
$\iota^{)}\prime 0_{\backslash }^{\mathfrak{c}_{:^{:}}}$

Editing mechanism for the uniform manipulation of various kinds of data

渡辺豊英、小笠原達男、吉田雄二、福村晃夫

Toyohide WATANABE, Tatsuo OGASAWARA, Yuuji YOSHIDA and Teruo FUKUMURA

Department of Information Engineering,

Facul ty of Eng incering, Nagoya University

Furo cho, Chikusa-ku, Nagoya 464, Japan

$*****Abstract*****$

The edi ting facil i ty is one of the mos t fundamental computer sof tware tools, and

constructs direct user interfaces in the programming environments. Especi ally, the

functional ro les of the edi ting facili ty agai ns t the other processi ng facili ties are very

important wi th a view to realizing the effective user interfaces, $n\alpha\sqrt{}$ that it is strongly

required that the issues about the sof tware integration and the manipulation of mul ti-
$\ovalbox{\tt\small REJECT}_{J}ia/for\mathfrak{m}$ data must be inves tigated successfully. In this paper, we address a
conceptua1 framework of the edi ting mechani sm adaptable to the manipulation of multi-media
$/for\mathfrak{m}$ edi ting data in cooperatively integrated information systems. Our discussion

characterizes the bas ic archi tecture of the edi ting facili ty in the more progressive
i nforma t ion sys tems.

$*****Key\omega rds*****$

Edi ting facili ty, integration, 1ogical s truc ture, multi-media, mul ti-form, def ini tion
language, rela tional da tabase, ed iting obj ec t , obj ect a ttribu te, user interface,

opera ti veness-

$-4-$

数理解析研究所講究録
第 655巻 1988年 209-223

210

1. INTRODUCTION
Today, the effective management of various kinds of data has been a very important issue

because of extensive usages of computer abili ties in a wide range of f ields. Especially,

the computer utilization technology in the office working must provide the means to perform

the effective information processing/communication under the subjec t of tbe of f ice automa tion.
5. 6) For example, in the office environments, the $d\propto ument$ preparation is one of the

fundamental tasks. The task is composed of several procedures such as updating, pr.ocessing,

f iling, retrieving and so on, and also these individual procedures must be systematized

mutually and cooperatively. Therefore, . the computer-aided tool to make up documents mus t
be always implemented so as to satisfy the requirements from end-users. 8)

Edi ting facili ty is the most basic computer-aided tool and supplies usable functions for
every computer $pr\infty essing.7$

) Various kinds of edi ting facili ties have been developed now,

but they only provide almost similar functions for the string manipulation thou$g\dagger\downarrow$ their

corrmtand syntaxes and their application-oriented $r_{(^{\backslash }\lambda}$ tures are more or less different. The

di fference is mainly derived from the fact that the ed i ting structures depend too strongly on
tbe individual applicati ons because many ed i ting facil i ties have been developed wi th the

application-speci f ic requirements. If the edi ting s tructure could be designed abs tractly

so as to dis tinguish the appl ica t ion-oriented s tructure in the edi ting facili ty, we can
implefnent practical ly a generic edi ting mechanism adaptable to the manipulation of various
kinds of edi ting data. From a viewpoint of this discussion, our approach is primarily

based on a separation method which extracts abstractly the logical s tructure and the physical

s tructure from every edi ting s tructure.
In this paper, we propose our experimental method to manipulate various kinds of edi ting

data on the basis of descriptions for individual logical structures. We address that a
uniform data manipulation becomes possible by means of such a methox!. Our model, which is
composed of the 1ogical structure and the physical structure, is conceptual ly similar to the

data $m1e1$ in the database management sys tems as the storage-oriented representa t ion s tructure.
$H(x\ovalbox{\tt\small REJECT}\rho,ver$, our model, which is designed as the manipulation-oriented representation structure,

is different from the database fnodel from viewpoints of the data representation, the data
$pr\propto essing$ and the data sharing.

