gooooooooo
O 6550 1988 1 186-208
18b

A rewriting system for categorical combinators with multiple arguments

Hirofumi Yokouchi

LI
Tokyo Research Laboratory, IBM Japan
Chiyoda, Tokyo 102, Japan

Teruo Hikita

£ @™ 14 A
Department of Mathematics, Tokyo Metropolitan University
Setagaya, Tokyo 158, Japan

Version: 26 October 1987

Abstract. Categorical combinators have been derived from the study of categorical seman-
tics of lambda calculus, and it has been found that they may be used in implementation of
functional languages. In this paper categorical combinators are extended so that functions
with multiple arguments can be directly handled, thus making them more suitable for
practical computation. A rewriting system named C'C LMj is formulated for these combi-
nators. In this system partial computation is naturally realized. The relationship between
this system and lambda calculus is established. As a result of this, the Church-Rosser
property of the system is proved.

Key words. Categorical combinator, Church-Rosser property, combinator, functional pro-

gramming, lambda calculus, partial computation, rewriting system

1. Introduction.

Categorical models of lambda calculus have been extensively studied, e.g. [2], [7], [8], [9],
[10], [11], [13]. Curien [4], [5] introduced categorical combinators from such categorical
semantics of lambda calculus, and he formulated rewriting systems for them, such as
CCLs and CCLgysp. Yokouchi [14] independently introduced the CCM calculus, which
is equationally equivalent to CC'Lg but has slightly different rewriting rules. Incidentally,
these systems have a strong resemblance to the functional style language FP of Backus [1].

Categorical combinators have been used in implementation of functional languages [3].
Partial computation, or often called partial evaluation, is a method of computing a function
with more than one argument by supplying values to only a specified part of the arguments

[6]. It has many applications such as compiler generation.

All the functions associated with the categorical combinators treated so far are presumably

one-argument. But this is not directly suited for practical computation where multiple-‘

argument functions are prevailing. Intended for practical application, in this paper a new
extended set of categorical combinators is introduced in order to incorporate the notion of
functions with multiple arguments. The starting point of the idea is to introduce n-tuples
for arbitrary n > 0, instead of only pairs in the previous categorical combinators. Related
to this, we assume that every function in the system has its own fixed arity, the number of
arguments. With these extensions, the operations of currying and application are naturally

extended to “partial currying” and “partial application”.

A rewriting system named CCLMjp is formulated for these new categorical combinators.
One restriction of this system is that n-tuples are not allowed to appear in themselves:
they may not appear at “top level”, so that tuple-valued functions are not treated. Partial
computation is naturally realized in this system. The system is semantically equivalent to
type-free Ag-calculus (without product). Moreover, our results show that these two systems
are equivalent even in the sense of reduction. We will establish the natural relationship
between the system CCLMj and the lambda calculus by giving translation algorithms
between the two. The Church-Rosser property of the system, which is not obtained for the
systems CCLg and CCLg,sp, is proved through this relationship with lambda calculus.

In Section 2 the new categorical combinators are introduced, and the rewriting system
CCLMjg is formulated for these combinators. A simple example of computation in this
system is also given. In Section 3 we briefly state the model theoretic aspect of the system.

In Section 4 some derived combinators are introduced which will be useful in practical

2

187

188

computation. In Section 5 the translation algorithms are introduced between the CCLMpg
calculus and lambda calculus, and in Section 6 theorems on the relationship concerning
reduction between these two systems are established. Finally, the Church-Rosser property
of CCLMgp is proved in Section 7, using the results in Section 6.

We assume the reader the basic knowledge of lambda calculus (e.g. [2]). The acquaintance
with categorical combinators ([4], [5]) is desirable, but this paper is self-contained and
makes no use of previous results about them. We are here mainly interested in the formal
aspect of the system, so that application of the categorical combinators with multiple

arguments to implementation of functional languages is left to a separate paper.

2. Rewriting system CCLMg.

Before presenting the formal system CCLMjg of categorical combinators with multiple
arguments, we explain the intuitive meaning of each of the new combinators. The combi-
nator o means function composition. For n functions fi, fa,..., fa, (n > 0), the angular
brackets (fi, f2,. .., fn) constitute an n-tuple. The combinator p?*, 1 < i < n, is the i-th

projection of an n-tuple.

We extend the usual currying operation to functions with n arguments. For n > 1, the
combinator A, applies to a function with n arguments and means currying. More precisely,
for an n-argument function f, A,(f) is an (n — 1)-argument function whose arguments
correspond to the first n — 1 arguments of f. The resulting value of the function A,(f) is

a one-argument function, whose argument corresponds to the last argument of f.

We also extend the usual combinator of function application App to partial application. In
our definition App receives two arguments, an n-argument function and a value; it implies
applying the value as the first argument among n arguments of the function, and returns

a function with n — 1 arguments.
Now we formally give the definition of terms of CCLMg.

Definition. We define terms with nonnegative integers called arity. In the following, terms

are denoted by capital letters F, G, Fy, etc. For every constant its arity is uniquely

specified. We assume that there aré special constants: pl' of arity n where n > 1 and

1 <1 <n, and App of arity 2. Then the terms are defined inductively as follows.

(1) every constant is a term.

