
1 6_{ℓ}

Time-Extraction for Temporal Logic

-Logic Programming and Local Process Time-

京大数理研 服部隆志 (Takashi Hattori)

Abstract: Temporal loglc is useful to describe variety of computer systems such as

operating systems and real-time process control systems, $\backslash \backslash$ here explicit treatment of tlme

plays an essential role. In the logic, the notion of time is represented by a sequence of

states at each point in time, which is called time stream. In distributed environments, it

can allow simple descriptions of processes to deal each process as if it had its own proper

time stream where a proper time stream, called extracted time stream, consists of the

events which are essential to the process and are extracted from the original universal

time stream. It is proved that, for given formulas which are interpreted \ln one of the

extracted time streams, there exist certain formulas such that they are interpreted in the

universal time stream and are equivalent to the given formulas. This time-extraction is

applied to the Temporal Prolog in order to decompose a program into pieces, each of $\backslash \backslash$ hich

works in its own time stream. In the same way as logical formulas, a program with time-

extraction can be transformed to an equivalent program without time-extraction. It is

also proved that the transformations preserve equivalence in the sense of model-theoretic

sernantlcs.

1. I NTRODUCT ION

Logical formulas have been widely used in order to describe programming semantics.

For logic programming, logical formulas are programs, which is not perfectly natural $\backslash \backslash hen$

the programs deal with dynamic objects because logical formulas represent static assertions

by nature. In this respect, the temporal loglc ls more useful than the ordinal logic

because the former can describe the notion of time explicitly. There are still some

difficulties, however, when we use the temporal logic directly as a programming language.

Actions of some $soft\backslash \backslash$’are such as operating systems and real-time controlling systems

depend on sequences of events that happen outside the computers. As mentioned later,

the time in the temporal logic is discrete, in which each period is not necessary to be

/

数理解析研究所講究録
第 655巻 1988年 167-185

168

associated to a physical interval. Rather we often ’notch‘ the time by events, which allows

a clear view of the system. If a single program had to respond all kinds of events by

itself, its behavior would be too complicated to give a simple description. Although the

usual solution for this problem is to make several processes so that the job is divided

among them, whose benefits are well known as modular programming, the notion of process

has not yet been formalized in the temporal logic. ([8] presented spatial modalities that

are orthogonal to temporal modalities.) We should presume that it would be much easier to

write part of the program without any attention to the events which are not totally

relevant to its own proper job. This can be accomplished by introducing a process for

each part of the program such that the process has its own local time. As a result, the

program virtually works on multiple time streams in which the processes are executed and

synchronize each other at some points in time. On the other hand, it might be necessary

to combine these ’virtual‘ time streams into a single ’real’ time stream \ln order to increase

efficiency.

Let us consider about a more concrete example. Suppose we want to describe $‘\cdot$, holds

when p and q happen in this order,“ then using a ’previous operator‘ \bullet , one of the modal

operator in logic, we may write

$\bullet p\wedge qarrow r$.

However, this formula simply states r holds when q happens at the very next point in

time of the point when ρ happens.“ In this case, some auxiliary predicates are needed in

order to remember the state of \langle p happened and q has not yet $happened\rangle$ because there

can exist some time points in which neither p nor q happen. Therefore we should

introduce a new predicate a and write

$parrow c\iota$

$\bullet a\wedge\sim qarrow\alpha$

$\bullet a\wedge qarrow r$

One way to prevent such redundancy ls to introduce a new temporal operator such as
atnext, until to specify complex temporal relations. Numerous kinds of temporal operators

2-

1 fi^{Q}

will be needed, however, when we want to write more complicated sequences of events.

Rather we introduce the notion of time-extraction, $\backslash \backslash here$ we allow multiple time streams and

each time stream is assigned to a sequence of events or, \ln other words, a process. This

approach requires no extra temporal operators and $all0\backslash \backslash s$ simple descriptions $\backslash \backslash$ ith the

explicit notion of process.

In the following section, first $\backslash \backslash e$ define the notion of time-extraction and examine

relationship between formulas in ’virtual’ and ’real’ time streams. Next we apply time-

extraction to Temporal Prolog [9] and give an algorithm which transforms a program using

extraction to an equivalent and possibly more efficient program without extraction.

Possibility of generalizing time-extraction for other modal logic is also mentioned.

2. $FIRST$ ORDER LINEAR-TIME TEMPORAL LOGIC

The modal loglc is different from the ordinal logic in the point that it has some modal

operators \ln addition to logical ones. Its model consists of a set of possibility worlds

(worlds for short) and a set of visibility relations. Each $\backslash \backslash$ orld is an interpretation of

predicate and function symbols, which is exactly same as the model of the first order

logic. The truth value of a formula can be different \ln each world. Visibility relation,

called modality, is a set of ordered pairs of worlds, and is associated to a modal operator.

In a certain world, the truth value of a formula with a modal operator depends on the

truth values of the formula \ln all visible worlds designated by the associated relation.

The temporal logic is a kind of modal logic, in which $ea\cap b$ world represents a state at

the specific point in time, and modalities specify temporal relations. We define an

interpretation of the temporal loglc as a finite or infinite sequence of interpretations of

the first order logic, which we call time stream in this paper. Note that ’time‘ \ln the

temporal logic is discrete.

