
147

Top-down Zooming Diagnosis of Logic Programs
Machi MAEJI Tadashi KANAMORI
前地 真知 金森 直

Central Research Laboratory
Mitsubishi Electric Corporation
8-1-1, Tsukaguchi-IIonmachi
Amagasaki, Hyogo, Japan 661

Abstract

This paper presents a new diagnosis algorithm for Prolog proglams. Bugs are locatedby tracing either proof trees or search trees in a top-down mallIler. Human programmersjust need to answer “Yes” or “No” for queries issued durin the to -dqueries about atoms with the same pIedicates are issued contirrually so that not onl
g e op- own tracing. Moreover,

containing bugs ar identified more quickly but also queries are easier for hu
no on y segments

to answer. An outline of an implementation of the diagnosis algorithm is shown as $we\mathbb{I}$.
or uman programmers

Keywords : Program Diagnosis, Debugging, Prolog, Program Analysis.
Contents

1. Introduction
2. Diagnosis of Logic Programs

2.1 Bugs of Prolog Programs
2.2 “trace” and “spy” Commands in DEC-10 Prolog2.3 Proof Tree and Search Tree

3. Top-down Zooming Diagnosis of Logic Programs
3.1 Unexpected Success and Unexpected Failure
3.2 Top-down Diagnosis Algorithm
3.3 Top-down Zooming Diagnosis Algorithm

4. Implementation of the Top-down Zooming Diagnosis Al orithm4.1 Consideration on Space Efliciency
g

4.2 Consideration on Time Effciency
4.3 Consideration on Query

5. Discussion
6. Conclusions
Acknowledgements
References

数理解析研究所講究録
第 655巻 1988年 147-166

148

1. Introduction

Though it is said that the programming language Prolog is a much higher level language
so that writing programs in Prolog is much easier than the conventional languages, still it
remains as an important task to debug Prolog programs. Several conventional debugging
tools, e.g., “trace“ and “spy” commands, are provided in DEC-10 Prolog. In addition, several
more advanced debugging tools have been studied by taking advantages of the characteristics
of logic programs, e.g., “algorithmic debugging“ by Shapiro [10], “declarative debugging” by
Lloyd [6], and “rational debugging” by Pereira [8]. In these approaches, they all assume a
device, caUed “oracle”, which always answers correctly for queries issued during the diagnosis.
If the device is a human programmer, not only should the diagnoser be efficient in the query
number complexity but also should the queries be easy to answer for human programmers.
Attention should be paid to both of these points when an efficient debugging tool for human
programmers is aimed at.

This paper presents a new diagnosis algorithm for Prolog programs. Bugs are located
by tracing either proof trees or search trees in a top-down manner. Human programmers
just need to answer “Yes” or “No” for queries issued during the top-down tracing. Moreover,
queries about atoms with the same predicates are issued continually so that not only segments
containing bugs are identified more quickly but also queries are easier for human programmers
to answer.

This paper is organized as follows: First in Section 2, we will present two kinds of
program’s bugs, and two DEC-10 Prolog commands, “trace” and “spy”. Next in Section 3,
we will show a top-down diagnosis algorithm in the “trace“ manner. Then we will improve
the diagnosis algorithm into the one in the “spy” manner. Last in Section 4, we will show
an implementation with efficiency consideration.

The following sections assume familiarity with the basic terminologies of first order
logic such as term, atom (atomic formula), clause (definite clause), substitution, most gen-
eral unifier (m.g.$u.$) and so on. Knowledge of the semantics of Prolog such as Herbrand
interpretations, least Herbrand models and transformation T_{P} associated with program P

is also assumed. The syntax of DEC-10 Prolog is followed. Syntactical variables are $X,$ Y ,
Z for variables, $A,$ B for atoms, $L,$ G for atom sequences, and θ for substitution, possibly
with primes and subscripts. A program is a finite set of definite clauses of the form A :-
$B_{1},$ $B_{2},$

$\ldots,$
B_{k} $(k\geq 0)$, where $A,$ $B_{1},$ $B_{2},$

$\ldots,$
B_{k} are atoms. The atom A and the atom

sequence $B_{1},$ $B_{2},$
$\ldots,$

B_{k} are caUed the head and the body of this clause, respectively. The
empty atom sequence is denoted by \square .

2. Diagnosis of Logic Programs

2.1 Bugs of Prolog Programs

Even if a very higher level programming language like Prolog is used, we are likely to
write buggy programs.

Example 2.1.1 The following is a program of quick sort. It contains a wrong clause in the
last line. Its correct clause is shown at the right of the symbol “%’’.

2

14 g

qsort $([], [])$.
qsort($[X|L]$, LO) :-partition($L,$ X , Ll, L2), qsort(Ll, L3),

qsort(L2, L4), append(L3, [X $|L4]$, LO).
partition([X $|L],$ Y , Ll, $[X|L2]$) :- $Y\leq X$, partition(L, Y , Ll, L2).
partition($[X|L],$ $Y,$ $[X|L1]$, L2) :- $X\leq Y$, partition(L, Y , Ll, L2).
partition([], X, [], []).
append($[X|L1]$, L2, $[X|L3]$) $:-append$ (Ll , L2, L3).
append$([], L, [])$. % append$([], L, L)$.

Example 2.1.2 The following is a program of permutation. It misses a recursive clause with
the predicate “insert”, which is shown at the right of the symbol “%’’.

perm$([], [])$.
perm$([X|L], N):- perm(L, M),$ $insert(X, M, N)$.
insert(X, $L,$ $[X|L]$).

% insert(X, $[Y|M],$ $[Y|N]$) $:- insert(X, M, N)$.

When a Prolog program is buggy, we experience differences between the actual behavior
when executed and the intended model in our mind.

The algorithm for executing pure Prolog program is the usual ordered linear, that
always selects the leftmost atom from atom sequences to be resolved. When $G\theta$ is obtained
by executing an atom sequence G in a program P , the instance $G\theta$ is caUed a computed
solution (or a solution, for simplicity) of G in P . A program is called a terminating program
when the execution of any atom in the program terminates finitely. In this paper, the program
considered are restricted to terminating one.

Let G be an atom sequence and M be an intended Herbrand interpretation in our
mind. G is said to be valid in M if all ground instances of G are true in M. G is said to be
invalid in M if some ground instance of G is false in M .

What computed solutions should be returned when an atom sequence is executed in
a program that is correct w.r. t . an intended interpretation M ? An atom sequence is called
an intended solution of G with respect to M when it is an instance of G and valid in M . A
ground atom sequence is called a missed solution of G in P w.r.t. M , when it is an intended
solution of G w.r.t. M but not an instance of computed solution of G in P . Then, we say
that the execution-result of G in P is correct w.r. t . M when

(a) computed solutions of G in P are all intended solutions w.r. t . M , and
(b) there is no missed solution of G in P w.r.t. M .