2. MDEL OF EDITING MECHANISM
The conventional edi ting $t\infty ls$ introduce more or less their application-specific edi ting

structures, and provide individual characteristic functions in point of the command nanes, the
$c\alpha r and$ syntaxes, the comnand parameters, the response lnessages and so on. However, the

functional abili ties are almost similar wi thout regard to individual applica tion-speci fic

\sim 禽一

$\text{\’{e}}^{\supset}tIj$

�

ed i ting func t ions. I f the $e\backslash li$ ti ng s truc ture could be designed as an appl ication-

independent form, we can cons truct a more powerful edi t ing tool adaptable to tbe mani pulation

of various kinds of edi ting data.
Our framwork is based on the archi tec tural concept wi th respec t to ttte logical s tructure

and the physical s tructure, which are distinguihed from the ordinary edi ting s tructure.
The logical structure is an abs tracted cdi ting structure, and is independent of $p_{i1}rticular$

data organizations in individual edi ting tools. On the 0 ther hand, the physical s tructure
is a facili ty-dependent data $\backslash ^{\backslash }1$ tructure. The former is $s\ddagger xx:ified$ conceptual ly by users,

$w\}\iota ile$ the latter is practically managed by the sys tem func tions. In Flg. 1, our edi ting

model, based on the separation mechanism bet$wc\iota^{s}n$ the logical s tructure and the physical

structure, is illus tra ted conceptually. User’ $s^{\backslash }$ operations are transformed into the system

functions through the da ta def ini t ion i nforma tion.
The simi lar approach is observed in the [\backslash

, of the tradi tional $(1at_{1}\prime b\cdot)\searrow\backslash n$ managemen t

systems. Our speci f ica tion methcxl for the logical structure is almos 1 $J_{J}^{\backslash }$ imilar to the

schema description form in the relational database $mode1$
) except for several edi ting-speci f ic

fea tures. The da ta def ini tion $inform_{\dot{(}}$) tions, ass$oc^{\backslash }$, iated wi th i ndividual edi t ing da ta, take

part in the control of the data manipula ti on as we11 as the table handling in the relational

database. The framework, in which a da $t_{t}\gamma$ }) j) se may t)$ecomp_{0_{\backslash }}scd$ of one or more tables, is

very appropriate to our edi ting data organization.

Individual ed i ting data are not only controlled independently or flexi bly, bu t also can
cons truct the other edi ting data as compos i tive elements. The $independt^{\backslash }nc,\sigma\backslash$, among edi ting

data is naturally derived from the characteris t ics of tbe relational database model, on which

our edi ting $I K$)$de1$ is based. The flexibili ty of edi 1.ing data depends on the concep t that

the descriptive procedure for the logical structure can become an operational obj ect by i tself.
Concerned to the flexibili ty, we can get user views for edi ting structures, corresponding

to the schema subschema rela tionship in the rela tional da tabase $m(xJel$. Of course, our
framework is rnbre $fxwaerf_{t1}1$ than the schema-subschema relationship. For example, we can
illustrate such relationships in Fig. 2. In Fig.2, 2 cases ai e shown: one is to manipulate

an edi ting data through many sui table defini tion informations; and another is to manipulate

many edi ting data through only one def ini tion information. This mechanism makes it

possible to $1\infty k$ upon one edi ting s truc ture as another structure if another logical structure
which is different from the original $\dot{\grave{\Delta}}$ tructure could apply sui tably to the ed i ting data.
In the schema-subschema re lationship, every subschema must be always derived from the underly-

ing schana, while in our $frame tjork$ such a cons traint is not necessary.

While, wi th respect to the independence our $fra ae\sqrt ork$ can provide a very successful
solution for the issue of the software integration. It is better to exclude the physical

遭-

212

information for the control or management of the data organization from the data structures of

individual applications when various kinds of data mus t be shared among several $pr\propto essing$

facili ties $c\infty oeratively$. The da ta sharing method, which uti lizes only tlle logical infor-

mation, is applicable to many dif ferent processings uniformly. ‘ 2) If the relational data-

base model were replaced by the hirearchical database model (or the network database model)

as our basic $\mathfrak{n}xx!e1,$ it is di fficult to control each composi tive edi ting data successfully.

