goooboooogn
O 6550 1988 0 209-223

Iditing mechanism for the uniform manipulation of various kinds of data

BOBR. NEELES. WML B R A

Toyohide WATANABE, Tatsuo OGASAWARA, Yuuji YOSHIDA and Teruo FUKUMURA

Department of Information Engineering,
Faculty of Engineering, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464, Japan

sk Abstract sowkxk

The editing facility is one of the most fundamental computer software tools, and
constructs direct user interfaces in the programming environments, Especially, the
functional roles of the editing facility against the other processing facilities are very
important with a view to realizing the effective user interfaces, now that it is strongly
required that the issues about the software integration and the manipulation of multi-
media/form data must be investigated successfully. In this paper, we address a
conceptual framework of the editing mechanism adaptable to the manipulation of multi-media
/form editing data in cooperatively integrated information systems. Qur discussion
characterizes the basic architecture of the editing facility in the more progressive

information systems.

solook Keywords soekokok
Fditing facility, integration, logical structure, multi-media, multi-form, definition
language, relational database, editing object, object attribute, wuser interface,

operativeness-

210

1. INTRODUCTION

Today, the effective management of various kinds of data has been a very important issue

because of extensive usages of computer abilities in a wide range of fields. Especially,
the computer utilization technology in the office working must provide the means to perform
the effective information processing/communication under the subject of the office automation.
5 6 For example, in the office environments, the document preparation is one of the
fundamental tasks. The task is composed of several procedures such as updating, processing,
filing, retrieving and so on, and also these individual procedures must be systematized
.mutually and cooperatively. Therefore, _ the computer-aided tool to make up documents must
be always implemented so as to satisfy the requirements from end-users.?®

Editing facility is the most basic computer-aided tool and supplies usable functions for
every computer processing.” Various kinds of editing facilities have been developed now,
but they only provide almost similar functions for the string manipulation though their
command syntaxes and their application-oriented features are more or less different. - The
difference is mainly derived from the facf that the editing structures depend too strongly on
the individual applications because many editing facilities have been developed with the
application-specific requirements. If the editing structure could be designed abstractly
so as to distinguish the application-oriented structure in the editing facility, we can
implement practically a generic editing mechanism adaptable to the manipulation of wvarious
kinds of editing data. From a viewpoint of this discussion, our approach 1is primarily
based on a separation method which extracts abstractly the logical structure and the physical
structure from every editing structure.

In this paper, we propose our experimental method lo manipulate various kinds of editing
data on the basis of descriptions for individual logical structures. We address that a
uniform data manipulation becomes possible by means of such a method. Our model, which is
composed of the logical structure and the physical structure, is conceptually similar to the
data model in the database management systems as the storage-oriented representation structure.
However, our model, which is designed as the manipulation-oriented representation structure,
is different from the database model from viewpoints of the data representation, tﬁe data

processing and the data sharing.

2. MODEL OF EDITING MECHANISM

The conventional editing tools introduce more or less their application-specific: editing

structures, and provide individual characteristic functions in point of the command names, the
command syntaxes, the command parameters, the response messages and so on. However, the

functional abilities are almost similar without regard 1o individual application-specific

2

editing functions. If the editing structure could be designed as an application-
independent form, we can construct a more powerful ediling tool adaptable Lo the manipulation
of various kinds of editing data.

Our framework is based on the architectural concept with respect to the logical structure
and the physical structure, which are distinguihed from the ordinary editing structure.

The logical structure is an abstracted editing structure, and is independent of particular

data organizations in individual ediling tools. On the other hand, the physical structure
is a facility-dependent data structure. The former 1s specified conceptually by users,
while the latter is practically managed by the system functions. In Fig.1, our editing

model, based on the separation mechanism between the logical structure and the physical
structure, is illustrated conceptually. User's operations are transformed into the system
functions through the data definition information.

The similar approach is observed in the [ramework of the Lradilional database management
systems. Our specification method for the logical structure is almost similar to the
schema description form in the relational database model, except for scveral editing-specific
features. The data definition informations, associated with individual editing data, take
part in the control of the data manipulation as well as the table handling in the relational
database. The framework, in which a database may be composed of one or more tables, is
very appropriate to our editing data organization,

Individual editing data are not only controlled independently or flexibly, but also can
construct the other editing data as compositive elements. The independence among ediling
data is naturally derived from the characteristics of the relational database model, on which

our editing model is based. The flexibility of editing data depends on the concept that

Pt

the descriptive procedure for the logical structure can become an operational object by itself.