(2) if F is a term of arity m ahd Gy,...,G,y, are terms of arity n, m > 0, n > 0, then
Fo(Giy,...,Gn)" is a term of arity n.

(3) if F is a term of arity n, n > 1, then A,(F) is a term of arity n — 1.

We omit the superscript n of F o (Gy,...,G)" whenever no confusion occurs. Also, we

often omit the subscript of A,(F) like A(F).

Note that when F' is a term of arity 0, F o ()" is a term of arity n. Note also that in

this system n-tuples in themselves are not terms; they always appear as part of composed

4

18§

130

terms.
Now we present the rewriting rules of the formal system CCLMgpg.

Definition. We define the binary relation — among the terms of CCLMjp by the following

rules:

—

AFo(Gy,...,Gp))o(Hy, ..., H,)F — Fo(Gio(Hy,...,Hp,)E ... ,Gro(Hy, ..., Hy)F)E
pro(F,...,F,) — F.

. Fo(pt,...,p}) > F,

where F' is of arity n.

A1 (F) o (Gy,...,Gn)k

— Ak+1(F Y (Gl o (pf-'-lv .. "pllz-*-l)a o v ,Gn o <pf+1v s ’piﬁ-l)’p:i})k—kl)’

w N

™

where F is of arity (n + 1), and G,...,G, are of arity k.

. Appo (Ant1(F),G)" — Fo(p},....p5, G),

where F' is of arity n + 1, and G 1is of arity n.

.If F — F' then Fo(Gi,...,Gn)— F'o(G1,...,Gn).

. If G; — G! for some 1 < i <m, then Fo (Gy,...,Gj,...,Gp)
— Fo(Gy,...,G,...,Gp).

8. If FF — F', then A(F) — A(F").

S0

- O

We sometimes denote this relation — by — ., especially when it is necessary to distinguish
it from that of lambda calculus (—»). We denote by —— the reflexive and transitive closure

of —. Note that arity is invariant under the relation — (and —).

Ezample. Computation in CCLMg.
Let plus(z,y,2z) = z + y + z be a function with 3 arguments giving their sum. In CCLMj

this is translated to the following (the translation algorithm will be given in Section 5):

Ay(A2(As(plus o (p},p3,p3))))-

Now, we give only one value 2 to its first argument, and partially compute it using App. In

the below, 2™ means the constant-valued function with n arguments giving 2 as its result.

App o (Ay(Ay(As(plus o (p}, p3,p3)))), 2°)

— Az(As(plus o (p?,p3,p3))) 0 (2°) (by rule 5)
— A (As(plus o (p},p3,p3)) 0 (2°0 (),p1)) (by rule 4)
— A1(As(plus o (p},p3,p3)) o (21, p1))

5

s Ay(Aa((plus o (p}, p3,p3)) 0 (21 0 (p3), P} o (p2), p2)) (by rules 4, 8)
_*>A1(A2((plu30(p‘;’,p2, 3))0(>P1aP2)))
x Ay (Az(pluso (22,P17P2))) '

3. On models of CCLMjg.

Before we examine the properties of CCLMj as a rewriting system, we digress and make
a brief discussion about models of CCLMjg as an equational system. Those who are

interested only in the operational aspect of the system may skip this section.

Let C be a Cartesian closed category (ccc). We say that an object u of C is reflezive, when
there exists a pair of arrows ¢: u — u* and 1: u* — u such that ¢ oy = 1d,u. It is known
that ccc’s with reflexive object are essentially the same as models of lambda calculus. See
(2], [5], [8], [10], [11]. Similarly, ccc’s with reflexive object characterize models of CCLMj.
We can naturally interpret terms of CCLMjg in a ccc C with reflexive object u. Terms of
arity n in CCLMjg are interpreted in the set C(u”, u) of arrows from u™ to u. Here u”
denotes the product
tXuX- - Xu (n times of u),

where t is the terminal object of C.

More formally, the interpretation of terms in C is the following. For each term F' of arity
n, we define the arrow [F] from u” to u in C as follows. Here we assume that for every
constant f other than p? and App, [f] is already specified.
1 [prl ==y (the (i + 1)-th projection from u™ to u).
2. [App] = ev™™ o (¢ X idy),
where ev™® is the evaluation map from u* to u.
3. [[Fo(Gl,. Gn)] =[F]o ([[Gll],...,[[Gn]D.
b AE)] = o Aumn([Flo72),

191

192

where Ayn (h):u™ — u" is the transpose map of h:u™ x u — u.

Based on this interpretation, we can prove that, if F' = G in CCLMj as an equational

system, then [F] = [G] in C. That is, C is a model of CCLMj.

4. Auxiliary combinators.

We further introduce the derived combinators of currying and application in a more general
form. First the intuitive meanings. For m > 1, the operator A™(—) means currying m
times. Thus, for an n-argument function f, AJ*(f) is an (n — m)-argument function which
gives an m-argument function as a result. More precisely,

Afr?(f) = An—'m+1(An—m+2(’ o (An(f)) o))
Informally, in a lambda-calculus like notation, A7 (f) means

Mz, Tnem) - (AZnemt1 - AT f(T1, -, Tn))-
(We do not yet, and will not in this paper, formally define the angular brackets {) in

lambda calculus. The above expression is only for the reader’s intuitive understanding.)