Otherwise, we say that the execution-result of G in P is incorrect w.r. t . M . When the
execution-results of all atom sequences in a program are correct w.r. t . M , we say that this
program is correct w.r. t . M . Otherwise we say that this program is “incorrect w.r. t . M .

When a program is incorrect w.r. t . an intended interpretation, what kinds of bugs are
there in the program? We will define two kinds of bugs in incorrect programs following
Shapiro [10] and Lloyd [6].

Definition 2.1.1 –wrong clause instance –

Let P be a program and M be an intended interpretation. An instance A:-L’ of a
clause in P is called a wrong clause instance in P w.r.t. M when

(a) A is invalid in M , and
(b) L is valid in M .

3

150

Example 2. 1. 3 In the program of Example 2.1.1, append$([], [1], [])$” is a wrong clause
instance, because append$([], [1], [])$“ is invalid w.r. t . our intention.

Definition 2.1.2 –uncovered atom –

Let P be a program and M be an intended interpretation. An atom A is caUed an
uncovered atom in P w.r.t. M , when there exists some ground instance $A\theta$ such that

(a) $A\theta$ is true in M , and
(b) for any ground instance $A\theta:- L$’ of a definite clause in P , the body L is false in M .

Example 2.1.4 In the program of Example 2.1.2, insert$(2, [1], X)$ is an uncovered atom,
because insert$(2, [1], [1,2])$ is true in M , and there is no clause in the program whose head
is unifiable with the atom.

Then, the following theorem ensures that we can attribute incorrectness of programs
to either a wrong clause instance or an uncovered atom (cf. Shapiro [10], Lloyd [6]).

Theorem 2.1
Let P be a terminating program and M be an in t ended interpretation. $T\Lambda$ en P is

incorrect lv.t. t . M if and only if either tlrere is a wrong clause instance in P lv.t. t . M or there

is an un covered a tom in $Pw.r.t$. M .

Proof.\cdot First we wiu show the “if” part. Suppose that the program P is correct.
If there is a wrong clause instance A:-L’ in P w.r.t. M , the atom A is invalid in M

and the atom sequence L is valid in M . Because the program P is correct, L is an computed
solution of itself in P . By using the clause instance A:-L’, A is an computed solution of
itself in P , so that A is valid in M due to the correctness of P . This fact contradicts the fact
that A is invalid in M .

If there is an uncovered atom A for P w.r.t. M , there is a ground instance $A\theta$ such
that $A\theta$ is true in M , and for any ground instance $A\theta:- L$“ of a definite clause in $P,$ L is
false in M . Then, such L has no computed solution due to the correctness of P . Hence $A\theta$

has no computed solution, but $A\theta$ is true in M , which means that $A\theta$ is a missed solution of
A . This fact contradicts the fact that P is correct.

Next, we will show the contrapositive of the “only if“ part. Suppose that there is
neither a wrong clause instance nor an uncovered atom. For every ground atom A in $T_{P}(M)$,
there is a ground instance A:-L’ of some clause in P such that L is valid in M . Because
A:-L“ is not a wrong clause instance, A is valid in M , so that A E M . Hence $T_{P}(M)\subseteq M$

holds. For every ground atom A in M , because A is not an uncovered atom, there is a ground
instance A:-L’ of some clause in P such that L is true in M , so that $A\in T_{P}(M)$. Hence
$T_{P}(M)\supseteq M$ holds. Therefore $T_{P}(M)=M$, that is, M is a fixpoint of T_{P} . (See [5] for the
transformation T_{P} associated with program $P.$) Because P is terminating, and the finite
failure set must be included in the complement of the greatest fixpoint [5], there is just one
fixpoint of T_{P} , i.e., the least Herbrand model of P . Hence, M is the least Herbrand model
of P , which obviously means that P is correct w.r. t . M .

2.2 “trace” and “spy” Commands in DEC-10 Prolog

When we experience differences between the program behavior and its intended model,
we often trace and examine the execution using a “tracer“. Let us trace the execution of an
atom qsort$([1,2], X)$ in the program of Example 2.1.1 using the “trace” command in DEC-
10 Prolog. The numbers preceded by the underline “

–

” are the inner variables generated
by the Prolog system.

4

151

$|?-$ trace, qsort $([2,1], X)$.
Debug mode switched on.

(1) 0 Call : qsort $([2,1], -40)$
(2) 1 Call : partition([l], 2, $-105,$ -106)

(3) 2 Call : $2\leq 1$

(3) 2 Fail : $2\leq 1$

(4) 2 Call : $1\leq 2$

(4) 2 Exit : $1\leq 2$

(5) 2 Call : partition$([], 2, -120, -106)$
(5) 2 Exit : partition([], 2, [], [])

(2) 1 Exit : partition([l], 2, [1], [])
(6) 1 Call : qsort([l], -107)

(7) 2 Call : partition($[]$, 1, $–$(7) 2 Exit : partition([], 1, [], [])
(S) 2 Call : qsort $([], -151)$
(8) 2 Exit : qsort $([]$, [] $)$

(9) 2 Call : qsort $([], -152)$
(9) 2 Exit : qsort $([]$, [] $)$

(10) 2 Call : append$([], [1], -107)$
(10) 2 Exit : append$([], [1], [])$

(6) 1 Exit : qsort $([1|, [])$

(11) 1 Call : qsort $([], -108)$
(11) 1 Exit : qsort $([]$, [] $)$

(12) 1 Call : append$([], [2], -40)$
(12) 1 Exit : append$([], [2], [])$

(1) 0 Exit : qsort $([2,1], [])$

$X=[]$;
(1) 0 Redo : qsort $([2,1], [])$

(12) 1 Redo : append$([], [2], [])$
(12) 1 Fail : append$([], [2], -40)$
(11) 1 Redo : qsort $([]$, [] $)$

(11) 1 Fail : qsort $([], -108)$
(6) 1 Redo : qsort $([1], [])$

(10) 2 Redo : append$([], [1], [])$
(10) 2 Fail : append$([], [1], -107)$
(9) 2 Redo : qsort $([]$, [] $)$

(9) 2 Fail : qsort $([], -152)$
(8) 2 Redo : qsort $([]$, [] $)$

(8) 2 Fail : qsort $([], -151)$
(7) 2 Redo : partition([], 1, I], [])
(7) 2 Fail : partition$([], 1, -149, -150)$

(6) 1 Fail : qsort([l], $arrow 107$)
(2) 1 Redo : partition([l], 2, [1], [])

(5) 2 Redo : partition([], 2, [], [])
(5) 2 Fail : partition$([], 2,120,106)$
(4) 2 Redo : $1\leq 2$

(4) 2 Fail : $1\leq 2$

(2) 1 Fail : partition([l], 2, $-105,$ $\lrcorner 06$)
(1) 0 Fail : qsort $([2,1], -40)$

no
Figure 2.2.1 Example of “trace”

When it is too messy to examine au the trace list step by step, we often focus our atten-
tion on the behavior of specific predicates. Let us put a spy point on the predicate $qsort/2$ ’

in the program of Example 2.1.1 and trace the execution of an atom qsort$([2,1], X)$ using
the “spy” command in DEC-10 Prolog.