Concerned to the flexibility, we can get user views for editing structures, corresponding

to the schema-subschema relationship in the relational database model. 0f course, our
framework is more powerful than the schema-subschema relationship. For example, we can
illustrate such relationships in Fig.2. In Fig.2, 2 cases are shown: one is to manipulate

an editing data through many suitfable definition informations; and another is to MAnipulate
many editing data through only one definition information. This mechanism makes it
possible to look upon one editing structure as another structure if another logical structure
which is different from the original structure could apply suitably to the editing data.
In the schema-subschema relationship, every subschema must be always derived {rom the underly-
ing schema, while in our framework such a constraint is not necessary.

While, with respect to the independence our framework can provide a very successful

solution for the issue of the software integration. It is better to exclude the physical

~3~

12

information for the control or management of the data organization from the data structures of
individual applications when various kinds of data must be shared among several processing
facilities cooperatively. The data sharing method, which ulilizes only the logical infor-
mation, is applicable to many different processings uniformly.' ® If the relational data-
base model were replaced by the hirearchical database model(or the network database model)
as our basic model, it is difficult to control each compositive editing data successfully.
The hierarchical model is poor in case of sharing data among the other processing facilities
though it may be appropriate to the representation and management of the editing data, associ-
ated inherently with the hierarchical property. In our model, the data sharing mechanism
can be implemented easily by means of assigning an appropriate mapping function to the mutual
application facilities, For example, we can consider a relationship beiween the document
preparation and the editing. Fig.3 shows 2 types of relationships: the type (@) is a
traditional approach between the editor and the formatter; and the type (b) is our approach
based on the correspondence of individual logical structures. In the editor and the
formatter, the formatter makes up the documents witlh texl’, generated from the editor, as a
source data. The formatter depends on the editor because the formatter can interpret only
the data manipulated by the editor: the source data must always contain the form control
information, On the other hand, in our approach the relationship between the editing
facility and the documenl preparation facility is equivalent mutually as whole. The cor-

respondence of their logical structures(e.g. names in our approach) is completely assured.

3. EDITING OBJECT

Our editing data are structure-independent, compositive and operational objects.

Every editing data does not associate with its own particular structure, but is changeable to
arbitrarily structured data. Namely, the editing data without any particular forms can be
composed as the formed data described by the data definition language, and then manipulated in
relation to the user’s specified structure.

In our framework, a uniform manipulation of editing data is an important issue even if
the individual editing components associated with different types of attributes. Our edit-
ing components are divided into the text object and the image object with respect to the
attribute class. Furthermore, the text objects of hyte-oriented data consist of several
sub-objects: an article object, a catalog object and a program object. While, the image
objects of bit-oriented data contain sub-objects such as a table object, a simple-graph object,
a complex-graph object and a pixel object, according to the associated functions in the 6bject
generation process. These objects are shown in Fig.4. Eéch objecf has the fof]owing

characteristics, respectively.

213

1) article object : This is alphanumeric data which conventional text editors manipulate.
This object such as a paper-article, a report and a letter is usually composed of only 1
occurrence of each data item,

2) catalog object : This is a set of records such as the library catalog.

3) program object : This is almost similar to the article object in the data organiza-
tion except that the data sequence is restrained syntactically so as to be easily inter-
preted by some program translators like compilers. If natural language processings
could have researched successfully at all, the difference between article objects and pro-
gram objects is not necessary.

4) table object : This is 2 dimensional data associated with a tabular form. This
object is usually not distinguished from the other image objects with each other, because
this type is useful only in the ohject generation process, but not effectual in the
patchedwork process.

5 simple-graph object : This is a business graph whose elements are circles, lines, histo-
grams and so on. This object is usually not distinguished from the other image objects
with one another, too.

6) complex-graph object: This is composed functionally by the graphic subroutines. This
ohject is also not distinguished from the other image objects mutually,

7 pixel object : This is 2 dimensional image data. The other image objects are
also manipulated as the pixel object since each image object is not distinct in our editing

facility explicitly.

4. DESCRIPTION OF EBITING OBJECT
Now, we specify the logical structures of individual editing objects concretely by the

data definition language. The data definitions for image objects, except for the table
object, are only to declare the size, and the functions such as the graph depiction, the image
input, the tabular arrangement, etc, may be specified as kinds of optional procedures. For
example, the data descriptions for a simple-graph ohject, a complex-graph object and a pixel
object are as follows: ‘
(ex.1
structure IMAGEl: simple;
term IMA: bit (1000, 1000) ;
end;
or
structure IMAGE2: complex;
term IMA: bit(1000,500) ;

end;
or
structure IMAGE3: pixel;
term IMA: bit(256,512);
end;

These descriptions are distinguished by the optional indicator “simple”, “complex” or “pixel”,

and these indicators make it possible to manipulate different objects functionally in the

generation process.
Next, we explain the data definitions for an article object, a catalog object, a program
object and a table object. The typical examples for these objects are shown in Fig.b.