We list some of the temporal operators with their intuitive meanings.

$\square \rho$ ρ will be true forever from now

$\blacksquare p$ p has been true until $no\backslash \backslash$

3

170

Op p will become true at some time in the future

$2p$ p was true at some point in the past

Op p is true at the next point in time

$\bullet p$ p was true at the previous point in time

In the following let us concentrate on the temporal operators \square and \bullet . \blacksquare and O can be

treated in the same way because their definitions are obtained by reversing past and

future \ln the definitions of \square and \bullet . $\langle\rangle$ and 2 can be defined as $\sim\coprod\sim$ and $\sim\blacksquare\sim$

respectively. Let $S=(m(0).\iota\downarrow)(1),\ldots.)$ be an interpretation, r be a formula. Given a world

$w(i)$ contained in S and an assignment π of variables, we define truth values of $\square f$

. and \bullet f

.

as follows:

$\square f\cdot 1s$ true at u)(i) in S with π iff

f

. is true at u)(j) in S with π for all $i\geq$;

$\bullet r1s$ true at $\iota v(i)$ in S with π iff

$i\rangle 0$ and $r1st$rue at $w(i-1)\ln S$ with π

We write

$S,w(i).\pi F$ (if f is true at $\iota v(i)$ in S with π

S,rv(i) Fr if $S.n(i).\pi Ff$ for all π , and

SFr if $S,w(i)Ef$ for all $\omega(i)\ln S$.

and $\#$ denotes a negation of $F\cdot r$ is said to be valid $\ln S1fSFr$.

An interpretation S’ is called a substream of S when

$S’=(w(i_{O}).w(i_{t})\ldots..)$ where $j\langle j$
’ implies $i_{j}\langle i_{I}\cdot$.

Let [be a formula which does not contain any free variable. S^{\cdot} is called a time-extraction or

simply an extract\’ion of S regarding to $r\backslash \backslash$ hen S’ is a substream of S and $w(i_{j})\in S$
’ iff

$S,w(i_{j})F\gamma$. We call [as a key of the extraction. $S|f$
. denotes an extraction of S regarding

to r .

$i^{\mathcal{L}}$

171

Suppose we have a formula interpreted in one extraction and a formula in another

extraction. When $\backslash \backslash e$ examine the relationships between these two formulas, it $\backslash \backslash$ ould be

inconvenient lf we had to treat them \ln the separate models connected to the universal

time streams via time-extraction. Conversely, if it is possible to ’bring back’ the formulas

to the universal time stream, we will be able to deal with a number of formulas, each of

which ls interpreted in a respective extraction. As shown below, if a set of formulas A

which is interpreted in $S|f1s$ given, we can give a set of formulas $\langle f,A\rangle$ in S , which ls a

counterpart of A . We can also give a condition $\ll r,A\gg$ which guarantees equivalence

between A and $\langle f,A\rangle$. Note that $\ll r,A>>$ depends on both (and A . We call $\langle L^{A}\rangle$ and $\ll r,A>>$

as an embedding and an anchor of A regarding to f .

To prepare for the definition of $\langle f,A\rangle$ and $\ll f,A\gg$. we define $\langle f,g\rangle$ for formulas f and g

recursively as follows:

1. $\langle f.g\rangle=g$ if g is an atomic formula

2. $\langle f,g\rangle=\sim\langle(,g’\rangle$ $1fg=\sim g$ ’

3. $\langle r,g\rangle=\langle(,g\rangle\langle\gamma,g\rangle$ if $g=g’\vee g$
’

4. $\langle(,g\rangle=\exists x\langle\gamma,g\rangle$ $1fg=\exists xg$
’

5. $\langle f,g\rangle=\square (f-\langle[.g’\rangle)$ if $g=\square g$
’

6. $\langle(,g\rangle=\bullet p(x_{t},\ldots,x_{\mathfrak{n}})$ if $g=\bullet g$
’

where $p1s$ a new predicate and x_{1},\ldots,x_{n} are free variables $\ln g’$.

We call the predicate p introduced in 6 as a status predicate for $g’$. A different status

predicate ls assigned to another occurrence of the same subformula $g’$. The status

predicates are distinguished from other predicates.

Now we define $\langle f,A\rangle$ and $\ll r,A\gg$.

$\langle f,A\rangle=\cup$ $\{rarrow\langle f,g\rangle\}$

$g\in A$

ζ

172

Let p be a status predicate for g where $\bullet g1s$ a subformula occurred in A . Then $\ll(,A\gg$

contains

$rarrow(p(x_{1\prime}\ldots,x_{n})\equiv\langle\gamma,g’\rangle)$

$\sim;arrow(p(x_{1},\ldots,x_{n})\equiv\bullet p(x_{t},\ldots,x_{n}))$

No other element ls contained $\ln\ll\gamma_{A}\gg$.

Lemma 1 Let $SF\ll(,A\gg,$ $g_{0}\in A$. For all subformula g occurred in g_{0} and all asslgnment π ,

$S,\iota u(i_{J}).\pi F\langle\gamma,g\rangle$ iff $S|[,\iota v(i_{j}),\pi Fg$

Proof) Induction on construction of g .