Likewise, for m > 1, App™ receives m + 1 arguments, an n-argument function, (n > m),
and m values; it implies applying the values as the first m arguments of the function, and
returns a function of n — m arguments. Thus, in particular, for an n-argument function,
App™ is the usual (full) application. App™ is informally represented by

Mz, 21y ooy T)22+ o Ty
Now we formally introduce auxiliary combinators.

(1) For n > 0, define id™ = (p},...,pR)"

(2) For m > 0 and n > 0, define n]"" = (pP"*",. .. ’pz+n)m+n, and

m,n _ m+n m+n\m+n
Ty = <pm+17"'7pm+n>m .

(3) Forn > 1,1 < m < n, and F a term of arity n, define the (n — m)-ary term A™(F)
inductively by A}(F) = A(F), and A™(F) = A(A™(F)).
(4) For m > 1 define

App™ = Appo (Appo (---(Appo (Appo (P, py™),pg™ 1), P),) P 1A),

(m times of App).

Remark 1. Form > 1 and n > 1,
A™(A™(F)) = A™T(F).
Remark 2.
For m > 1 and n-ary terms F,Gy,...,G,,, define the n-ary term APP™{F,G,,...,G}
inductively by
APPY{F Gy} = Appo (F,G,),
and
APP™YF Gy,...,Gpns1} = Appo (APP™{F,Gy,...,Gn},Gmt1)-
Then we easily have:
i) App™ = APP™{pi"*t, pptt, o ptl),
ii) App™ o (F,Gy,...,Gp) — APP™{F,Gy,...,Gn},

183

i) APP™{APPYF,Gy,...,Gi}, Hy,...,Hpn} = APPH™{F,Gy,..., G, Hy,...,Hp}.

Rules 4 and 5 of CC LM have natural extensions for A™ and App™, which are the following

propositions.

Proposition 4.1. Let F' be (m + n)-ary and Gy,...,G, be k-ary, where m > 1. Then

Am-}-n(F)o(Gl)"'aGn)k
* k k
— AR (Fo(Grom™,...,Gpo Wl’m,pzi;n, .. .,pfiﬁ)k‘*m).

Proof. Induction on m. When m =1 this is identical to rule 4 of CCLMj.
A™H(F)o (Gy,...,G,)
m k,1 k1 k+1 :
— AA™(F)o(Giom,...,Grnom" ,pyi)) (by rule 4)
A AA™(Fo (Gy o) o n+bm (G o xbl) o ”fﬂ’m’pﬁ} o mkF1m.

pZi;'Hn, e ,pziiiz))) (by induction hypothesis)

* 1 k,m+1 km+1 k4+m+1 k+m+1
—'*Am+ (FO(GIOWI ""7Gn°7r1 apk+;n ”"’pk+$+1))'

Proposition 4.2. Let F be (m + n)-ary, and Gy,...,G, be n-ary, where m > 1. Then,
APP™{A™, (F),G1,...,Gm} == Fo(p},...,p"G1,...,Gum)".

Proof. By induction on m. When m = 1 this is rule 5.
APP™ U A™YF) Gy,...,Gm, Gt}
= Appo (APP™{A™*(F),G1,...,Gm}, Gm+1)
5 Appo (AM(F)o (p?,...,p%,G1,...,G), Grg1) (by induction hypothesis)

8

194

—>Appo(A(Fo(pi"ow?’l,...,p:‘lowl GlOW?I""’GmOﬂ'l 7pZii))>Gm+1>

(by rules 4, 7)
5 Appo (A(Fo (pptt, . ..,ptt Gronpt, .., G on! pRt 1)), Ginga)
(F°<711+1" PRt Gromy 1,...,GmO7T1 J’Zii)) (PTs- - -+ Pns Gmt1)
(by rule 5)

*

— Fo (p?,---;pz;Gl’---,GmaGm—I-l)-

Proposition 4.3. Let F be (m + n)-ary, and Gi,...,G,, be n-ary, where m > 1. Then,

App™ o (A, (F),Gy,...,Gp)" == Fo(p?,...,p",Gy,...,Gm)™
Proof. Immediate by combining ii) of remark 2 above and Proposition 4.2,

The auxiliary combinators will be useful in actual computations in CCLMag, since, as the

example below indicates, they can be used to shorten the length of computation.

Ezample. Computation in CCLMz with the auxiliary combinators.

Let us use the same function plus(z,y,z) = z + y + 2, and give two values 2 and 3 to it:
App? o (A®(plus o (p},p3,p3)), 2°,3°)
% A(plus o (p, p3,p3)) 0 (2°,3°) (by Proposition 4.3)
— A((plus o (p}, p3, p3)) 0 (2° 0 (),3° 0 ()1, p1)) (by rule 4)
5 A(plus o (21,3, p1)).

5. Translations between CCLMpg and lambda calculus.

In this section we define translation algorithms for both directions between CCLM s and
lambda calculus, and we establish the natural relationship between the terms in these
two systems. The lambda calculus we are concerned is, more specifically, the type-free
Ag-calculus (without product), which we will denote by A. We assume that A contains
constants. Moreover, we assume that there is given a one-to-one correspondence between

the constants in CCLMpg other than p? and App, and the constants in .