(a) article object: This object consists of several data items such as a title, authors, an
affiliation, an abstract, keywords and an article statement, as illustrated in Fig.5a).
The description is as follows:

(ex.2)
structure ARTICLE: article;

term TI: char(50) "TITLE:;
term AU: char (100) ’AUTHOR: ;

term AF: char (200) ’AFFILIATION:’;
term AB: char (1000) *ABSTRACT:’ ;
term KW: char(G0) ’KEYWORDS:’;
term AS: char (50000) 'ARTICLE STATEMENT:’;
end;.
The indicator “article” may be abbreviated as the default value of the data definition.

(b) catalog object: This object is similar to the article object, except for the manipulation
of multiple records. The catalog object shown in Fig.5(b) is specified by the next des-
cription:

(ex.d)

structure CATALOG: catalog(100);
term DN : integer 'DOC.NO.’;
term TI : char(50) ’TITLE’;
term AUGD) : char (20) ’AUTHOR’ ;
term AF : char (100) *AUTHOR AT’ ;
term TF : char (100) ’TAKEN-FROM’ ;
term CD : char (20) ’CODEN’;
term VO : char(20) ’VOL.NO.’;
term PG : char () 'NO.OF PAGE’;

term PA : char(10) ’PAGE’;

term PR : char(20) ’PUBLISHED BY’;

term PD : char(15) ’PUB.DATE’; .
end;.

In comparison with the article ohject, we can not observe the difference besides the

indicators “article” and “catalog(100)”. The parameter “100” in “catalog” represents
that the maximum number of entries is 100. If this parameter is abbreviated, infinite
entries are assumed, Moreover, “catalog(l)” is equal to “article” concerned to the

number of entries.
(c) program object: This consists of only one data item in many cases. For example, the
description for the FORTRAN program shown in Fig.5(c) is as follows:
(ex.4)
structure PROGRAM: program;
term PB(100) : char (80) ;
end;
or
structure PROGRAM: program;
term PB: char (8000) ;
end;.
Moreover, we can assign to this description more information in order to manage the program
object effectively. The next description is a typical example: ‘

(ex.h)
structure PROGRAM: program (FORTRAN) ;
procedure syntax-check;
term 'FORTRAN PROGRAM’ ;
term PB(100) : char(80);
end;.

In this example, 3 descriptive points are newly introduced: t!.c parameter “FORTRAN” of the

i

indicator “program”, the descriptor “procedure syntax-check;” and the descriptor “term

"FORTRAN PROGRAM’ ;”. “FORTRAN” represents that this description is adaptable to the
FORTRAN program. “procedure syntax-check;” declares that the procedure “syntax-check”
must be used to handle strings in the data item PB. Therefore, the attached procedure
“syntax-check” is successful for the FORTRAN program. “term 'FORTRAN PROGRAM’;” points
out that this term displays the message “FORTRAN PROGRAM”. The syntax of “term” must be
interpreted so that in the general form

(ex.6)

216

term <data item name> : <data type & length> <message>;
the first and second parameters <data item name> and <data type & length> are abbreviated.
Namely, the syntax is
ex. D
term <message>;.
(d) table object: This is basically similar to the catalog object in point of the definition.
For example, the basic form in the table shown in Fig.5 (d) is defined as follows:
(ex.8)
structure TABLE: table(5);
term NO: char(2) ’'NO’;
term NA: char(20) 'NAME’;
term AT: integer ’AMOUNT';
term AD: record ’ADDRESS’;
term CT: char(20) ’CITY’;
term CN: char (10) “COUNTRY’;
end; \
end;.
In this description, lines around each value are not explicitly defined. Usually, lines
are automatically speéifies by the indicator “table” in making up the table form practically.
Moreover, we observe that the hierarchical structure is defined between the data items AD
and CT/CN. In composing tables various arithmetic processings are often required:
percentage of some columns, total amounts, etc. Such requirements are satisfied with the
next modified description:
(ex.9)
structure TABLE: table;
term NO : char(® ’'NO’;
term NA : char(20) ’NAME’;
term AT : integer ’AMOUNT’ -SUM;
term ATR: def AT -VALUE (AT/SUM(AT) %100) ;
term AD : record ’ADDRESS’;
term CT: char (20) 'CITY’;
- term CN: char (10) .” COUNTRY’ ;
end;
end;.’
In the data item AT, “-SUM” indicates that the total value in this column is calculated, and
inserted into the last added entry. While, the data item ATR is introduced in order to

3 -

_17

store the percentage value of AT: using the value of AT and calculating the percentage value

are defined and then storing the value into the same column AT is specified by “def AT”.