The hierarchical model ls poor in case of sharing data among the other processing facil i ties

though it may be appropriate to the representation and management of the edi ting data, associ-

ated inherently wi th the hierarchical property. In our model, the data sharing mechanism
can be implemented easily by means of assigning an appropriate mapping function to the mutual

application facili ties. For example, we can consider a relationstlip between the $d\propto ument$

preparation and tbe edi ting. Fig.3 shows 2 types of relationships: the type (a) is a
tradi tional approach ktween the edi tor and the formatter; and the type (b) is our approach

based on the correspondence of individual logical structures. In the edi tor and the

formatter, the formatter makes up the documents wi th tex t
’ , generated from the edi tor, as a

source data. The forma tter depends on the ed i tor because the forma tter can interpret only

the data manipulated by the edi tor: the source data must always contain the form control

information. On the other hand, in our approach the relationship between the edi ting

facili ty and the documen 1 preparation fac i li ty is equ i valent mutual ly as whole. The cor-
respondence of their 1ogical structures ($e.g$. names in our approach) is completely assured.

3. EDITING OBJECT
Our editing data are structure-independent, compositive and operational obixts.

Every edi ting data does not associate wi th i ts own particular structure, but is changeable to
arbi trarlly structured data. Namely, the edi ting data wi thout any particular forms can be
composed as the formed data described by the data def ini tion language, and then manipulated in
relation to the user’ s specif i ed struc ture.

In our framework, a uni form manipulation of edi ting data is an important issue even if

the individual editing components $ass(x$,iatcd wi th different types of attributes. Our edi t-
ing components are divided into the text obi ect and the image obj ect wi th respec t to the

attribute class. Furthermore, the text objects of byte-oriented data consist of several

sub-obiects: an article obiect, a catalog object and a program object. While, the image
$obi\propto ts$ of bi t-oriented data contain sub-obi ects such as a table obi ect, a simple-graph obia; t ,

a complex-graph objec t and a pixel object, according to the associated functions in the object

generation $pr\propto ess$. These objects are shown in Fig. 4. Each object has the following

characteristics, respectively.

$\sim\dotplus\cdot-$

213

1) article object : This is alptlanumeric data which conventional text edi tors manipulate.

This obiect such as a paper-article, a report and a letter is usually composed of only 1
$\propto currence$ of each data i tem.

2) catalog object : This is a se \downarrow of records such as the library catalog.

3) program object : This is almost similar to the article object ln the data organiza-

tion except that the data sequence is restrained syntactically so as to be eas ily inter-
preted by sofne program translators like compilers. If natural language processings

could bave researched successfully at all, the di fference betcveen article obj ects and pro-

gram objects is not necessary.

4) table object : This is 2 dimensional data associated wi th a tabular form. This
obj ect is usually not distinguistled from the other image objects wi th each 0 ther, because
this type is useful only in the obj ect generation $pr\propto ess$, but not effectual in the
patchedwork process.

5) simple-graph object : This is a business graph wtlose elefnents are circles, lines, histo-

grams and so on. This object is usually not distinguished from the other image objects
$\}\sqrt i$ th one another, too.

6) complex-graph $0\mathfrak{l}$)i ect: This is composed functionally by the graphic subroutines. This

obj ect is also no t distinguished from the 0 tber image obj ects mutually.

7) pixel object : This is 2 dimene ional image data. The other image objects are
also manipulated as the pixel obj ec t since each image object is not dis tinct in our edi ting

facili ty explici tly.