5

152

$|?-$ spy(qsort/2), qsort $([2,1], X)$.
Spy-point placed on $qsort/2$.
Debug mode switched on.

$**$ (1) 0 Call : qsort $([2,1], -40)$
$**$ (6) 1 Call : qsort $([1], -107)$

$**$ (8) 2 Call : qsort $([], -151)$
$**$ (8) 2 Exit : qsort $([]$, [] $)$

$**$ (9) 2 Call : qsort $([], -152)$
$**$ (9) 2 Exit : qsort $([]$, [] $)$

$**$ (6) 1 Exit : qsort([1], [])
$**(11)$ 1 Call : qsort $([], -108)$
$**(11)$ 1 Exit : qsort $([]$, [] $)$

$**$ (1) 0 Exit : qsort $([2,1], [])$

$X=[]$;
$**$ (1) 0 Redo : qsort $([2,1], [])$

$**(11)$ 1 Redo : qsort $([]$, [] $)$

$**(11)1$ Fail : qsort $([], -108)$
$**$ (6) 1 Redo : qsort([1], [])

$**$ (9) 2 Redo : qsort $([]$, [] $)$

$**$ (9) 2 Fail : qsort $([], -152)$
$**$ (8) 2 Redo : qsort $([]$, [] $)$

$**$ (8) 2 Fail : qsort$([], -151)$
$**$ (6) 1 Fail : qsort([l], -107)

$**$ (1) 0 Fail : qsort $([2,1], -40)$

no
Figure 2.2.2 Example of “spy”

In Section 3, first, a top-down diagnosis algorithm in the “trace“ manner is going to be
developed for systematizing the process of examining trace lists. Then, a top-down diagnosis
algorithm in the “spy” manner is going to be developed for systematizing the process of
examining specific predicates.

2.3 Proof Tree and Search Tree

We can show a diagnosis algorithm using the terminology of “trace list”. However,
it is difficult to formally discuss the properties of the diagnosis algorithm, e.g., soundness
and completeness, using the terminology. So we will give the diagnosis algorithm using the
terminology of “proof tree” and “search tree”.

(1) Proof Tree

A proof tree of an atom A in a program P is a tree T whose nodes are labelled with
atoms as follows: T is a proof tree of A when T has immediate subtrees $T_{1},$ $T_{2},$

$\ldots,$
T_{n}

$(n\geq 0)$ with their root labels $A_{1},$ $A_{2},$
$\ldots,$

A_{n} satisfying the following conditions. The root
label of T is $A,$ A :- $A_{1},$ $A_{2},$

$\ldots,$
A_{n}

’ is an instance of some clause in P , and $T_{1},$ $T_{2},$
$\ldots,$

T_{n}

are proof trees of $A_{1},$ $A_{2},$
$\ldots,$

A_{n} in P . The clause A :- $A_{1},$ $A_{2},$
$\ldots,$

A_{n}
’ is said to be used

at the root of the proof tree T , and the atoms $A_{1},$ $A_{2},$
$\ldots,$

A_{n} are caJled child atoms of A in
T .

Example 2.3.1 An atom qsort([2, 1], [])“ is a computed solution of atom qsort$([2,1], X)$

in the program of Example 2.1.1. Its proof tree is as below:

6

153

The child atoms of qsort([2, 1], [])” in this proof tree are
partition([l], 2, [1], []), qsort$([1], [])$, qsort$([]$, [] $)$ and append$([], [2], [])$.

The clause used at the root in this proof tree is
qsort([2, 1], []) :- partition([l], 2, [1], []), qsort([l], []), qsort$([]$, [] $)$, append$([], [2], [])$.

(2) Proof Subtree

A subtree of a proof tree T is called a proof subtree of T . In particular, a proof subtree
is called an immediate p roof subtree of T when

(a) it is properly contained in T , and
(b) it is not properly contained in any proof subtree satisfying (a).

The root labels of the immediate proof subtrees of T are child atoms of the root label of T .

Example 2.3.2 The following is an immediate proof subtree of the proof tree of Exam-
ple 2.3.1.

(3) Search Tree

A search tree of an atom sequence G in a program P is a tree T whose nodes are
labelled with atom sequences and whose edges are labelled with substitutions as follows:

(a) If G is an empty atom sequence, T is a search tree of G when it is a tree consisting of
only one node labelled with \square .

(b) If G is a non-empty atom sequence $A,$ $L’$, let A_{1} :- $L_{1^{y}}$
)

A_{2} :- $L_{2}’,$
$\ldots,$

A_{n} :- L_{n}
“

be all the clauses whose heads are unifiable with A , say by m.g. u . $s\theta_{1},$ $\theta_{2},$

$\ldots,$
θ_{n} . Let

$T_{1},$ $T_{2},$
$\ldots,$

$T_{n}(n\geq 0)$ be all immediate subtrees of T , and $G_{1},$ $G_{2},$
$\ldots,$

G_{n} be their
root labels. T is a search tree of G when the following conditions are satisfied.
b-l G_{i} is of the form $(L;, L)\theta_{i}’$. The atom sequences $G_{1},$ $G_{2},$

$\ldots,$
G_{n} are caUed child

atom sequences of G in T . The clause $(A_{i}:- L_{i})\theta$; is said to be used at the root
of the search tree T .

b-2 θ_{i} is the label of the edge from the root node of T to the root node of T_{i} .
b-3 T_{i} is a search tree of G_{i} in P .

A path in a search tree from the root to a node labelled with \square is called a success path.

A search tree of an atom A in a program P is a search tree of the atom sequence
consisting of only one atom A . A success path in a search tree of A corresponds to some
proof tree of A .