The main descriptors to define the logical structures for various kinds of editing data
were outlined. 0f course, many supplementary descriptors are assumed furthermore. Our
data definition language does not only specify the data structure like the traditional data
definition language(e.g. in databases), as we have already understood in the above examples,
but also provides the abilities to define particular functions attended to each data object.
Thus, we can consider that our model might be based on the object-oriented approach.?
However, in our model the logical structure is not always constrained so as to attend
inherently to the particular editing object, but editing data can be conveniently applied by
some logical structures. If necessary and possible, users can manipulate the stored edit-
ing data(as unstructured data) through another logical structure. This feature makes 1t

possible to perform the attribute transition among editing objects.

5. MANIPULATION OF EDITING OBJECT

In our framework, the data manipulations are always performed through the logical struc-

tures adaptable to individual editing data. Basically, these logical operations must work
uniformly without depending on the characteristics of individual editing objects. The
logical structure, which accommodates the control/management information about the data struc-
ture, the compositive editing data, the associated or attached procedures and so on concerned
to the editing object, controls the operational units under the same access method. of
course, since our data organization is based on the relational databases the operational units
are defined so as to manipulate the indicated strings according to the specified data form.
The operational units are arranged in Fig.b. These operational units are selected, corres-
ponding to the kinds of editing objects because the levels are different by editing objects.
Fach editing object is commonly operated under the same commands: command names, parame-

ter sequences and so on. The difference occurred by each editing object can be implicitly
interpreted with relation to the processing status. For example, we consider a command

REPLACE to update the existing data by new data. The syntax of this command is as follows:
(ex.10)
REPLACE <source> <destination>.
This means generally that <source> modified a part or all data indicated by <destination>.
<source> and <destination> may be the names(e.g. editing data, term, etc), the line numbers,
the range of editing data and so on. These parameters work selective in relation to kinds

of editing data or the processing sequence. Of course, the content-dependent positioning

18

is powerful in addition to the above form-dependent indication. For example, the explicit
manipulation of sentences or paragraphes in article objects is convenient in point of editing.
This manipulation ability can be defined syntactically by means of assigning such meanings to
special symbols. Such a mechanism can be supported by the descriptor “assign” as well as
the descriptor “procedure” in (ex.h). In the image objects of bit-string data, the same
famework is useful though some parameter selection constraints are at least imposed.

Next, we investigate the attribute transition among editing objects. Fig.7 shows the
transition graph of object attributes. 3 types of the attribute transitions are mainly
“available: “transfer”; “conversion”; and “interpretation”. The transfer is the attribute
transition in the same class of editing objects: the text object and the image object. The
conversion and the interpretation are the attribute transitions from the text object to the
image object. In the conversion, the alteration is performed simply without helps of any
procedures. While, in the interpretation for the program objects, the transition must be
performed interpretively under the control of the suitable translators(or interpreters).
The transition from the catalog object to the table object is a class exchange, and makes up a
tabular form with the addition of lines. The closed translations within the article
objects or the program objects do not change the object types, but are the exchanges of the
values. These processes will he executed by more advanced processing abilities(e.g.

machine translation, program conversion).

6. CONCLUSION

It is desirable for an editing facility to manipulate various kinds of data uniformly,
and share the editing data cooperatively among the processing facilities. In current
information system environments, the issues about the uniform manipulation of the multi-media/
form data and the software integration are necessarily important in order to construct

advanced user interfaces.' ¥

Our approach proposed a fundamental framework as one candi-
date of such information systems architecturally, and addressed the effectiveness and the
powerfulness for systematic user interfaces in place of researching directly the operativeness.

From an advanced user interface point of view, the concepts of the operativeness, the
integration and the multi-media/form must be investigated in cooperation with their mutual
relationships though individual design concepts are always important. In this paper, the

uniform manipulation of the multi-media/form editing data is mainly focused under the logical
view. The integration, and the mutual relationships among these concepts are the other
issues in our future work. Moreover, we will have always to consider the concept of the
intelligence on the basis of these concepts. The research based on these concepts of the

intelligence, the multi-media/form, the integration and the operativeness will be an excellent

e

solution for user interfaces in the information systiems.