4. DESCRIPI’ION OF EDITING OBJECT
Now, we specify ttle logical structures of individual edi ting obiects concretely by the

data defini tion language. The data defini tions for image obi ects, except for the table
object, are only to declare the size, and the functions such as the graph depiction, the i mage

input, the tabular arrangefnent, etc, may be specified as kinds of optiona1 $pr\propto edures$. For
example, the data descriptions for a simple-graph object, a complex-graph obiect and a pixel

object are as follows:
(ex. 1)

structure IMAGEI: simple;

term IMA: bi $t(1000, 1000)$;

end;

or
structure IMAGE2: complex;

term IMA: bi $t(1000, 500)$:

$-\mathfrak{h}-$

2 $J4$

end;

or
structure IMAGE3: pixel;

term IMA: $bit(2_{0}^{\ulcorner}6,512)$;

end;

These descriptions are distinguished by the optional indica tor ”simple“, u complex“ or “pixel”,

and these indicators make it possible to manipulate d ifferent obj ects functionally in the
genera ti on process.

Next, oe explain the data defini tions for an article object, a catalog obi ect, a program

object and a table obiect. The typical examples for these objects are shown in Fig.5.
(a) article object: This obiect consists of several data i tems such as a ti tle, authors, an

affiliation, an abstract, keywords and an article statement, as illustrated in Fig.5(a).

The description is as follows:
(ex.2)

structure ARTICLE: article;

te$r\mathfrak{m}$ TI: char (50) ‘ TITLE:’ ;

term AU: char (100) ‘ AUTIIOR:’ ;

term AF: char (200) ‘ AFFILIAT [ON:’ ;

term AB: char (1000)) ABSTRACT: ‘ ;

term KW: char $(0^{\ulcorner}0)$
‘

$KC^{\tau}Y\mathbb{W}RBS$: ;

term AS: char $(5(XX)0)$ ‘ ARTICLE STATEMENT:’ ;

end;.

The indicator “article“ may be abbreviated as the default value of the data defini tion.
(b) catalog obj ect: This obj ect is similar to the article object, except for the manipulation

of multiple records. The catalog object shown in Fig.5(b) is specified by the next des-
cription:

(ex.3)

s truc ture CATALOG: ca talog (100) ;

term DN : in teger ‘ DOC. NO. ‘ ;

term TI : char (50) ‘ TITLE’ ;

term AU (5): char (20) ‘ AUTIIOR’ ;

term AF : char (100) ‘ AUTHOR AT’ ;

term TF : char (100) ‘
$9’ AKEN$ -FROM’ ;

term CD : char (20) ’ CODEN’ ;

term VO : char (20) ‘ VOL. NO. ‘ ;

term PG : char (5) ‘ NO. OF PAGE’ ;

$\sim f)-$

215

term PA : char (10) ‘ PAGE’ ;

term PB : char (20) ‘ PUBLISHED BY’ ;

term PD : char (15) ‘ PUB. DATE’ ;

end;.

In comparison wi th the article obj ec $t_{)}$ we can no t observe the difference bes ides the

indicators “article“ and ”catalog $(1\alpha))$. The parameter “100” tn “catalog” represents

tha t the maximum number of entries is 100. If this parameter is abbreviated, infini te
entr i es are assumed. Moreover, “catalog (1) is equal to “ar ti cle” concerned to the

number of entries.
(c) program object: This consists of only one data i tem in many cases. For example, the

description for the FORTRAN program shown in Fig. $5\{c$) is as fol lows:

(ex. 4)

s truc ture PROGRAM: program;

term PB (100): char (80);

end;

or
s truc ture PROGRAM: program;

term PB: char (8000);

end;.

ItlOreover, we can assign to this description more information in order to llklnage the program
obj ect effectively. The next description is a typical example:

(ex.5)

structure PROGRAM: program (FOR’I’RAN);

$pr\propto edure$ syntax-check;

term ‘ FORTRAN PROGRAM’ ;

term PB (100): char (80);

end;.