Firstly, the translation algorithm from A to CCLMjp is described. For terms M and N in
A, we denote by M|z := N] the A-term obtained by substituting N for each occurrence of

a free variable z in M.

Convention. Let v = (21,...,2,) be a sequence of distinct variables z;,...,2,, n > 0. For
such a sequence v and a variable z, we denote by vz the sequence of the elements of v

followed by z, that is, vz = (zy,...,2,,2). Similarly, for two sequences a = (z1,..., ;)

and 8 = (y1,...,Ym), we denote af = (z1,...,Z1,Y1,- -, Ym)-

Definition. For each term M in A whose free variables are contained in v = (21, ..., 2,),

we define inductively a term of arity n in CCLMg, denoted by [Ay.M], as follows:

1. [Mz]=pt, 1<t <n.
2 Pvc] = A%(co (ot piEe)),
where c is a constant of arity s, s > 1. When s = 0, we define [Ay.c] = co {)™.
3. [My-(Az.M)] = A([Aye'. M|z := z']]),
where 2’ = z if z is not in -y, otherwise z' is a new variable.
4. [Av.eMy ... M) = co (M. My}, ..., [My. M),
where ¢ is a constant of arity s, s > 0.
5. [A\y.M M,] = App o ([My.M], [My.M,]),
where M; M, is not of the form in 4.

In the following discussions, whenever we mention [A(zy,...,2,).M], we assume that the
variables z1,..., 2, are distinct and that all the free variables in M are contained in the
set {z1,...,2n}-

Remark. The above definition of translation for constants of case 4 may seem some-
what artificial. Indeed, a different definition of translation without case 4 (that is, case

2 only) would be simpler, and actually almost sufficient. Under this simpler definition,

10

o]
[4]

196

the righthand-side of the translation of case 4 is obtained as a result of reductions for the

translated term of the lefthand-side (inspect the proof of Proposition 5.1 below). However,

in Theorem 6.3 of the next section (precisely, in case 3 of its proof), we need our present

translation for constants.

We give the general case of the translation of constants from A to CCLMg.

Proposition 5.1. Let ¢ be an s-ary constant in A, and 0 < m < s. Let v = (21,...,2n).

Then we have:

Proof.

[AMy.cM; ... M,]
——c A (co ([My.Mylon ™™, .. M. M) o wf’s'm,pzii_m, . ,p';ijjg))
[Ay.eMy ... M)

= Appo (Appo (--- (App o ([Ay.c|, (M. Mi]), [Av. Ma]) - -), [Ay. M)
= APP™{[Av.c],[My.Mi), ..., [My-Mn]}
= APP™{A%(comy®), [A\y.Mi),...,[Ay-Myu]}

5 A =™ (comy®)o (pP,...,pr, [Ny M, ..., [My-Mu]) (by Proposition 4.2)
5 A m((comp) o (p o mi T, pl o ml
My.Milon ™™ ... M- Mp] o n?’s—m,pZii_m, e ,pﬁizj'm"))

(by Proposition 4.1)
= A*~™(co ([Av.MyJom ™™ .. [My.-Mu]o Wf’s_m,])zii_m prtamyy,

1y ln4s—m

Remark. If we use Lemma 5.3 which will be established soon, the righthand-side of the

rewriting of the above proposition can be transformed further:

(the last term of the proof)
5 A ™(co ([Myz1 .. 2s_m-Mi]y. ., [My21 - - s - My,

Myz1.. Tsmm-z1]y oo [MYTL - T Ts—m])) (by Lemma 5.3)
=AM ([Myzy oo T My o My L Zs—m))-

Next, we give the translation algorithm from CCLMpg to A.

Definition. For each term F of arity n in CCLMjg and terms Ny, ..., N, of A we define
the term F*[Ny,..., N,] in), inductively by the structure of F, as follows.

1. (p?)*[N1,...,N,] = N,.
2. App*[N1,N2] = N1 N,.
3. f*[N1,...,Np] = fN;...N,,
for each n-ary constant f other than p} and App.

11

4. (Fo(Gq,...,Gm))*[N1,...,Np] = F¥[GI[N, ..., Ny, ..., G5INy, ..., Nl
5. (A(F))*[Ny,. .., Np] = Ae.(F*[Ny,..., N, z)),

where z is a variable not free in Ny,..., N,.

A term F of arity n in CC LMg means an n-ary function. Thus F is intuitively represented
by a A-term M with free variables z1, ..., z,. In the above definition F*[Ny,..., N,] means

Mlzy := N1,...,2q := Nyl

Now we return to the former translation algorithm and give three basic lemmas concerning
it.

Lemma 5.2. [A(z1,...,22).M] = [A(z],...,25).M[z1 := 21,...,2p := 2},]].
Proof. Easy and omitted.

Lemma 5.3. Let a = (z1,...,21), 8= (y1,-.-,Ym), and v = (z1,...,2,). Then,

l l l l *
Pay.M] o (™, DT s P — e [MaBy.M].

As a special case, we have
[Aa.M]o (™, ... p™) 5. [AaB.M].

Proof. The proof is by induction on the structure of M.
Case 1. M = z;, 1<i<l.

Pay.zi) o (prH™F", L pt A gt pimtn
= pt" o (pyt ™A L p T pE L it
N p5+m+n

= [Mafry.zi).