7

154

Example 2.3.3 When an atom perm$([2,1], X)$ is executed in the program of Example
2.1.2, it returns only one computed solution perm$([2,1], [2,1])$. Its search tree is as below:

perm$([2,1], X)$

$|$ $\{\}$

perm([l], Y), $insert(2, Y, X)$

$|$ $\{\}$

perm$([], Z)$, insert(l, $Z,$ Y), $insert(2, Y, X)$

$|$ $\{Z\Leftarrow[]\}$

insert $($ 1, [], $Y),$ $insert(2, Y, X)$

$|$ $\{Y\Leftarrow[1]\}$

insert$(2, [1], X)$

$|$ $\{X\Leftarrow[2,1]\}$

\square

The child atom sequence of perm$([2,1], X)$ in the search tree is only
“perm([l], X), $insert(2, Y, X)$.

The clause used at the root in this search tree is
perm$([2,1], X)$:- perm([l], Y), $insert(2, Y, X)$.

(In this example, because the second clause for insert is missed, the search tree is a tree
without multiple branching, i.e., a path. But, this is not a case in general.)

(4) Search Subtree

Let T be a search tree, and ν_{1} be a node in T labelled with non-empty atom sequence.
Consider a path U from the node ν_{1} to a node ν_{2} in T such that, for every node ν on the
path other than ν_{2} ,

length(v) $\geq length(v_{1})$

holds. (length(v) denotes the number of atoms in the label of $\nu.$) Then, the path, which is
constructed by neglecting last length$(\nu_{1})-1$ atoms in the label of every node on the path
U , is called a subdeduction at the node ν_{1} in T .

Let ν be a node in a search tree T , and $U_{1},$ $U_{2},$
$\ldots,$

U_{h} be all subdeductions at ν in
T , that are not properly contained in any subdeduction at ν in T . Then, the tree, which is
constructed by putting the paths $U_{1},$ $U_{2},$

$\ldots,$
U_{h} together, is called a search subtree of T at

ν . Let T_{1} and T_{2} be search subtrees of T at u_{1} and u_{2} , respectively. Then, T_{2} is said to be
properly contained in T_{1} when T_{2} is a search subtree of T_{1} at some node u other than the
root node in T_{1} , and the node u corresponds to u_{2} in T . Note that the root label of a search
subtree is always one atom, and a search subtree with root label A’ is a search tree of $u_{A’}$.

In particular, a search subtree of T is caUed an immediate search subtree of T when
(a) it is properly contained in T , and
(b) it is not properly contained in any search subtree satisfying (a).

8

1 $5_{c/}^{\iota:}$

Example 2.3.4 The tree below is an immediate search subtree of the search tfee of Example
2.3.3. (Because the original search tree does not have a multiple branching, neither does this
immediate search subtree. But, this is not a case in general, either.)

perm$([1], Y)$

$|$ $\{\}$

perm$([], Z),$ $insert(1, Z, Y)$

$|$ $\{Z\Leftarrow[]\}$

insert$(1, [], Y)$

$|$ $\{Y\Leftarrow[1]\}$

\square

The tree below is the part of the search tree which consists of the nodes corresponding to
those in the search subtree above.

perm([l], Y), $insert(2, Y, X)$

$|$ $\{\}$

perm$([], Z),$ $insert(1, Z, Y),$ $insert(2, Y, X)$

$|$ $\{Z\Leftarrow[]\}$

insert(l, [], Y), $insert(2, Y, X)$

$|$ $\{Y\Leftarrow[1]\}$

insert$(2, [1], X)$

3. Top-down Zooming Diagnosis of Logic Programs

In this section, we will first present two kinds of unexpected execution-results. Next,
we will present a top-down diagnosis algorithm in the “trace“ ,.nnel. Then, we will improve
the top-down diagnosis algorithm in the (spy’ manner.

3.1 Unexpected Success and Unexpected Failure

(1) Unexpected Success (Incorrect Solution)

Suppose that the execution of an atom A has succeeded with computed solution $A\theta$.
If $A\theta$ is invalid in our intended interpretation $M,$ $A\theta$ is said to have succeeded unexpectedly
w.r. t . M .

Example 3.1.1 An atom qsort$([2,1], X)$ in the program of Example 2.1.1 has a computed
solution qsort([2, 1], []). But it is invahd w.r. t . our intention. Hence, the success of atom
qsort([2, 1], []) is an unexpected one.

9

156

(2) Query for Invalid Instances

To examine whether an atom A has succeeded unexpectedly or not, our diagnoser issues
a query as follows :

“Is some instance of A false¿‘

The answer for this query is either “Yes” or “No“.
“Yes“ : The atom A is invalid, hence, it has succeeded unexpectedly.
“No”: The atom A is valid, hence, it is an intended solution.

Example 3.1.2 In Example 3.1.1, our diagnoser asks a query as follows:
“Is some instance of qsort([2, 1], []) false?”

The human programmer (or oracle) answers “Yes”, hence the success of qsort$([2,1], [])$ is an
unexpected one.

(3) Unexpected Failure (Missing Solution)

Suppose that the execution of an atom A has failed after returning several (possibly
zero) computed solutions that are all valid in our intended interpretation M . If the atom A

has some missed solution, the atom A is said to have failed unexpectedly w.r. t . M .

Example 3.1.3 The execution of atom perm$([2,1], X)$ in the program of Example 2.1.2
fails after returning only one computed solution perm$([2,1], [2,1])$, which is valid in our
intention. But the atom has a missed solution perm$([2,1], [1,2])$. Hence, the last failure
of atom perm$([2,1], X)$ is an unexpected one.

(4) Query for Valid Instances

Suppose that the execution of an atom A has failed after returning several (possibly
zero) computed solutions, which has been already confirmed to be valid in our intended inter-
pretation. To examine whether the execution has failed unexpectedly or not after obtaining
these computed solutions, our diagnoser issues a query as follows:

“Is some other instance of A true?”
The answer for these queries is either “Yes” or “No”.

“Yes“ : The atom A has some missed solution, hence, it has failed unexpectedly.
“No“ : The atom A has all intended solutions.

Example 3.1.4 Suppose that au computed solutions of an atom perm$([2,1], X)$ in the
program of Example 2.1.2 have been confirmed to be correct w.r. t . our intention. Then our
diagnoser asks a query as follows:

“Is some other instance of perm$([2,1], X)$ true?”
The human programmer (or oracle) answers “Yes“. Hence the last failure of perm$([2,1], X)$
(with only one computed solution perm$([2,1],$ $[2,1])$) is an unexpected one.

3.2 Top-down Diagnosis Algorithm

The top-down diagnosis algorithm “diagnose0” receives a tree (either a proof tree or
a search tree of an atom), and returns a definite clause instance, an atom, or a message “no
bug is found“.

