

Warwick and University of Edinburgh, the United Kingdom.

References

10.

11.

12.

Abdallah,M.A.Nait, On the Interprétation of Infinite
Computations in Logic Programming, Lecture Notes in
Computer Science, 172: 358-370 (1984),

Abdallah,M.A.Nait, On Some Topological Properties of
Logic Programs, Lecture Notes in Computer Science,
199: 310-319 (1985).

Apt,K.R. and van Emden,M.H., Contributions to the Theory
of Logic Programming, J. ACM, 29: 841-864 (1982).
Ashcroft,E.A. and Wadge,W.W., Lucid-A Formal Systems
for Writing and Proving Programs, SIAM J. Computing,
5: 336-354 (1976).

Ashcroft,E.A. and Wadge,W.W., Some Common Misconceptions

about Lucid, Theory of Computation Report, No.32, Dept.

of Computer Scieﬁce, University of Warwick (1979).
Brookes,S.D., Hoare,C.A.R. and Roscoe,A.W., A Theory

of Communicating Sequential Processes, J. ACM, 31:
560-597 (1984). '

Clark,K. and Gregory,S., PARLOG: A Parallel Programming
Language, Research Report DOC 83/5, Dept. of Computing,
Imperial College (1983).

Clark,K. and Gregory,S., PARLOG: Parallel Programming
in Logic,- Research Report DOC 84/4, Dept. of Computing,
Imperial College (1984).

De Nicola,R., Two Complete Axiom Systems for a Theory
of Communicating Sequential Processes, Information
and Control, 64: 136-172 (1985).

Faustini,A.A., An Operational Semantics for Pure

Dataflow, Theory of Computation Report, No.38, Dept.

of Computer Science, University of Warwick (1981),.
Faustini,A.A., The Equivalence of an Operational _and
a Denotational Semantics for Pure Dataflow, Theory

of Computation Report, No.41l, Dept. of Computer Science,
University of Warwick (1982).

Frauden,G., Logic Programming and Substitutions, Lecture

- 21 -

145

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Notes in Computer Science, 199: 146-158 (1985).

Kahn,G., The Semantics of a Simple Language for Parallel
Programming, Proc. IFIP 74: 471-475 (1974).

Lasséz,J.L. and Maher,M.J., Closures and Fairness in

the Semantics of Programming Logic, Theoretical Computer
Science, 29: 167-184 (1984).

Lassez,J.L. and Maher,M.J., Maximal fixpoints of Logic
Programs, Theoretical Computer Science, 39: 15-25
(1985).

Park,D., - Fixpoint Induction and Prodfs of Program Prop-
erties, Machine Intelligence, 5: 59-78 (1969).

Park,D., Finiteness Is Mu-Ineffable, Theory of Com-
putation Report, No.3, Dept. of Computer Science,

University of Warwick (1974).

Park,D., On the Semantics of Fair Parallelism, Lecture
Notes in Computer Science, 86: 504-526 (1980).

Park,D., Concurrency and Automata on Infinite Sequences,
Lecture Notes in Computer Science, 104: 167-183 (1981).
Park,D., The "Fairness'" Problem and Nondeterministic

Computing Networks, in: Foundations of Computer Science

IV (de Bakker and van Leeuwen, eds.), Mathematisch
Centrum, Amsterdam, 133-161 (1983).

Plotkin,G.D., A Powerdomain Construction, SIAM J.
Computing, 5: 454-487 (1976).

Smyth,M.B., Powerdomains, JCss, 16: 23-36 (1978).
Van Emden,M.H. and KXowalski,R.A., The Semantics of

Predicate Logic as a Programming Language, J. ACM,
23: 733-742 (1982).

Wadge,W.W., An Extentional Treatment of Dataflow Dead-
Lock, Lecture Notes in. Computer Science; 70: 285-299
(1979).

Yamasaki,S., et al., A Fixpoint Semantics of Horn Sen-
tences Based on Substitution Sets, to appear in Theoret-

ical Computer Science (1987).