Case2. M =2, 1 <k <n.

Similar to case 1.

Case 3. M = ¢ (s-ary constant).
When s = 0 it is clear. Suppose s > 1.

Pay.clo (pitmtn, ... pitmtn pitmin piiminy
= A%(co 7r£,+"’3)) (p§+m+", ... ,p§+m+",pfi$i?, ... ,pfinmli;‘)
X AS((C o 7-‘-%'*'”:3) o (p11+m+n o 7‘—{+m+n’s> L ’p§+m+n ° ﬂ_i-{-m+n,s,
Pt om e o T s)

(by Proposition 4.1)
5 AS(comytmi™e)

= [AafBy.cl.

12

198

Case 4. M = \w.M;.

1 .
Dary.Qw. M) o (pyT ™+, g T P)
!
= APayw' . Myfw = w])) o (™, p T e pmin)
— A([’\O"Yw'.Ml [w = wl]] o <pi+m+n o Wi+m+n,l, o ’p§+m+n o ri+m+n,1,
l 1 l l+m+n,1 1
P om Mmoo T)
(by rule 4)
B A(Qayw' Mi[w :=w']] o (pi+m+"+1, e ,p§+m+"+1,
I4+m+n+1 I4+m4n+1 I+m+n+1
pl+m+1 Yo ’pl+m+n 7pl+m+n+1 >)
5 A(Pafyw' M [w = w']]) (by induction hypothesis)

= [Aafy.(Aw.My)).
Case 5. M = cM; ... M, (cis an s-ary constant).

[Aay.cMy ... Mo (pll+m+", . ,p§+m+",p§i$1?, ... ,pfiﬁiﬁ)
= (co ([Aey.Mil,..., [Aay. M) o (U™, p T gl pmt)
— co ([Aay.Mi]o (pi+m+", . ,p§+m+",p§izi?, . ,pfiﬁiﬁ), e
Day. M) o (pi™ 4", p A it piimt)
(by rule 1)
5 co(haBy. M), ..., [haBy.M,)]) (by induction hypothesis)

= [Aafy.cM; ... M.
Case 6. M = M, M,, and M is not of the form of case 5.

oy MidM] o (pr™ "o ™™ P - Pidmdn) :

= (App o (Pay. My, oy Ma])) o (™0, T Pl
5 App o {DafBy. M), [MaBy.M,)) (by induction hypothesis)

= [Aafy.M; M,).

Lemma 5.4. Let a = (z1,...,%m), and v = (21,...,2n). Then

PMa.M]o ([Ayv.M],...,[A7-Nu)) —*—*_c [Ay.M[zy := Ny,...,Zm := Npll.

Proof. By induction on the structure of M.
Casel. M =z;,1<1<m.
[Ma.zi] o ([Ayv.N1], ..., [A7.-Nm))
= p” o ([Ay.N1],. .., [A7.-Nm])
— [Ay.Ny].
Case 2. M = ¢ (cis an s-ary constant).
When s = 0 1t is clear. Suppose s > 1.
[Aa.c)o ([Ay.N1), ..., [My-Nnl)
= A(coml™) o (M), ., V7. Nu])
A ((comP*) o (Nl o w1, o, Dy Nl o 0%, pitd, ., Pt

13

(by Proposition 4.1)
5 As(comy®)
= [Ay.c.
Case 3. M = \z.My.
Aa.(Az.My)] o ([Ay.N1], ..., [Av.Np])
= A([Aaz’ Mi[z := 2']]) o ([Av.Ni], ..., [A7.Nw])
— A([Aaz’ .Mz = z']] o ([My.N1] 0 ot NG ot pitly)
5 A(raz’ Mz := 2']] o {{Myz' N, ..., [Myz! . N, [Myz'.2']))
(by Lemma 5.3)
5 A([Myz' Mylzy := Ny, 2 i= Nppyz = 2']])
(by induction hypothesis)
= [My.(Az.My)[z1 := Ny, .o 20 i= NyJJ
Case 4. M =cM;...M, (cisan s-ary constant).
a.cMy ... Mo (DN, (M. Nol)
= (co ([Aa. M), ..., [Aa.M])) o ([Av.Nq], ..oy [A7v-Ni])
— co ([Aa.Mi]o ([Ay.Nil,..., [AMv.Nul), .., [Aa. M) o ((Av.Nil, . .., [My-Ni]))
Sco(M.My[zy := Ny, ...,z = Npl, oo [Ny M[zy i= Ny, ooz, = NI
(by induction hypothesis)
= [My.cMy ... Mg[zy := Nq,...,2m := NpJ.
Case 5. M = M M,, and M is not of the form of case 4.
[Aa. My M) o ([Ay.N1), ..o, [A7-Ni))
= (App o ([Aa.My], [Aa.M3])) o {([Ay.Ny], ..., [Ay-N]) |
— Appo ([Aa.Mi) o ([Av.N1],. .., [AM.Nnl), Pa.Ma] o ((Ay.N1], ..., [Ay.Ni]))
5 Appo ((\y.My[zy := Ny, ..., 2m := Nyl M. Ma[zy := Ny, ...,z := Ny
(by induction. hypothesis)
Now, when MyM,[zy := Ny,...,Zm = Np] is not of the form cL; ... L, (¢ is an s-ary
constant), the last term is identical with [Ay.M;Ms[zy := Ny,. ..,z := Np]]. Suppose
that My M;[z1 := Ny,...,Zm := Np] is ¢Ly ... Ls. Then My[zy := Ny,...,Tm := Np] is
L,. The above last term is:
= Appo ([Ay.cLy ... Ly_1], [Mv.Ls])
5 Appo (A(co ((My.L]oxt ..., [My.Le_i] 0 ot pr i), r-Ls))
(by Proposition 5.1)
— (co{y.Lnlom™, .o,y Lo o n] ™, phT1)) 0 (P, - -, PR, [M-L])
= co(AM.Lulye oo, V- Looal, M-La))

14

200

= [My.eLy ... Ls_1Ls).