10

1 $5^{\backslash }$,

diagnose0(T : tree) : bug-message ;
when T is a proof tree with root label A

issue a query “Is some instance of A false?”
if the answer is “No”
then return “no bug is found”
else let $PT_{1},$ $PT_{2},$

$\ldots,$
PT_{n} be the immediate proof subtrees of T ;

if the application of “diagnose0” to some PT_{j} returns a bug
then return it
else return the dause used at the root of T as a bug;

when T is a search tree with root label A

let $T_{1},$ $T_{2},$
$\ldots,$

T_{k} be the proof trees corresponding to success paths in T ;
if the application of “diagnose0” to some T_{i} returns a bug
then return it
else issue a query “Is some other instance of A true?”

if the answer is “No”
then return “no bug is found”
else let $ST_{1},$ $ST_{2},$

$\ldots,$
ST_{n} be the immediate search subtrees of T ;

if the application of “diagnose0” to some ST_{j} returns a bug
then return it
else return the atom A as a bug

Figure 3.2 Top-down Diagnosis Algorithm Using Subtrees

The following theorem holds for this algorithm. (See [7] for this proof.)

Theorem 3.2 (soundness and completeness of the top-down diagnosis algorithm)
Let P be a terminating program, M be an intended in terpreta tion, and T be a tree

(either a proof tree or a search tree) of an atom A. The execu tion-result of the atom A in P

is incorrect $w.r.t$. M , if and only if ”diagnose0 “ applied to T returns either a wrong clause
instance or an uncovered atom $w.r.t$. M .

In the following examples, an “answer database” accumulates answers to previous
queries in order to partly mechanize the oracle answers. A new query is first posed to
the “answer database”. Only if the “answer database” fails to answer it, a query is issued
to the programmer (or an oracle), and the answer is added to the “answer database”. (See
Shapiro [10].)

Example 3.2.1 Let us diagnose an atom qsort $([2,1], X)$ in the program of Example 2.1.1.
In the following, “diagnose0” takes the root label of each tree as an argument instead of the
t ree itself. (See section 4.1 for its implementation.)

$|?-$ diagnose0(qsort([2, 1], X)).
Is some instance of qsort([2, 1], []) false? yes.
Is some instance of partition([l], 2, [1], []) false? no.
Is some instance of qsort([l], []) false? yes.
Is some instance of partition([], 1, [], []) false? no.
Is some instance of qsort$([]$, [] $)$ false? no.
Is some instance of append$([], [1], [])$ false? yes.

%%% Wrong Clause Instance %%% append$([], [1], [])$

11

158

yes

Example 3.2.2 Let us diagnose an atom perm$([2,1], X)$ in the program of Example 2.1.2.

$|?-$ diagnose0(perm([2, 1], X)).
Is some instance of perm$([2,1], [2,1])$ false? no.
Is some other instance of perm$([2,1], -47)$ true? yes.
Is some instance of perm([l], [1]) false? no.
Is some other instance of perm([l], -319) true? no.
Is some instance of insert$(2, [1], [2,1])$ false? no.
Is some other instance of insert$(2, [1], -47)$ true? yes.

%%% Uncovered Atom %%% insert$(2, [1], -47)$

X $=-47$

yes

3.3 Top-down Zooming Diagnosis Algorithm

During the the top-down diagnosis, our diagnoser issues several queries for human
programmers (or oracles). All these queries are issued about instances of atoms, whose
predicate may change query by query. The human programmers must change his attention
according to the predicates of atoms. Instead, we can change the order of queries to issue
the queries about atoms with the same predicate continually so that the burden of human
programmers is lightened. This change of the order also makes it possible to quickly narrow
down the location containing a bug.

(1) Immediate Recursion Subtree in Proof Trees

Let T be a proof tree in a program P whose root label is an atom A with predicate
p . A proof subtree in T is called a recursion proof subtree of T when its root label is with
predicate p . In particular, a proof subtree in T is called an immediate recursion proof subtree
when

(a) it is properly contained in T ,
(b) the root label of the proof subtree is with predicate p , and
(c) it is not properly contained in any proof subtree satisfying (a) and (b).

Example 3.3. 1 In the proof tree of Example 2.3.1, the atom qsort([2, 1], []) has only two
immediate recursion proof subtrees with roots qsort([l], []) and qsort $([]$, [] $)$.

(2) Immediate Recursion Subtree in Search Trees

Let T be a search tree in a program P whose root label is an atom A with predicate
p . A search subtree in T is called a recursion search subtree of T when its root label is with
predicate p . In particular, a search subtree in T is called an immediate recursion search
subtree when

(a) it is properly contained in T ,
(b) the root label is with predicate p , and
(c) it is not properly contained in any search subtree satisfying (a) and (b).

Example 3.3.2 In the search tree of Example 2.3.3, the atom perm$([2,1], X)$ has only
one immediate recursion search subtree with root perm([l], Y).

12

I.59

(3) A Top-down Zooming Diagnosis Algorithm Using Recursion Subtrees

The top-down zooming diagnosis algorithm using recursion subtrees is almost the same
as the previous top-down diagnosis algorithm “diagnose0” except that it works with aids
of a subprocedure “zooming“, which receives a tree and returns a subtree for diagnosis by
searching for recursion subtrees.

diagnose(T : tree) : bug-message ;
if the application of “zooming” to T does not return a tree
then return “no bug is found”
else let $T’$ be the tree returned by “zooming“

when $T’$ is a proof tree with root label A

let $PT_{1},$ $PT_{2},$
$\ldots,$

PT_{n} be the immediate proof subtrees of $T’$;
if the application of “diagnose” to some PT_{j} returns a tree
then return it
else return the dause used at the root of $T’$ as a bug;

when $T’$ is a search tree with root label A

let $ST_{1},$ $ST_{2},$
$\ldots,$

ST_{n} be the immediate search subtrees of $T’$;
if the application of “diagnose” to some ST_{j} returns a bug
then return it
else return the atom A as a bug

zooming(T : tree) : tree ;
when T is a proof tree with root label A

issue a query “Is some instance of A false?”
if the answer is “No”
then return “no tree is found”
else let $PT_{1},$ $PT_{2},$

$\ldots,$
PT_{n} be the immediate recursion proof subtrees of T ;

if the application of “zooming” to some PT_{j} returns a tree
then return it
else return T

when T is a search tree with root label A

let $T_{1},$ $T_{2},$
$\ldots,$

T_{k} be the proof trees corresponding to success paths in T ;
if the application of “ zooming” to some T_{i} returns a tree
then return it
else issue a query “Is some other instance of A true?”

if the answer is “No”
then return “no tree is found”
else let $ST_{1},$ $ST_{2},$

$\ldots,$
ST_{n} be the immediate recursion search subtrees of T ;

if the application of “zooming” to some ST_{j} returns a tree
then return it
else return T

Figure 3.3 Top-down Zooming Diagnosis Algorithm Using Recursion Subtrees

Roughly speaking, the top-down zooming diagnosis algorithm identifies the subtrees
containing a bug by changing its attention in the following two different ways by turns.