(1) If g is an atomic formula, lt is trivial because $\langle r,g\rangle=g$.

(2) $g=\sim g’$.
$stf,w(i_{j}),\pi F\sim g$

’

iff $S|r,w(i_{j}),\pi\# g$
’

lff $S.w(i_{j}),\pi\#\langle\gamma,g\rangle$

iff $S,w(i_{j}).\pi F\sim\langle f,g’\rangle$.

(3) $g=g’|g’,$ (4) $g=\exists xg’$. They are easily seen similarly to (2).

(5) $g=\square g’$.
$(\langle=)S|\gamma,w(i_{j}).\pi$ $F\square g$

’ iff $S|f\cdot,\iota\iota(i_{\aleph}).\pi Fg$
’ for all $k\geq.;$. We will show that this implies

$S,\iota v(k\cdot).\pi Frarrow\langle(,g\rangle$ for all $k’\geq t_{j}$, i.e. $S,w(i_{j}),\pi F\square (rarrow\langle\gamma,g\rangle)$. Suppose it does not hold.

There exists $k’\geq i_{J}$ such that $S,w(k\cdot,),\pi\# rarrow\langle r,g’\rangle$. Because f has no free variables, $S,\iota v(k’)$

Ff and $S,w(k’),\pi$ $\#\langle r,g’\rangle$. By the definition of extraction and the hypothesis of

induction, $S|f$ contains $\iota v(k’)$, and $S|(,\omega(k\cdot,),\pi$ $\#$ $g’$. This contradicts the hypothesis.

Therefore $S|\gamma,\omega(i_{j}),\pi F\square g$ implies $S,w(i_{j}),\pi F\square (farrow\langle f,g\rangle)$.
$(=\rangle)$ It can be seen similarly to the proof of opposite direction that the negation of

$S|f,w(i_{j}),\pi F\square g$
’ leads to contradiction.

ζ

1 $j_{\cup}^{r_{\lambda}}$

(6) $g=\bullet g$. Let $\rho(1_{1},\ldots,1_{n})$ be a status predicate for g .

(case 1) $j=0$. By the definition of \bullet , $S\uparrow f,w(i_{O})\#\bullet$ $g’$. It is all right lf $i_{0}=0$ because S,w(0)

μ \bullet $p^{(}x_{\iota}\ldots..x_{\mathfrak{n}}$), too. Suppose $i_{O}\rangle$ 0 . By the definition of extraction, $S_{tA’}(i\cdot)\mu f$ for all $i’\langle i_{O}$.

Since $SF\ll\gamma_{4}\iota\gg$.

$S.\omega(i\cdot)Fp:\iota\cdot,\ldots.x_{\cap})\equiv\bullet\rho(x_{1},\ldots,x_{\mathfrak{n}})$ for all $i\cdot\langle i_{0}$.

This and $S.\omega(O)\#$ \bullet $p(x_{t},\ldots,x_{n})$ lead to $S.\iota v(i_{0})\#$ $\bullet p(x_{1}\ldots.,x_{n})$. Therefore $S,\iota(i_{0}),\pi$ $\#$

$\bullet p(x_{1}\ldots.,x_{\mathfrak{n}})$.

(case 2) $j\rangle$ 0 . $S|r.\omega(i_{j}).\pi F$ \bullet j(iff $S|r,\downarrow\iota;(i_{j1}).\pi Fg$ irf S,n) $(i_{j\downarrow}),\pi F\langle r.g\rangle$. Since $SF\ll r,.\lrcorner\gg$,

$S.u)(i_{j\cdot 1})Fp(x_{1},\ldots,x_{\mathfrak{n}})\equiv\langle f,g\rangle$ and

$S,!A(i\cdot)Fp(x_{1},\ldots,\mathfrak{r}_{n})\equiv\bullet p^{(}x_{1},\ldots.x_{n})$ for all i
’ such that $i_{j\cdot 1}\langle i\cdot\langle i_{j}$.

Therefore $S|\gamma,tt\rangle$ $(i_{j}),\pi F$ \bullet g iff S,u) $(i_{j}).\pi F\bullet\rho(x_{1}\ldots..x_{n}).$ $[$

Theorem 1 Assume $SF\ll r,.4\gg$. Then $SF\langle(.A\rangle$ iff $S|(F4$.

Proof) It is clear from lemma 1. 1

Example 1 Description of an interphone

Let us try to describe a simple interphone which has a three-digit phone number. The

events are represented by the following predicates:

on-hook put down the receiver

off-hook take up the receiver

dial(n) dial a dlglt n

We assume that more than one events never happen in the same time. The action to call

the interphone whose t hree-digit number is $\iota\cdot$, is represented by a predicate $cc\iota ll(\iota\cdot)$.

$*We$ repeat to “take up“ and “put down” the receiver by turn.

$//$

174

The following formulas hold in the extracted time stream regarding to on-h $ook\vee$ off-hook.

$\bullet on- l\iota ookarrow off$ -hook (1.1)

$\bullet orr- hookarrow on$-hook (1.2)

$*Take$ up the receiver, dial a digit three times, then a call takes place.