6. Relationship between CCLMj3 and lambda calculus.

Now we are in a position to state the theorems which describe the relationship between the
terms and reductions of the two systems CCLMj and A, in terms of the two translation

algorithms of the previous section.

Theorem 6.1. Let v = {z1,...,2,). Let M and N be terms in A, and the free variables
in them are all in y. If M =55 N, then [\y.M] -, [\y.N].

Proof. By induction on the definition of M —— N.
Case 1. a-rule.

[Ay.(Az.M;)]
= Apg1([Myz' .My [z = z']])
= Apt1(MY Mz = o']]) (by Lemma 5.2)

= [My.(Ay.Mi[z := y])].
Case 2. (B-rule.
[Ay.(Az.M1)M;]
= 4pp o (Anpa (D’ Mo = /1), [y My)
— [Myz' Mz :=2']) o (p}, ..., p", [A\v.-M2]) (by rule 5)
= My’ Mz := 2']] o ([My.z1],- - o, [Av.za], [Ay. M2])
5 DMy [z = M) (by Lemma 5.4)
Case 3. M = Az. My, N = \z.Ny, and M, 5 N,
Av.(Az.My)]
= A([Mya2'. M|z := 2']]) _
5 A([Myz' Ny [z = 2'])) (by induction hypothesis)
= [My.(Az.Ny)]. '
Case 4. M = MyM,, N = NyN,, M; 5 Ny, and M, 5 N,.
(4-1) Suppose that M is of the form cL; ... L,, where c is an s-ary constant. Then N is
also of the form ¢L) ... L', and Ly 5 L},...,L, = L'. Therefore,

15

[Ay. M1 M;]

= co ([Ay.L1],...,[Av.Ls))

5 co ([M.LY, ..., [M.LL) (by induction hypothesis)
= [\y.N1N,).

(4-2) Suppose that M is not of the form in (4-1) and that N is of the form c¢L; ... L,.

Then Ny =cL;...Ls_; and N, = L.

[)\’YMIMQ]
= App o ([\y.M1], [\y.Ma])
5 Appo ([My.cLy ... Ly_1],[My.Ly]) (by induction hypothesis)

5 [My.cLy ... L,_1L,)).
The last reduction has been shown in the calculation of case 5 of Lemma 5.4.
(4-3) Otherwise.
[Ay.M; M)
= App o ([My.Mi], [My.Ma))
5 App o ([My.Ny], [My.No]) (by induction hypothesis)
= [Ay.N1 N,

Theorem 6.2. Let F' and G be in CCLMg, and both are n-ary. If F —~5. G then
F*[Ny,...,Nn] =5 G*[Ny,..., N,

Proof. By induction on the definition of F 5. G.
Case 1. F=(Ho(L,...,I}))o{(Jy,...,Jn)
—~G=Ho(lio(J1,....;Jm),.. ., [1o{J1,..., Jn)).
F*[Ny,...,N,]
= H*[I}[JF[Ny,...,Ny),..., J5 [Ny, . NG
IF[Jf Ny, .oy Nply ooy T[Ny, o, NGl
= G*[Ny,...,Na.
Case 2. F =p"o(Hy,...,Hyn) > G= H,.
F*[Ny,...,Ny]
= (o) HI [Ny, Na, o HAN, .]
= G*[Ny,...,Ny).
Case 3. F=Ho (p},...,ph) > G=H.
F*[Ny,...,N,]
= B 1) (N1, Mol) [N Nl
= G*[Ny,..., Ny
Case 4. F=App1(H)o(Iy,..., 1) = G=Apy1(H o (Ly ow?’l,...,Imow?’l,pzﬂ)).
F*[Ny,...,N,] |

16

01

= (AH))*[IF[N1y.. ., Ny, oI5 [Ny, ..., NG
= Ae. H*[I{[Ny,...,Np), ..., I5 [Ny, ..., N, 2]
= G*[Ny,..., Nyl
Case 5. F = Appo (Apy1(H),I) = G=Ho (p},...,p I).

F*[Ny,...,Na]
= (Az.H*[N1,..., N, z))(I*[Ny,..., Na))
—x H*[Ny,...,No, I* [N, ..., Ny] (by B-rule)

= G*[Ny,..., Nl

Case 6. F=Ho(L,...,In),G=H'o(I|,.... '\, HSH' L 5 I|,....I,n > I,.
F*[Ny,..., N |
= H*[I}[N1,...,No), ..., I5 [Ny, ..., NR] -
5 (HY I[Ny, ..., Ny, ..., (I)*[Ny,...,N,]] (by induction hypothesis)
= G*[Ny,...,N,).