(a) One way is to narrow down to immediate recursion subtrees quickly by changing
“diagnose0” to possibly leap the intermediate subtrees. “zooming” above detects a

13

160

recursion subtree such that the execution-result of its root label is incorrect but the
execution-result of root label of every immediate recursion subtree is correct w.r. t . M .

(b) The other way is to narrow down to the immediate subtrees slowly in the same way as
“diagnose0“. “diagnose“ above proceeds in the same way as “diagnose0” after making
use of “zooming” first.

The following theorem holds for this algorithm. (See [7] for this proof.)

Theorem 3.3 (soundness and completeness of the top-down zooming diagnosis algorithm)
Let P be a terminating program, M be an intended in terpretation, andT be a tree

(either a proof tree or a search $tree$) of an atom A. When the exec u tion-result of the atom
A in P is incorrect $w.r.t$. M , if and only if “diagnose“ applied to Treturns either a wrong
clause instance or an uncovered atom $w.r.t$. M .

Example 3.3.3 Let us diagnose the atom qsort$([2,1], X)$ in the program of Example 2.1.1
by this top-down zooming diagnosis.

$|?-$ diagnose(qsort([2, 1], X)).
Is some instance of qsort([2, 1], []) false? yes.
Is some instance of qsort([l], []) false? yes.
Is some instance of qsort$([]$, [] $)$ false? no.
Is some instance of partition([], 1, [], []) false? no.
Is some instance of append$([], [1], [])$ false? yes.

%%% Wrong Clause Instance %%% append$([], [1], [])$

yes

Example 3.3.4 Let us diagnose the atom perm$([2,1], X)$ in the program of Example 2.1.2
by this top-down zooming diagnosis.

$|?-$ diagnose(perm([2, 1], X)).
Is some instance of perm$([2,1], [2,1])$ false? no.
Is some other instance of perm$([2,1],-47)t$rue? yes.
Is some instance of perm([l], [1]) false? no.
Is some other instance of perm([l], -319) true? no.
Is some instance of insert$(2, [1], [2,1])$ false? no.
Is some other instance of $\iota’nsert(2, [1], -47)$ true? yes.

%%% Uncovered Atom %%% insert$(2, [1],-47)$

X $=-47$

yes

4. Implementation of the Top-down Zooming Diagnosis Algorithm

In this section, we will show a brief outline of an implementation of the top-down
zooming diagnosis algorithm.

4.1 Consideration on Space Efficiency

We assume that all the trees used in the diagnosis of Section 3.3 are recorded in a “tree
database“. They are used somehow for processing proof trees and search trees, which are
passed as arguments of “diagnose“ and “zooming”. However, recording all the trees is very
space-consuming. Recall how the trees are used in the diagnosis. They are used only when

14

16]

(a) “diagnose” recurses with an immediate subtree,
(b) “zooming” recurses with some tree, either an immediate recursion subtree or a proof

tree corresponding to success path, or
(c) “zooming” issues a query about the root label of the tree.

So, if we can obtain the root labels of any immediate subtree, any immediate recursion
subtree, and any proof tree corresponding to success path somehow, it is enough for the
diagnosis. Let A be a root label of a tree.

The root label of its immediate subtree are obtained from A by repeating only the
top-level of the computation using the root labels of trees as follows:

(a) When A is a root label of a proof tree PT , let $A_{1},$ $A_{2},$
$\ldots,$

A_{n} be the root labels of
all immediate proof subtrees of PT . Then there is a clause $B:- B_{1},$ $B_{2},$

$\ldots,$
B_{n}

“ in
P and a substitution θ such that $A_{i}\equiv B_{i}\theta(1\leq i\leq n)$ and $A\equiv B\theta$ hold. On the
other hand, if there is a clause $B:- B_{1},$ $B_{2},$

$\ldots,$
B_{n}

“ in P and a substitution θ such that
$A_{1}\equiv B_{1}\theta,$ $A_{2}\equiv B_{2}\theta,$

$\ldots,$
$A_{n}\equiv B_{n}\theta$ hold for some root labels $A_{1},$ $A_{2},$

$\ldots,$
A_{n} of proof

trees in the “tree database”, then $B\theta$ should succeed in P using the dause instance
$(B:- B_{1}, B_{2}, \ldots, B_{n})\theta$

’ in P . Hence, we may conclude that there is a proof tree for $B\theta$

in the “tree database” such that the root labels of all its immediate proof subtrees are
the atoms $A_{1},$ $A_{2},$

$\ldots,$
A_{n} .

(b) When A is a root label of a search tree ST , let $A’$ be a root label of an immediate search
subtree of ST. Then there is a clause instance $H:- A_{1},$ $A_{2},$

$\ldots,$
A_{n} such that the head

is unifiable with A , say by σ , and $A_{i}\sigma\theta$ is equal to A ‘ for some computed solution
$(A_{1}, A_{2}, \ldots, A_{i-1})\sigma\theta$ of $(A_{1}, A_{2}, \ldots, A_{i-1})\sigma$ $(1\leq i\leq n)$. On the other hand, all the
atoms constructed by such a way are the root labels of immediate search subtrees of
ST.
The root labels of immediate recursion subtrees are obtained by constructing the root

labels of immediate subtrees recursively.
The root labels of proof trees corresponding to success paths of a search tree for A are

obtained with less time (in compensation for the space for recording), if we record them in
the structure which associates A to the root labels of such proof trees.

Hence, the root labels of subtrees are all obtained by using the clauses in P and the
recorded root labels of trees.

Now, we do not need all the information in the trees. The information we record in
the “tree database“ is only

(a) the root labels of proof trees, and
(b) the pairs of the root label of a search tree, and the sequence of the root labels of its

proof trees corresponding to success paths.
(Hence, it is more appropriate to caU it a “label database”.) Due to this implementation
method, the arguments of “diagnose” and “zooming” are now not trees but root labels of
the trees.

4.2 Consideration on Time Efficiency

Even if we have employed a space-efficient representation above, the space required
for recording them is stiu large. We can reduce the necessary space at each instance by
recording only some root labels of the tree which is immediately necessary for the present,
and by recomputing another root labels which will become necessary later. In the top-down
zooming diagnosis, we do not need to immediately search root labels of trees other than
recursion subtrees so that the diagnoser needs to record only the root labels of the recursion

15

162

subtrees relevant for the present. The computation of the root labels of trees other than
recursion subtrees is done afterwards if necessary.