In this example, 3 descriptive points are newly introduced: $t_{i.:}^{\iota}\underline{\backslash }$ parameter “FORTRAN” of the

indicator “program) the descriptor “procedure syntax-check;” and the descriptor “ term

‘ FORTRAN PROGRAM’ ; ”. $u_{F01\Pi RAN’}$ represents that this description is adaptable to the
FORTRAN program. “procedure syntax-check;” declares that the $pr\propto edure$ “syntax-check“

must be used to handle strings in the data i tem PB. Therefore, the attached $pr\propto edure$

“syntax-check“ is successful for the FORTRAN program. “ term ‘ FORTRAN PROGRAM’ ;” points

out that this term displays the message “FORTRAN PROGRAM“. The syntax of “ term“ must be
interpreted so that in the general form
(ex.6)

$\int_{-}T-$

2 $J6$

term $<datai$ tem name$>:$ $<data$ type &length$>< tessage>$;

the f irst and second parameters $<datai$ tem name$>$ and $<data$ type &length$>$ are abbreviated.
Namely, the syntax is

(ex. 7)

term $<message>;$.
(d) table obj ect: This is basically similar to the catalog obj ect in point of the defini tion.

For example, the basic form in the table shown in Fig.5 (d) is defined as follows:
(ex. 8)

s truc ture TABLE: table (5) :
term NO: char (2) ‘ NO’ ;

term NA: char (20) ‘ NAME’ ;

term AT: in teger ’
$A\mathfrak{W}\mathfrak{l}JN’I^{\backslash }$

’ ;

term AD: record ‘ ADDRESS’ ;

term CT: char (20) ‘ CITY’ ;

term CN: char (10) ‘ COUNTRY’ ;

end;

end;.

In this description, lines around each value are not explici tly defined. Usually, lines

are automatically specifies by the indicator ” table” in making up the table form practically.

$W)reover$, we observe that the hierarchical structure is defined $\Re t\dagger|aeen$ the data i tems AD
and Cl/CN . I n compos i ng tables various ari thmet ic process i ngs are of ten requ i red:
percentage of some co lumns, total amounts, etc. Stlch requirements are satisf ied wi th the

next modif ied description:

(ex.9)

s truc ture TABLE: table;

term NO : char (2) ‘ NO’ ;

term NA : char (20) ‘ NAME’ ;

term AT : integer ‘ AMOUNT’ -SUM;

term ATR: def AT -VALUE $(AT/S1)M(AT)*11X))$;

term AD : record ‘ ADDRESS’ ;

term CT: char (20) ‘ CITY’ ;

term CN: char (10) ‘ COUNTRY’ ;

end;

end;.

I n the data i tem AT, “-SUM“ indicates that the total value in this column is calculated, and

inserted into the last added entry. While, the data i tem ATR is $intr\alpha!uced$ in order to

$-8–$

217

store the percentage value of AT: using the value of AT and calculating the percentage value

are defined and then storing the value into the same co lumn AT is speci f ied by u

def AT”.

The main descriptors to define the logical structures for various kinds of edi ting data
$\sqrt ere$ outlined. Of course, many supplementary descriptors are assumed furthermore. Our

data defini tion language does not only specify the data structure like the tradi tional data

defini tion language ($e.g$. in databases), as we have already tlnderst\infty d in the above examples,

but also provides the abili ties to define particular functions attended to each data obiect.
Thus, we can consider that our model might be based on the obj ect-oriented approach. η)

$Ho\{\Re ver$, in our model the logical structure is not always constrained so as to attend

inherently to the particular edi ting object, but edi ting data can be conveniently appl i ed by

some logical structures. If necessary and possi ble, users can manipulate the stored edi t-
ing data (as unstructured data) through another logical structure. This fea ture makes it

possible to perform the attribute transi tion among edi ting obiects.

5. MANIPULATI0N OF EDITING OBJECT
In our $fra[e K$)rk , the data manipulations are always performed through the logical struc-

tures adaptable to individual edi ting data. Basically, these logical operations must work
uniformly wi thout depending on the characteristics of individual edi ting objects. The
logical structure, which accomrnodates the control/management information about the data s truc-
ture, the composi tive edi ting data, the associated or attached procedures and so on concerned
to the edi ting obiect) controls the operational uni ts under the same access method. Of
course, since our data organization is based on the relational databases the operational uni ts
are defined so as to manipulate the indicated strings according to the specified data form.
The operational uni ts are arranged in Fig.6. These operational uni ts are selected, corres-
ponding to the kinds of edi ting obj ects because the levels are different by edi ting obiects.