Case 7. F = A(H), G =A(H"),and H S H'.

By induction hypothesis.

Before going into the next Theorem 6.3, we need the following definition.

Definition. For a term F in CCLMag, let F't be the term in CCLMjg obtained by replacing
all n-ary constants f (including p? and App) in F by f o (p},...,ph), for alln > 0.

Theorem 6.3. Let F be of arity n, and v = (21,...,2n). Then we have

Ft 5 [M.F*z, ..., 24])

Proof. By induction on the structure of F'.
Case 1. F =p?.
(pF)*
=pi o (pTs-.-,pn)
— p?
= [)"Y-(P?)*[Zb R zn”‘
Case 2. F = App.
App*
= App o (p3,p3)
= [Mz1, 22).21 22]
= [Ma1, 22). App*[21, 22]]-
Case 3. F' = f, an n-ary constant other than p! and App.
f+

17

203

= fo(pf,...,pPn)
= fo{[M.z1],.--, [Ay.20])
= [M\y.fz1...2n]
= [My.f*z1,- .., 20])
Case 4. F=Ho(l,...,In).
(Ho(L,....,In)*t
=Hto(If,..., I})
5 DaH* [z, .. zm)] o (M I z1, - s zalls ooy Dy IR [21, - -y 20]))
(by induction hypothesis)
5 Dy H*[Ifz1, s 2n)s e o L5215 - - 5 2] (by Lemma 5.4)
=M. (Ho{I1,...,Im))* 21, -, 2za]].
Case 5. F = A(H).
(A(H))*
=AHT)
5 A([/\'yz.H*[él,. s Zny 2)]) (by induction hypothesis)
= [My.(A2.H*[z1,. .., 2zn, 2])]
= [My.(AH)) 21, - -, 2a]]-

For Theorem 6.4 we need the following definition.

Definition. For a term M in A let M° be the term obtained from M by replacing all
occurrences of s-ary constants ¢ not appearing in the form c¢M; ... M, by

AT1...A\Lg.CT1 ... T
Let M =, N mean that M and N are syntactically identical except bound variables.

Theorem 6.4. Let M in A\, v = (21,...,2,), and all the free variables in M are in 7.

Then we have

Ay M*[z1,...,2a] =x M°.

Proof. Induction by the structure of M.
Casel. M =2 (1<i:<n).
Ay.z:]*[z1,- - -, 2]
= (pM)*[z1,- - - » 2l
= z;.
Case 2. M = ¢ (s-ary constant).
When s = 0 it is easy. Assume s > 1.

18

204

My.c*[z1,- - 2n)

= (A*(comy?))*[z1,- - -, 2]

=Azy ... Az ((comy) 21, oy 20, T, o, Ts))

=AZ1...A\T4.CT1 ... Ty.
Case 3. M = dz.M,.

[Ay.(Az. M) *[z1,- - -, 2]

= (Apy1([Mye' My[z := 2']]))*[=1, - - -, 2]

= Ay ([Ayz' . M|z := 2'|)*[z1, .-, 20, ¥])

=\ Ay M7z =yl (by induction hypothesis)
Case 4. M =cM, ... M, (cisan s-ary constant). '

Ay.eMy ... My)*[z1,. .., 2n]

= (co ((My.Mi],...,[My. M) *[z1,- -, 2]

= (M1, zal) - (P Mo - 2))

=\ cMp .. .M. (by induction hypothesis)
Case 5. M = M, Mg, and not of the form of case 4.

[Ay. My Mo)*[zq,. . ., 24)

= (App o {([Ay.My], [My.M2])*[21,- - -, zn]
(IVy-Ma)* (21, - - oy 2a)([(AY- Mo]*[21,5 - - -, 20])
=\ MY M. (by induction hypothesis)

19

205

7. Church-Rosser property.
In this section we prove the confluency property for CCLMg.

Definition. For a term F in CCLMpg define the term F'~ in CCLMg as follows.
1. For a constant f, including p? and App, f~ = f.

Hi_ lfG_EP;na .
2. (Go(Hy,...,Hy))" =4 G~ if (Hy,...,H;) = {p},...,p),
G~ o(H;,...,H;) otherwise.

3. (A(G))~ = A(G™).

Thus, F~ is the term obtained from F by applying reductions concerning projections (rules

2 and 3) as much as possible. We state without proof easy properties of this transformation.

Lemma 7.1.

i) F2, F-.
i) (F~)y~=F~.
iii) F 2, (FH)-.

Lemma 7.2. F 5. G then F~ .G

Proof. By induction on the length of reduction of F = G.
Case 1. F=(Ho(li,...,In))o{J1,...,Jn) 2 G=Ho (Lo (J1,...,Jn),...).
(1-1) H- = p™.
F-=io(J1,...,n)) " =G™.
(1-2) {(I7,...,. I) = (p*,...,p;m) (necessarily m = n).
F-=Ho(J1,...,Jn)”" =G".
(13) (I T7) = (B
F-=Ho(L,....In)) " =G".
(1-4) Otherwise.
F-=H"o(;,..., I) o{J7,...;,J;) > H o(Iy o{J[,....,J7),...) =G.
Case 2. F =p?o (Hy,...,H,) » G=H,.