The following formulas hold \ln the extracted time stream regarding to on-hook \vee off-hook
$\vee\exists_{11}(dial(’\iota))$.

\bullet $\bullet\bullet of\cdot f$.-hook $\wedge\bullet\bullet dial(n,)\wedge\bullet di_{Cl}l(n_{2})\wedge dial(n_{3})$

$arrow call(100n_{1}+10n_{2}+n_{3})$ (1.3)

\sim ($\bullet\bullet$eoff-hook $\wedge\bullet\bullet dial(n_{1})\wedge\bullet dic\iota l(n_{2})\wedge di_{Cl}l(n_{3})$)

$arrow\sim cc\iota ll(x)$ (1.4)

Suppose we put down the receiver before we dial the third digit, then (1.3) has nothing to

do with the action of the interphone, namely, (1.3) ls true regardless of the truth value of

call(x) . In this case, the events occur \ln the order of

off-hook, dial$(n_{1}),$ $dial(n_{2})$, on-hook, dial(n_{3}) .

Therefore the left side of\rightarrow becomes false.

Now we will rewrite (1.1) and (1.2) using embeddings and anchors. First, we introduce

status predicates p_{1} and p_{2} .

\langle on-hook \vee off-hook, $\bullet on- hook\rangle$ $=\bullet p_{1}$

\langle on-hook \vee off-h$ook,$ $\bullet on- l\iota ookarrow orr- hook\rangle$ $=\bullet p_{1}arrow$ off-hook

\langle $on- l\iota ook\vee 0$ff-hook, $\bullet 0\gamma(- hook\rangle$ $=\bullet\rho_{2}$

\langle $on- l\iota ook\vee ofr$-hook, $\bullet orr- l\iota ookarrow on- hook\rangle$ $=\bullet p_{2}arrow on$ -hook

r

175

Then, let A be $\{(1.1),(1.2)\}$,

\langle on-hook \vee off-hook, $A\rangle$ $=$

{on-hook \vee off-h $ookarrow\bullet p_{1}arrow$ off-hook,

on-hook $\vee 0\gamma f\cdot- l\iota ookarrow\bullet p_{2}arrow$ on-hook} (1.5)

$\ll on$ -hook $\vee of\cdot f$.-hook, $A\gg=$

{on-hook $\vee orr$-hook $arrow$ ($p_{t}\equiv$ on-hook),

. on-hook \wedge
\cdot $of[- hookarrow(/)_{\uparrow}\equiv\bullet\rho_{1})$.

on-hook $\vee orr- l\iota ookarrow$ ($p_{2}\equiv$ on-hook),

-on-hook $\wedge\sim o(r- l\iota ookarrow(p_{2}\equiv\bullet\rho_{2})$ } (1.6)

(1.5) and (1.6) is a sufficient condition for (1.1) and (1.2) to be valid in the extraction

regarding to on-hook \vee off-hook.

3. TEMPORAL PROLOG

In this section, we will apply the notion of time-extraction to the Temporal Prolog (TP

for short) which ls a logic programming language based on the temporal logic.

3.1 The semantics of TP

Let us take a brief look at the model-theoretic semantics of TP. ([10] describes it in

details.) A program of TP is a set of formulas of the first order temporal logic with

various temporal operators with some syntactic restrictions. These restrictions make it

possible to every formula to be transformed to a normal formula which is like the

following:

$l_{1}\wedge C1_{2}\wedge\cdots\wedge Cl_{\mathfrak{n}}arrow b$

where $a_{1},\ldots.a_{\mathfrak{n}}$ is an atomic formula or its negation, possibly preceded by some $\bullet s$, and $b1s$

an atomic formula. In the following, we assume that every formula has already been

transformed to a normal formula.

(1

176

A model of a program .4 of TP is an infinite sequence of subsets of the Herbrand base

11 $’(A)$ which ls a set of all ground atomic formulas where all terms belong to the Herbrand

universe. We define an order among models of A as follows: A tuple $(11_{0}^{r}\ldots.,1I_{k}’)$ is a

division of $lt^{\gamma}(A)$ iff $t\dagger^{r_{0}},\ldots.[\mathfrak{j}_{k}’$ is disjoint and $UIf_{i}^{\gamma}=Il^{f}(A)$. Let $(1t_{0}’\ldots.,l\dagger_{k}^{r})$ be a division of

11 $r(A)$, and $L=(\iota’(0),\iota\rangle(1),\ldots)$, A$l=(u)(0),w(1),\ldots)$ be models of A .

$L\rangle 11$ iff

there exist natural numbers m and n such that

$u(l)=w(l)$ for all $l\langle m$,

$u(m)\cap\}V_{i}=t^{1}(t)\cap l1_{t}^{r}$, and

$w(m)\cap W_{n}$ is properly included in $\iota(m)\cap tI^{r_{\mathfrak{n}}}$.

The semantics of A is defined as the Ieast model of A where the division is provided by

the dependency relation among predicates in A . After all, an execution of A yields an

infinite sequence of worlds which is the least model of A .