Fach edi ting $obj\propto t$ is $c(XN only$ operated under the same commands: comsnand names, parame-

ter sequences and so on. The difference occurred by each ed it ing ot)$j_{C^{1}}ct_{-}$ can be implici tly
interpreted wi th relation to the processing status. For example, we consider a $c\alpha|r and$

REPLACE to update the existing data by new data. The syntax of this command is as follows:
(ex. 10)

REPLACE $<source><destination>$.
This means generally that $<source>$ rpodified a part or all data indicated by $<destination>$.
$<source>$ and $<destination>$ may be the names ($e.g$. edi ting data, term, etc), the line numbers,

the range of edi ting data and so on. These parameters wrk selective in relation to kinds
of edi ting data or the $pr\propto essing$ sequence. Of course, the content-dependent posi tioning

218

is $Ir oe$rful in addi tion to the above form-dependen t indication. For example, the expl ici t

manipulation of sentences or paragraphes in article objects is convenient in point of edi ting.

This manipulation abili ty can be defined syntactically by means of assigning such meanings to
$s\ddagger\epsilon c$ ial symbols. Such a mechanism can be supported by the descriptor “assign“ as well as
the descriptor “procedure“ in (ex.5). In the image objects of bi t-string data, the same
$fa[oe\sqrt ork$ is useful though sofne parameter selection constraints are at least imposed.

Next, we investigate the attribute transi tion among edi ting objects. Fig.7 shows the

transi tion graph of obj ect attributes. 3 types of the attribute transi tions are mainly

available: “ transfer” ; “conversion” ; and ” interpretation”. The transfer is the attribute

transi tion in the same class of edi ting objects: the text obiect and the image object. The

conversion and the interpretation are the attribute transi tions from the text obiect to the

image obj ect. In the conversion, the alteration is performed simply wi thout helps of any

$pr\propto edures$. While, in the interpretation for the program objects, the transi tion must be
performed interpretively under the control of the sui table translators (or interpreters).

The transi tion from the catalog obj ect to the table object is a class exchange, and makes up a
tabular form wi th the addi tion of lines. The closed translatlons wi thin the article
objects or the program objects do not change the object types, but are the exchanges of the

values. Ttiese $pr\propto esses$ will $t\epsilon$ executed by more advanced $pr\propto essing$ abili ties $($ $e.g$.
machine translation, program conversion).

6. CONCLUSION
I t is desirable for an edi ting facili ty to manipulate various kinds of data uniformly,

and share the edi ting data $c\infty peratively$ among the processing facili ties. In current
information system environfnents, the issues about the uni form manipulation of the mul ti-oedia/

form data and ttle software integration are necessarily important in order to construct
advanced user interfaces. 1-4) Our approach proposed a fundamental $fral\epsilon\sqrt ork$ as one candi-

date of such information sys tems archi tectural ly, and addressed the effectiveness and the
powerfulness for systanatic user interfaces in place of researching directly the operativeness.

From an advanced user interface point of view, the concepts of the operativeness, the
integration and the multi-oedia/form must be inves tigated in $c\infty peration$ wi th their mutual
re lationships though individual design concepts are always important. In this paper, the

$\backslash uni$ form manipulation of the $multi- \mathfrak{m}edia/for\mathfrak{m}$ edi ting data is mainly $f\propto used$ under the logical

view. The integration, and the mutual relationships among these concepts are the other

issues in our future work. \Re)$reover$, we will have always to consider the concept of the
intelligence on the basis of these concepts. The research based on these concepts of the
intelligence, the $multi- \mathfrak{n}\epsilon dla/form$, the integration and the operativeness will be an excellent

$-\{C-$

219

solution for user interfaces in the information systems.