F-=H =G".
Case3. F=Ho (p?,...,p") » G=H.
F-=H" =G~

Case 4. F= A(H)o(L,...,I.)* = G=AHo (L om ..., I, oyt pkth)).

' P41
F-=ANH)=G".

20

206

(4-2) H= = pP™*, and not of the form of (4-1).
F-=AH)o I ,...,I)
— AP o (IT omyt . I oy pRET))
— G,
(4-3) Otherwise.
F-=AH)oI;,...,I;)
L AH o (I omt, . Iy 0wkt
=G .
Case 5. F = Appo (A(H),I) = G=Ho (p},...,pn, I).
(5-1) H- = pth.
F~=Appo(A(H™),I7)
- p?+1 o{pTs---,Pp:I7)
- G,
(5-2) Otherwise.
F~=Appo(A(H™),I7)
— H- o (p},...,p08,I7)
=G™.
Case6. F=Ho(l,,.... Iy 5 G=H'o(l},....,I'\, H S H',and I, 5 I!,..., I, S I.
(6-1) H = p?.
Since H' = p?, by induction hypothesis we have
F-=I7 S (I)-=G6".
(6-2) (I1,...,In) = (p},...,pR).
Since (I{,...,I,) = (pt,...,p"), by induction hypothesis we have
F-=H- 5 (H) =G~
(6-3) Otherwise.
F-=H"o(I],...,I7)
S (HDY o {((I)~,... (I)7) (by induction hypothesis)
5 G
Case 7. F=A(H) 5 G=A(H'Yand H 5 H'.
By induction hypothesis.

The following theorem establishes the Church-Rosser property of CC LMg.

Theorem 7.3. If F . G, and F -5, G,, then there exists H such that G, —. H
and Gy =, H.

Proof. Suppose

21

F =5, Gy, and F 5, Gy,
Assume that F' is n-ary, so that G; and G4 are also n-ary. By Theorem 6.2 we have
F*[z1,...,2x] 2 Gilz1, ..., 2n), and F*[z1,.. ., 2z4] oy G321, -, 2n)-
By the Church-Rosser theorem of the type-free Ag-calculus, there exists M such that
G2y -y 2n] —x M, and Gi[z1,. .., 2] =\ M.
Let v = {z1,...,2,). By Theorem 6.1 we have
[My.Giz1,. . ., 2a]] ==¢ [My-M], and [M\y.G3[z1, - - ., 2a]] = [My.M]. (1)
By the way, by Theorem 6.3 we have .
G 5. [M.GHlz1,. .., 2n]), and GF 50 [M.GE 21, ..y 20]]. (2)
By combining (1) and (2) we get
G . \y.M], and GF . [\y.M].
Applying Lemma 7.2 to the above we have
(GH)~ . [My.M]~, and (GH)~ s [Ny M.
Therefore, if we put H as [Ay.M]~, by using Lemma 7.1 iii) we have
Gr —e (GF)~ e H, and Gy e (GF)~ ~ H.

The proof is completed.

Remark. We have reduced the proof of Church-Rosser property of CCLMpg to that of
lambda calculus by using the relationship of the reductions between the two systems. A
direct proof, that is, a proof solely within the system, may be possible, but it will perhaps
be a tedious one. For the CCM calculus of Yokouchi, a direct proof of the property is in
[14].

.22

208

REFERENCES

[1] J. Backus, Can programming be liberated from the von Neumann style? A functional style
and its algebra of programs, Comm. ACM, 21 (1978), pp. 613-641.
[2] H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, Revised ed., North-
Holland, Amsterdam, 1984.
[3] G. Cousineau, P.-L. Curien and M. Mauny, The categorical abstract machine, Sci. Comput.
Program., 8 (1987), pp..173-202.
[4] P.-L. Curien, Categorical combinators, Inform. Contr., 69 (1986), pp. 188-254.
[5] P.-L. Curien, Categorical Combinators, Sequential Algorithms and Functional Program-
ming, Pitman, London, 1986.
[6] Y. Futamura, Partial computation of programs, Lecture Notes in Computer Science, vol.
147, pp. 1-35, Springer-Verlag, Berlin, 1983.
[7] S. Hayashi, Adjunction of semifunctors: Categorical structures in nonextensional lambda
calculus, Theoret. Comput. Sci., 41 (1985), pp. 95-104.
[8] C. P. J. Koymans, Models of the lambda calculus, Inform. Contr., 52 (1982), pp. 306-332.
[9] J. Lambek, Functional completeness of cartesian categories, Ann. Math. Logic, 6 (1974),
pp. 259-292.
[10] J. Lambek and P. J: Scott, Introduction to Higher Order Categorical Logic, Cambridge
University Press, Cambridge, 1986.
[11] A. R. Meyer, What is a model of the lambda calculus?, Inform. Contr., 52 (1982), pp.
87-122.
[12] H. Yokouchi, Application and composition in functional programming, J. Inform. Process.,
8 (1985), pp. 217-221.
[13] H. Yokouchi, Retraction map categories and their applications to the construction of
lambda calculus models, Inform. Contr., 71 (1986), pp. 33-86.
[14] H. Yokouchi, The CCM calculus — another formalization of the A-calculus, preprint, 1987.

23