3.2 Time-extraction for TP

Programming \ln TP is to prescribe a time stream by means of formulas $\backslash \backslash$ hich should be

valid \ln it. Then, ls it possible to make use of formulas which will be valid in an

extracted time stream \ln the same way? For instance, suppose we have two programs P_{1}

and P_{2} written \ln TP, only one of which can run at a time. Instead of rewriting P_{1} and P_{2}

for the purpose of process switching, it will be desirable to treat P_{i} as a program in the

extracted time stream regarding to process(i), where the predicate process(i) is supposed to

set or reset for $i=1.2$ by some scheduler. In order to accomplish this, we have to define a

model of such programs. For a pair of a program .4 and a key [. $\backslash \backslash hich$ we call

pseudo program, lt is natural to define its model as an interpretation S such that $S|r$ is a

model of A in the sense of TP. We extend this definition to multiple pseudo programs.

Let γ_{i} be a formula, and A_{i} be a program for $1\leqq i\leqq m$. For given $P=\{(\gamma_{i},A_{i})|1\leqq i\leqq m\},$ S is its

model iff $s|\gamma_{i}f:A_{j}$ for all i . As described below, the order among models of P can be

induced from the one provided by TP. Therefore we can define the semantics of P by the

least model \ln regard to that order.

$f)$

$17^{arrow}l$

However, it would be difficult to execute pseudo programs efficiently if the definition

above was directly used. In the previous section, we defined the embeddings and the

anchors which we could regard as substitutes which are easier to deal with. It can be

expected that efficient executions will be available if pseudo programs are transformed to

the equivalent programs in the same way as logical formulas. Nevertheless there exists a

problem that $\ll r,A\gg$ cannot be transformed to a normal formula because \bullet occurs \ln the

rlght side of $arrow$. Hence we define a weak anchor $WA(f,A)$ instead of $\ll f,A\gg$ so that we can

manage to compose a program by embeddings and weak anchors. Let $p(x_{1},\ldots,x_{\mathfrak{n}})$ be a status

predicate for g where \bullet g
’ is a subformula ln.4. Then $WA(f.A)$ contains

$rarrow(\langle\gamma,g\ranglearrow p(x_{1},\ldots,:r_{\cap}))$

$\sim farrow(\bullet p(x_{1},\ldots.x_{\mathfrak{n}})arrow p(x_{1},\ldots,x_{\mathfrak{n}}))$.

No other element ls contained $\ln WA(f,A)$.

Theorem 2 If $SFWA(f,A)$ holds, $S|fF$ A implies $S\in\langle f,A\rangle$.

Proof) It is easy to rewrite the proof of theorem 1. 1

For interpretations S and $S’,$ $S\simeq S’$ iff S and S’ are identical except the part of status

predicates.

Lemma 2 $S|f_{t}FA_{\aleph}$ for $1\leqq k\leqq m$ implies there exists S’

such that $S’\simeq S$ and $S’ F\langle f_{\ltimes},A_{k}\rangle\cup M^{\text{・^{}r}}A(f_{k},A_{k})$ for all k .

Proof) We wlll make S’ by changing the part of status predicates in S . In $S’$, the truth

values of predicates other than status predicates are same as S . The interpretation of a

status predicate $p(x_{t},\ldots,x:_{n})$ for g is defined as follows, where we assume that

interpretations of status predicates occurred in $\langle\gamma_{k},g\rangle$ have already been defined. Let

$S’=(w(O),w(1),\ldots.),$ $S’|f_{k}=(w(i_{0}),\iota v(i_{1}),\ldots.)$, and t_{1},\ldots,t_{n} be ground terms.

$S’,w(j)\#\rho(t_{1},\ldots,t_{n})$ $1fj\langle i_{0}$

/ /

178

$S’,w(j)Fp(t_{1}\ldots..t_{\mathfrak{n}})$ iff $S’,w(i_{n})F\langle\gamma_{k}.g(t_{1},\ldots,t_{\mathfrak{n}})\rangle$ $1fi_{\mathfrak{n}}\leqq j\langle i_{\mathfrak{n}\star 1}$ for some n

It is easy to see $S^{\cdot}FWA(\gamma_{k}.A_{k})$. Since the status predicates for the subformulas occurred

in A_{X} are different each other, the operations above have no contradiction. $S|f_{\aleph}FA_{k}$. $S’\simeq S$

and the fact that there is no status predicate $\ln A_{k}$ lead to $S’|f_{\aleph}FA_{k}$. By the theorem 2,

$S’ F\langle\gamma_{l},A_{k}\rangle$. 1

Lemma 3 If a program $\cup(\langle r_{\iota},A_{k}\rangle\cup lVA(rk,A_{\iota}))$ has the least model.17,
$1\leqq k\leqq m$

$J\dagger IF\ll\gamma_{\aleph},A_{k}\gg$ for all k .

Proof) Suppose there exits some k such that il$f\#\ll r_{\ltimes}.A_{k}\gg$. Let $-\prime 1f=(\iota v(0),n;(1)_{\iota\prime}(2),\ldots.)$.

There exists a status predicate ρ , a natural number i , and ground terms $t_{1}\ldots.,t_{\mathfrak{n}}$ such that

$1\}I,w(i)\# r_{\kappa}arrow(\langle r_{\iota,9}\cdot\rangle\equiv\rho(t_{1},\ldots,t_{n}))$, or

$M,w(i)\#\sim\gamma_{k}arrow(\bullet p(t_{1},\ldots.t_{\mathfrak{n}})\equiv p(t_{1},\ldots,t_{n}))$.