Acknowledgements — The authors are grateful to $Prof$. Y. INAGAKI and Prof. J. $I^{\backslash }ORI$ }$\sqrt AKI$, Facul ty

of Engineering in Nagoya Universi ty, for their perspective remarks, and also wish to thank

Prof. M. NAGAO, Prof. II. I[AGINARA and Prof. $S.$ }[$0SliIN0$, Kyoto Universi ty, for their useful advices.

Re ferences
1) T.WATANABE &I.OKETANI: “Functional Des ign of $C\infty oeratively$ Integrated Information System“,

P.36, Technical Report of Data Processing Center in Kyoto Univ., A-16(1986).

2) T. WATANABE: “Archi tecture of Integra ted Off ice Information System: a $c\infty pera$ tive integra-

tion fnethod for various data processing facili ties”, Proc. of the 6th annual international

IEEE conference on computers and communications, pp.320-327 (1987).

3) L. BOLC &M. JARKE $(\{A.)$; “Cooperative Interfaces to Information Systems”, on Topics in Infor-

ma t ion Sys tems, P. 328, Spri nger-Verlag, Berl i n-Ile iderberg (1986).

4) P. DEGANO & E. SANDEWALL (ed.): “ Integrated Interac t ive Computing Systems”, P.374, North-
Holland, Amsterdam(1983).

5) D. TSICIIRITZIS (ed.): “Off ice Automation”, on Topics in Information Systems, P.441, Springer-

Verlag, Berlin-Heidelberg(1985).

6) M.M. $7_{J}1\infty f$: “Office-by-Example: A Business Language tbat Unifies Data and Word $Pr\propto essing$

and Electronic Mail“, IBM system i ournal, Vol.21, No.3, pp.272-304(1982).

7) W. TEITELMAN: “A Tour through Ceder”, IEEE trans. on Sof tware Engineeri ng, Vol. SE-II, No.3,
$pp.\mathfrak{B}5- 302(1\Re 5)$.

8) S.W. DRAPER &D. A. NORMAN: “Sof tware Engineering for User Interfaces”, IEEE trans. on Sof tware
Engineering, Vol.SE-II, No.3, $pp.2_{\iota}^{\ulcorner}$)$2- 258(198_{c}5)$.

9) B.J.COX: u_{0bject} -Oriented Programming”, Addison-Wesley(1986).

$-||-$

$22U$

Fig.1 Data manipulation through logical structure

(a) single unstructured data under many defini tion informations

(b) vnany unstructured data under single defini tion information

Fig.2 Flexibili ty in edi ting facili ty

$-[\mathfrak{J}-$

221

EDITOR F0RMATTER

(a) tradi tional approach

(b) our approach

Fig.3 Relationships between edi ting facili ty and $d\propto ument$ preparation facili ty

Fig.4 Types of edi ting $obj\propto ts$

$-|\Im-$

222

TITLE: Data Integration in Distributed Databases
AUTHOR: S.H. Deen, R.R. Amin &H.C.Tayler
AFFILIATI0N: PRECI Proi $\alpha:t$, Department of Computing Science, University of $\cdots\cdots$.
ABSTRACT: Data integration in a distributed database refers to the production of .
ARTICLE STATEMENT: 1. Introduction

Data integration refers to the creation of an integrated view over $\cdots\cdots\cdot$.
(a) article data

(b) catalog data

INTEGER FUNCTION VALUE (M)
$M=M$

$M1=0$

$L=1$

10 IF (MO. EQ. 0) GOTO 20
$M1=M1+\mathfrak{w}D$ (MO, 2) $*L$

1&0/2

IF (MO. NE. 0) GOTO 30
VALUE$=N1$

RETURN
END

(c) program data

(d) table data

Fig.5 Exampl es of individual edi ting obj ects

$-h-$

$22_{\backslash J}’1$

Fig.6 0perational unit

$arrow$

Fig.7 Attribute transi tion among edi ting obiects

$-15-$