If we have employed such an implementation method for reducing space at each in-
stance, it may require much more time due to the recomputation, i.e., some goals might
have to be re-executed again and again during the diagnosis. However, note that the atoms
appearing in the re-execution are only those appearing in the execution before. Hence, we
can improve the time-efficiency by utilizing the root labels of proof trees, that are used before
for the diagnosis, during each re-execution to avoid some of the recomputation.

4.3 Consideration on Query

As was already used in the previous examples, an “answer database“ accumulates
answers to previous queries in order to partly mechanize the oracle answers. A new query
is first posed to the “answer database“. Only if the “answer database“ fails to answer it,
the query is asked to a programmer (or an oracle), and the answer is added to the “answer
database“. (See Shapiro [10].)

(1) Collective Queries

The queries can be improved to be more natural for human programmers in several
points. For example, it is more natural to ask

“Is some instance of A true¿‘

instead of “Is some other instance of A true?” when A has failed without returning any
computed solution. It is also more natural to ask

“Is A true¿‘

ccIs A false¿‘

when the atom A in queries are ground.

In addition to such easy improvements, it is more comfortable for human programmer to
answer several related questions at one stroke. Such queries reduce the number of answers the
programmer must type in. For example, in the diagnosis for unexpected success, the queries
for the root labels of every immediate recursion subtrees (or every immediate subtrees) can
be issued together. Similarly, in the diagnosis for unexpected failure, the queries for the root
labels of proof trees corresponding to success paths can be issued together.

Example 4.3.1 Let us diagnose the atom qsort$([2;1], X)$ in the program of Example 2.1.1
by issuing several queries together.

$|?-$ diagnose(qsort([2, 1], X)).
Is some instance of the following atoms false?

1 : qsort([2, 1], []) Which? 1.

1 : qsort([l], [])
2 : qsort $([]$, [] $)$ Which? 1.
1 : qsort $([]$, [] $)$ Which? no.
1 : part\’ition([], 1, [], [])
2 : append$([], [1], [])$ Which? 2.

%%% Wrong Clause Instance %%% append$([], [1], [])$

yes

16

163

Example 4.3.2 Let us diagnose the atom perm$([2,1], X)$ in the program of Example 2.1.2
in the same way.

$|?-$ diagnose(perm([2, 1], X)).
Is some instance of the following atoms false?

1 : perm$([2,1], [2,1])$ Which? no.
Is some other instance of perm$([2,1], -47)$ true? yes.

1 : perm([l], [1]) Which? no.
Is some other instance of perm([l], -319) true? no.

1 : insert$(2, [1], [2,1])$ Which? no.
Is some other instance of insert$(2, [1], -47)$ true? yes.

%%% Uncovered Atom %%% insert$(2, [1],-47)$

X $=-47$

yes

(2) Query for Instances of Missed Solutions

As was adopted by Shapiro [10] and Lloyd [6], we can enjoy both the time efficiency and
the space efficiency, if an oracle can give a suitable instantiation of variables to the diagnoser.
Suppose that the diagnoser is modified to ask the oracle to give a missed solution when an
oracle has given an answer “Yes” for a query “Is some other instance of A true?”. If such a
missed solution is given, the number of queries decreases in some cases, because the number
of immediate search subtrees to be diagnoses decreases.

Example 4.3.3 Let sort be a predicate defined by

sort(L,N) :-perm(L,N), ordered(N).
perm$([],[])$.
perm$([X|L],N)$:-perm(L,M), insert (X,M,N) .
insert $(X,M,[X|M])$.
insert $(X,[Y|M],[Y|N])$:- insert (X,M,N) .

lt misses the program of the predicate ordered. The diagnosis proceeds as below if the
previous algorithm is used.

$|?-$ diagnose(sort([2, 3, 1], X)).
Is some instance of sort$([2,3,1],-55)$ true? yes.
Is some instance of perm$([2,3,1], [2,3,1])$ false? no.
Is some instance of perm$([2,3,1], [3,2,1])$ false? no.
Is some instance of perm$([2,3,1], [3,1,2])$ false? no.
Is some instance of perm$([2,3,1], [2,1,3])$ false? no.
Is some instance of perm$([2,3,1], [1,2,3])$ false? no.
Is some instance of perm$([2,3,1], [1,3,2])$ false? no.
Is some other instance of perm([2, 3, 1], -S5) true? no.
Is some instance of ordered([2, 3, 1]) true? no.
Is some instance of ordered([3, 2, 1]) true? no.
Is some instance of ordered([3, 1, 2]) true? no.
Is some instance of ordered([2, 1, 3]) true? no.
Is some instance of ordered([l, 2, 3]) true? yes.

%%% Uncovered Atom %%% ordered([l, 2, 3])

17

164

X $=[1,2,3]$

yes

If the diagnoser is modified as given in this section, the diagnosis process is as shown below.

$|?-$ diagnose(sort([2, 3, 1], X)).
Is some instance of sort$([2,3,1], -55)t$ rue? yes.

What is the correct instance of-55 ? [1,2,3].
Is some instance of perm$([2,3,1], [1,2,3])$ false? no.
Is some instance of ordered([l, 2, 3]) true? yes.

%%% Uncovered Atom %%% ordered([l, 2, 3])

X $=[1,2,3]$

yes

When a programmer knows that there are some missed solutions, he/she probably
knows some of the missed solutions. Of course, he/she may refuse to give such an instance
if he/she thinks it troublesome to give a concrete true instance. We are not sure, however,
which imposes less burden on the programmers in general. It depends on the characteristics
of programs.

(3) Oracle Answer “Unknown”

So far, we have assumed that the oracle returns a definite answer “Yes” or “No”. When
the oracle is a human programmer, however, he/she may want to give an answer “Unknown”
occasionally. We can modify the diagnoser so as to accept such an answer.

Recall the differences between the top-down diagnosis and the top-down zooming di-
agnosis. The latter was in the same way as the former except that the recursion subtrees are
diagnosed in the preference to the top-down manner by zooming.

Suppose that the answer “Unknown” is returned. We may continue the diagnosis by
preference for the other subtrees in the same way as zooming. If the definite answer of the
root node of this tree is needed finally, the diagnoser asks again to return the reserved answer.

5. Discussion

Debugging of logic programs has been studied by several researchers intensively. Shapiro
[10] said that program debugging is composed of program diagnosis, the process of iinding a
bug, and program correction, the process of fixing the bug. In this paper we have discussed
the program diagnosis.