On the other hand, by $l\prime f,\omega(i)FWA(\gamma_{k}.\mathcal{A}_{k})$,

$M.w(i)F\gamma_{k}arrow(\langle f_{k},g\ranglearrow p(t_{1},\ldots,t_{n}))$

$J^{1}J.w(i)F\sim r_{u}arrow(\bullet p(t_{1},\ldots.t_{\mathfrak{n}})arrow p(t_{t},\ldots,t_{\mathfrak{n}})$.

We find $p(t,,\ldots,t_{n})\in w(i)$ in either case that γ_{ι} is true or false. Suppose lIJ^{\cdot} is made from.47

by removing $p(t_{1},\ldots,t_{\mathfrak{n}})$ from $w(i)$. Clearly)$1f’\langle M$. Remembering the form of the normal

formula, \bullet occurs only in the left side of $arrow$, so status predicates also occurred only in the

left side \ln embeddings. This means that to remove $p(t_{1}\ldots.,t_{\mathfrak{n}})$ from $w(i)$ does not falsify

any formulas $\ln\langle\gamma_{k},A_{\iota}\rangle$ and $WA(\gamma_{\aleph},A_{\aleph})$. Therefore $fPF\langle r_{\iota}.A_{k}\rangle\cup WA(r_{x},A_{k})$. but this

contradicts the hypothesis that $M1s$ the least. 1

Theorem 3 If $U(\langle f_{i}.A_{i}\rangle\cup WA(\gamma_{j},A_{i}))$ has the least model M in the sense of TP,
$1\zeta i\zeta m$

then $\{(\gamma_{i},A_{i})|1\leqq i\leqq m\}$ also has the least model S with the same order and $S\simeq.ll$.

Proof) Let $E,$ F be a set of all models of $\{(\gamma_{i},A_{i})\}$ and $\cup(\langle\gamma_{i}.A|\rangle\cup WA(\gamma_{i},A_{i}))$.

$[2_{-}$

179

respectively. Since Γ has an order \ln the sense of TP and every predicate occurred in E

also occurred in $F,$ E has the same order. For $N\in E\cup F$, we define [V] as an

interpretation which $:s$ made from N by changlng all status predicates to be false. We can

ge t the following proposition easily.

$N\geq[N]$ (2.1)

$N\leqq N^{\cdot}$ implies $[N]\leqq[N^{\cdot}]$ (2.2)

$N\simeq N$ implies $[N]=[N^{\cdot}]$ (2.3)

$S\in E$ implies $[S]\in E$ (2.4)

By the lemma 3 and the theorem 1, $J\prime J\gamma_{i}F$ A.. Therefore.$Il\in E$. By (2.4), $[\prime 11]\in E$. Put

$S=[fI]$. then we have to show S is the least in E . For every $S’\in E$. there exists $J11’\in F$ such

that $S\simeq Jl$ ’ by the lemma 2. $ll\cdot\geq.\uparrow l$, (2.1), (2.2), and (2.3) lead to $S’\geq[S^{\cdot}]=[.11^{\cdot}]\geq[-1l]=S$.

Therefore SiS the least in E. 1

We define S in the theorem 3 as the semantics of the pseudo programs. Since status

predicates do not occur in the original program, we can consider they have nothing to do

with the semantics. Then the theorem 3 states that a set of pseudo programs can be

transformed to the equivalent program.

Example 2 Controlling a switchboard

Now we will try to control a $s\backslash \backslash \prime itchboard$ for the interphones which we described in the

example 1. It is connected to a large number of interphones on which various events

happen asynchronously. The simplest way to deal with such events is to make a process

for each interphone to watch the dial or the receiver, and a process for each pair of

interphones to control a connection between them.

Let us conceive a group of pseudo programs carrying out the same job for different

objects. Such a group can be represented by a syntactically single component whose key

includes parameters, and each pseudo program will be obtained by instantiation of the

parameters. This means that they are isolated from each other on different time streams

so that unnecessary interference can be avoided. In this example, the program which deals

$/f$

180

with an abstract interphone will work in extracted time streams regarding to keys about

individual interphones. In the following, let a and b be parameters occurring in the key

formulas, which represent phone numbers. Note that this situation is similar to creating

several processes from a single program in the usual time-sharing $env\iota$ ronments.

We assume that t he events \backslash hich happen on interphones such as on-hook, off-hook. and

dial do not happen at the same time even lf they happen on different interphones.

A process for watching the dial of an interphone with a parametrized key of on-hook$(a)v$

off-h$ook(a)\vee dial(a.O)\vee\ldots.\vee dial(a,9)$;

$\bullet\bullet\bullet orr- 1\iota oo\lambda(v)\wedge\bullet\bullet dic\iota l(r.\prime 1_{1})\wedge\bullet dic\iota l(x.’\iota_{2})\Lambda dic\iota l(\tau,\prime t_{3})$

$arrow CCtll(:r.100;\mathfrak{l}_{\mathfrak{l}}+10n_{2}+n_{3})$

We may regard the following tt$o pseudo programs, which deal with connection between

interphones, as either single process consisted of two modules, or two processes which work

in cooperation.

Regarding to call$(\alpha.b)\vee on- l\iota ook(b)\vee$ off-h$ook(b)$:

$\bullet on- l\iota ook(y)\wedge cc\iota ll(\iota.y)arrow i\cdot ing(y)\wedge c(\iota llin$ g-ton $e(x)$

$\bullet 0[f\cdot- l\downarrow ook(y)\wedge c(\iota ll(x.y)arrow b\iota\lrcorner sy- to\iota e(x)$

$\bullet c\iota\iota ll(x,y)\wedge c\alpha ll(x,y)arrow$

$(\bullet busy- tone(x)arrow busy- tone\{x))\wedge$

$\langle\bullet ring(y)arrow ri’\iota g(y))\wedge$

$(\bullet C\zeta\iota l1ing- tone(\iota)arrow cc\iota lling-\ell one(\mathfrak{r}))$

Regarding to (call$(a.b)\wedge rlng(b)$) $\vee on- hoo\Lambda((l)\vee orr- hook(b)$;

$\bullet c(lll(x.y)\wedge 0’\iota- l\downarrow oo\lambda(x)arrow quie\ell(y)$

$\bullet c\zeta pll(r,y)\wedge of[- T\iota ool(y)arrow$ connect(r) $\wedge COtt$ ’ec $t(y)$

It is easily convinced of the validity of the pseudo programs above since they are

$l^{/}\zeta_{\sqrt{}}$

181

related to only one or two interphones. However, it is not realistic to directly use them

because it would yield enormous number of processes which could not possibly run on a

real machine. Therefore we must transform them to a program so that they can run as a

single process. Since status predicates are different for each value of parameters, they

act the role of an array which keep internal states.

Now the program contains many formulas instead of many processes, being still

difficult to run lf the number of interphones is very large. However, as is in this

example, if a parameter varies all over the data domain, we can reduce a number of the

formulas by replacing the parameter with a variable, because free variables are universally

quantified. For instance,

$1I^{\epsilon’}A(cc\iota ll(0.b)\vee on- l\iota ook(b)\vee off\cdot- l\iota ook(b)$,

$\{\bullet on- hook(y)\wedge cc\iota ll(x,))arrow ring(y)\wedge C\zeta\iota lling- tone(\tau:)\})$

consists of the following two formulas for every a and b .

call$(\alpha.b)\vee on- hook(b)\vee orr- l\iota ook(b)arrow 0\iota- hook(\})arrow p- c\iota- b(\})$

$\sim(call(a,b)\vee on- hook(b)\vee 0[r- hook(b))arrow\bullet p- a- b(\})arrow p- a- b(y)$

Replace each occurrence of p-a-b(x) by $p(a,b,x)$.

call$(a.b)\vee on- hook(b)\vee 0\gamma\gamma- hook(b)arrow on- l\iota ook(\})arrow\rho(\alpha.b,\})$

$\sim(call(\alpha.b)\vee 0t\iota- hook(b)\vee 0[r- l\iota ook(b))arrow\bullet p(a,b,y)arrow p(c\iota,b,y)$

There exist two formulas above for every pair of a and b . Now we can replace all of such

formulas by two formulas:

cail$(u,w)\vee on- hook(w)\vee\circ rr- l\iota ook(w)arrow on- hook\langle y)arrow p(u.w,y)$

$\sim(call(u,w)\vee on- hook(w)\vee orr- hook(w))arrow\bullet p(0.w.y)arrow p(\}$

In addition, we can improve the program using information from other parts of the

program. By the hypothesis that dial, on-hook, and off’-hook do not happen at the same

$/\lrcorner^{-}$

182

time, and the fact that call ls true only lf dial ls true, we find that call, on-hook, and off-
hook do not happen at the same time. Therefore the formulas above are transformed to

on-h$ook(w)arrow p(u,w.w)$

\sim(cclll$(\iota.w)\vee$ on-h$ook(w)\vee of\gamma- l\iota ook(\omega)$) $arrow\bullet p(\iota’,\iota v,)^{1})arrow p(\iota,w,\}^{1})$

in which v and y have no meaning. The final version ls

$o;\iota- l\downarrow ook(w)arrow p(w)$

\sim ($c\zeta\iota ll(u.w)\vee$ on-h$ook(\iota v)\vee$ off-h$ook(w)$) $arrow\bullet p(w)arrow p(w)$.

4. GENERALIZATI0N AND APPLICATI0N

4.1 Other Modal Logics

In order to extend application of $tlme-extraction$ to other modal logics, we generalize

it to the notion which provides extra models that are made from the original one, using a

given key formula. Worlds in which the key formula holds are collected, and visibility

relations among them are induced in the following way: Let w_{i} be a world for every i . and

F be a set of pairs of worlds associated to a modality. Then new relation G induced by F

consists of $(w_{1}.w_{\mathfrak{n}})$ such that $(w_{1},\iota v_{2}).(\iota v_{2},\iota_{3})\ldots..\langle w_{\mathfrak{n}\cdot 1}.w_{n}$) $\in F.$ and the key formula holds at

w_{1} and $w_{\mathfrak{n}}$, and does not hold at $\iota v_{2},\ldots,w_{n\cdot 1}$.