We have attributed incorrectness of programs to two bugs, wrong clause instance and
uncovered atom in the same way as Shapiro [10], Lloyd [6], et al. However, wrong clause
instances and uncovered atoms in our definitions are slightly different from those in Shapiro
[10] or Lloyd’s definitions [6]. For example, in the definition of a wrong clause instance by
Lloyd [6], the condition (a) in Definition 2.1.1 is replaced with the following:

(a) the atom A is unsatisfiable in M , i.e., au ground instances of A are false in M , and“
In the definition of an uncovered atom by Lloyd [6], an atom A is cffied an uncovered atom
when

(a) A is valid in M , and

18

16.5

$arrow(b)$ for any clause B :- L’ in P whose head B is unifiable with A , say by an m.g. u . $\theta,$ $L\theta$

is unsatisfiable in M , i.e., a1I ground instance of $L\theta$ are false in M .
Theorem 2.1 is the same as Proposition 3 in Lloyd [6] p.6. These differences do not affect
the proof of this theorem.

Our definition of correctness is stronger than that of Lloyd [6]. Our definition implies
that a program P is correct w.r. t . an intended Herbrand model M if and only if M is the
least Herbrand model of completion P^{*} , while his definition is that a program P is correct
w.r. t . an intended model M if and only if M is a model of completion P^{*} . Hence, for proving
Theorem 2.1, we needed an additional condition “terminating”.

In addition to these subtle differences of definitions, our diagnoses algorithm is different
from theirs in several respects.

(1) Our diagnosis algorithm is basically top-down.

Shapiro’s algorithm [10] for unexpected success (incorrect solution) is in the bottom-
up manner, while that for unexpected failure (missing solution) is in the top-down manner.
There is no inherent reason to stick to the bottom-up manner. In fact, Lloyd [6] showed the
top-down algorithm for unexpected success.

Similarly to Lloyd [6], our diagnosis algorithm is basicaly top-down. For non-recursive
predicates, our approach issues queries in the usual top-down manner so that the program-
mers can locate bugs more quickly than the single stepping bottom-up diagnoser in general.

(2) Our diagnosis algorithm just needs answer “Yes” or “No”.

Though our algorithm can accelerates the diagnosis by answering concrete instances
(see Section 4.3), it needs just answer “Yes” or “No” in general due to the utilization of
the previous result of program execution. In both Shapiro [10] and Lloyd [6], the diagnosis
requests an oracle to instantiate variables to suitable forms, because of their definitions of
wrong clause instances and uncovered atoms detected by their diagnosis algorithms.

Of course, recording all the trees is very space-consuming. We can reduce the neces-
sary space at each instance by recording only the parts of the trees which are immediately
necessary for the present, and by recomputing the parts which will be necessary later. More-
over we do not need all the information in such parts of the trees (see Section 4.1). For
example, in the top-down zooming diagnosis, we do not need ‘

0 immediately search atoms
other than recursions so that the diagnoser needs to record only the relevant recursions,
though such reduction of space may be inferior in the time efficiency due to the overhead for
recomputation.

(3) Our diagnosis algorithm issues queries for the same predicate continually.

In general, it is easier and more natural for human programmers to answer queries for
the same predicates continually. For recursive predicates, our approach jumps and omits
some intermediate atoms with different predicates so that the queries for atoms with the
same predicate are issued to the programmers continually. (Our concern is close to that of
Eisenstadt [1].)

Moreover, such queries sometimes identify the segment containing bugs more quickly.
Plaisted [9] showed a bug location algorithm more efficient than Shapiro’s original algorithm.

19

166

His method selects nodes of trees (either proof trees or search trees), called cutoffs, in such a
way that the execution time of each node distributes as uniformly w.r. t . the computation time
as possible with some average interval, and roughly identify subcomputation containing a
bug first, then apply his methods recursively to the subcomputation. Though our approach
is not eager in uniformly distributing nodes for queries, the similar effect is obtained by
leaping to immediate recursion subtrees.

Several problems still remain. One is that we have restricted our target program to
terminating one. (See Kanamori[4] for detection of Prolog program termination.) Another
problem is that we have restricted our target programming language to pure Prolog. The
extra-logical control symbols like cut(!) and the predicates with side-effects like “assert” and
“retract” are neglected. (These restrictions can be relaxed to a certain extent.)

6. Conclusions

We have shown a framework for top-down zooming diagnosis of logic programs. This
method is an element of our system for analysis of Prolog programs $Argus/A$ under devel-
opment $[2],[3],[4]$.

Acknowledgements

Our analysis system $Argus/A$ under development is a subproject of the Fifth Generation
Computer System (FGCS) “Intelligent Programming System”. The authors would hke to
thank Dr. K. Fuchi (Director of ICOT) for the opportunity of doing this research, and Dr.
K. Furukawa (Vice Director of ICOT), Dr. T. Yokoi (Former Vice Director of ICOT) and
Dr. H. Ito (Chief of ICOT 3rd Lab.) for their advice and encouragement.

References

[1] Eisenstadt,E., “Retrospective Zooming : A Knowledge Based Tracing and Debugging
Methodology for Logic Programming”, Proc. of 9th International Joint Conference on
Artificial Intelligence, pp.717-719, Los Angeles 1985.

[2] Kanamori,T. and T.Kawamura, “Analyzing Success Patterns of Logic Programs by
Abstract Hybrid Interpretation“, ICOT Technical Report TR-279, 1987.

[3] Kanamori,T., K.Horiuchi and T.Kawamura, “Detecting Functionality of Logic Pro-
grams Based on Abstract Hybrid Interpretation’, to appear, ICOT Technical Report,
1987.

[4] Kanamori,T., T.Kawamura and K.Horiuchi, “Detecting Termination of Logic Programs
Based on Abstract Hybrid Interpretation”, to appear, ICOT Technical Report, 1987.

[5] Lloyd, J. W., “Foundation of Logic Programming”, Springer-Verlag, 1984.
[6] Lloyd, J. W., “Declarative Program Diagnosis”, Technical Report 86/3, Department

of Computer Science, University of Melbourne, 1986.
[7] Maeji,M. and T.Kanamori, “Top-down Zooming Diagnosis of Logic Programs”, ICOT

Technical Report TR-290, 1987.
[8] Pereira,L.M., “Rational Debugging in Logic Programming“, Proc. of 3rd International

Conference on Logic Programming, pp.203-210, 1986.
[9] Plaisted,D., “An Efficient Bug Location Algorithm”, Proc. of 2nd International Logic

Programming Conference, pp.151-157, 1984.
[10] Shapiro,E.Y., “Algorithmic Program Diagnosis”, Conf. Rec. of the 9th ACM Sympo-

sium on Principles of Programming Languages, pp.299-308, 1984.

20