For example, in case of S4, it is almost trivial to see that

$’\coprod g$ holds \ln the extracted model regarding to a key $\Gamma’$

is equivalent to

$\coprod(rarrow g)$ holds \ln the original model.”

On the other hand, in case of the temporal and spatial logic [8] the generalization above

does not work well because it is necessary to deal with combinations of temporal and

$\nearrow\delta’$

183

spatial modalities, which should be another research problem.

4.2 Application for Distributed System

$Tlme-extractlon$ can be helpful for designing and programming of distributed systems.

The most important decision \ln the design of distributed systems is how to divide a job

into processes, on which communication and synchronization depend. (It is also important

\ln the design of slngle processor systems, but the cost of process communications on a

single processor is not so expensive as multi-processor communications.) In the usual

design method, this decision takes place at the earliest stage, therefore it costs very

expensive to fix mistakes found in later stages, or to adapt the program to future changes

of the hardware definition.

Using extraction, design and programming will be like following: First we $\backslash \backslash$ rite very

small pieces of the prograrn in appropriate time streams, which build up a model of

programmer‘s view and have nothing to do with configuration of the hardware. Then

these fragments are combined and executed in a debugging environment to ensure their

correctness. Next we assign the fragments to one of the processors and transform them to

a single process. Finally it is optimized and compiled to a certain machine language. The

decision of dividing a job takes place after a program is written at which stage detail

information about modularity is available. Furthermore changes of the hardware definition

require only re-assignment to the processors and compilation.

5. CONCLUSION

We have introduced the notion of time-extraction for the temporal logic in order to

simplify descriptions of sequences of events, especially when at most one event happens at

a time. Another aim of extraction is to make an extra time stream which can be regarded

as local process time. It can allow a more natural representation of the notion of process

than a model which has a single time stream. For given formulas with extraction, it ls

possible to give counterpart formulas without extraction, and conditions which guarantee

equivalence between them.

’ \hat{f}

184

We have also applied $tlme-extraction$ to the Temporal Prolog. We defined the

semantics of programs with time-extraction. Programs with $time-extractlon$ can be

transformed to a single program without time-extraction, which preserves equivalence of

semantics. This enables us to write a program in its own time stream.

One may think that it is not practical to make the assumption \ln both examples that

more than one events never happen at the same time. In real machines, bowever, one

processor can get one interrupt signal at a time. (Nesting of interrupts ls another

problem.) In case of multi-processor systems, it is more understandable to deal with one

event at a time because we can regard the system as a single processor, and moreover

only atomic execution takes place at each point \ln time. One solution to have both

describability and simplicity is to use a ’beginning‘ and an ’ending‘ of the event instead of

the event itself, though it needs further considerations.

Acknowledgement

The author would like to express his deep gratitude to Professor Reiji Nakajima for his

appropriate advices. The author also thanks Mr. Takashi Sakuragawa and Mr. Naoyuki

Niide for their useful comments to an earlier draft of this paper.

References

[1] M.Ben-Ari, Z.Manna and A.Pnueli,

The Temporal Loglc of Branching time, 8th Ann. ACM Symp. on

Principles of Programming Language (1981) pp.164-176

[2] F.Croger,

A Generalized Nexttime Operator in Temporal Logic.

Journal of Computer and System Sciences 29 (1984) pp.80-98

[3] J.DeTreville,

Phoan: An Intelligent System For Distributed Control Synthesis,

ACM SIGPLAN Notices Vol.19,$No.5$ (1984) pp.96-103

$\subset’\#$

185

[4] M.II.Van Emden and R.A.Kowalski,

The Semantics of Predicate Logic as a Programming Language,

JACM Vol.23.$No.4$ (1976) pp.733-742

[5] E.A.Emerson, Alternative Semantics for Temporal Logics,

Theoretical Computer Science $2G$ (1983) pp.121-130

[6] T.Hattori, R.Nakajima, T.Sakuragawa, K.Takenaka and N.Nide,

RACCO: A Modal Logic Programming Language for Writing Models of

Real-time Control System

Technical Report in RIMS 558, Kyoto University, Japan

[7] T.Hattori, R.Nakajima, T.Sakuragawa, K.Takenaka and N.Nide,

A Work Out Example of Tube Mill in RACCO

Technical Report \ln RIMS 561, Kyoto University, Japan

[8] J.Reif and A.P.Sistla,

A Multiprocess Network Logic with Temporal and Spatial Modalities,

Journal of Computer and System Science 30 (1985) pp.41-53

[9] T.Sakuragawa, Temporal Prolog,

Computer Software (To appear)

[10] T.Sakuragawa, A Model of Temporal Prolog,

(In preparation)

[11] P.Zave, An Operational Approach to Requirements Specification for

Embedded Systems, IEEE Trans. Software Engr. SE-8 (1982) pp.250-269

[12] P.Zave, The Operational versus, The Conventional Approach to

Software Development, CACM Vol.27 No.2 (1984) pp.104-118

’ f