Acknowledgements --- The authors are grateful to Prof.Y.INAGAKI and Prof. J.TORIWAKI, Faculty
of Engineering in Nagoya University, for their perspective remarks, and also wish to thank
Prof .M.NAGAO, Prof.H.HAGIWARA and Prof.S.HOSHINO, Kyoto University, for their useful advices.

References

1) T.WATANABE & I.OKETANI: “Functional Design of Cooperatively Integrated Information System”,
P.36, Technical Report of Data Processing Center in Kyoto Univ., A-16(1986).

2) T.WATANABE: “Architecture of Integrated Office Information System: a cooperative integra-
tion method for various data processing facilities”, Proc.of the 6th annual international
IEEE conference on computers and communications, pp.320-327(1987).

3) L.BOLC & M.JARKE(ed.): “Cooperative Interfaces to Information Systems”, on Topics in Infor-
mation Systems, P.328, Springer-Verlag, Berlin-Heiderberg(1986).

4) P.DEGANO & E.SANDEWALL(ed.): “Integrated Interactive Computing Systems”, P.374, North-
Holland, Amsterdam(1983).

5 D.TSICHRITZIS(ed.): “Office Automation”, on Topics in Information Systems, P.441, Springer-
Verlag, Berlin-Heidelberg(1985).

6) M.M.Zloof: “Office-by-Example: A Business Language that Unifies Data and Word Processing
and Electronic Mail”, IBM system journal, Vol.2l, No.3, pp.272-304(1982).

7) W.TEITELMAN: “A Tour through Ceder”, IFEE trans.on Sof tware Engineering, Vol.SE-11, No.3,
pp. 285-302(1985) .

8) S.W.DRAPER & D.A.NORMAN: “Sof tware Enginecering for User Interfaces”, IEEE trans.on Sof tware
Engineering, Vol.SE-11, No.3, pp.252-258(1985).

9) B.J.COX: “Object-Oriented Programming”, Addison-Wesley(1986).

(5]

20

data manipulation language
(logical operation)

data definition TRANSFORMATION
language ——> | data definition FROM LOGICAL
(specification of information STRUCTURE 10
logical structure) posr: PHYSICAL ONE
system operation fﬁ
(physical operation) i
unstructured data

Fig.1 Data manipulation through logical structure

LOG
ST

ICAL
RUCTURE

/<USER>

<SYSTEW>

PHYSICAL
RUCTURE

logical operation

.........................

1
i
i
i
i
i
i
]
i

. Dl
: 2 * | TRANSFORMATION
: 5 : | BY DEFINITION
§ ; i INFORMATION
LEDITING T0OL NO.1 ------- §
et e T TR TR P T RE EDITING TOOL NO.2 -*
(a) single unstructured data under many definition informations
logical operation
‘ ; physical operation g :
' e
§ : | TRANSFORMATION
: BY DEFINITION
5 INFORMATION

(b) many unstructured data under single definition information

Fig.2 Flexibility in editing facility

—Ild -~

EDITOR
text’
text
editing data editing data

FORMATTER

document

form control
information

v

(a) traditional approach

EDITING FACILITY

text

editing data

DOCUMENT PREPARATION FACILITY

editing data
3 iting da

document

CONTROL

data definition
information

(b) our approach

CORRESPONDENCE

| CONTROL

editing data

L7

document definition information

Fig.3 Relationships between editing facility and document preparation facility

editing object
(editing data)

Fig.4 Types of editing objects

~13~

text object image object
(byte data) (bit data)
article catalog program table simp‘le— complex- pixcel
object object object object graph graph object
object object

 qt]

[l

TITLE: Data Integration in Distributed Databases
AUTHOR: S.H.Deen, R.R.Amin & H.C.Tayler
AFFILIATION: PRECI Project, Department of Computing Science, University of -«...-.-
ABSTRACT: Data integration in a distributed database refers to the production of -
ARTICLE STATEMENT: 1. Introduction

Data integration refers to the creation of an integrated view over «:«-«-.-..

ooooooooooo

(a) article data

DOC NO 12936

TITLE Natural language interfaces to computer system: an experimen----
AUTHOR Guida,G. 7
AUTHOR AT Politecnico di Milano, Istituto di Elettrotecnica ed «cceeeeeeee
TAKEN-FROM Alta Freq. (Italy)

CODEN Alfraj -

VOL. NO. Vol.47, No.9

PAGE 668-74

PUB. DATE Sept. 1978

PUBLISHED BY Springer-Verlag
PUB. DATE 1978

I

(b) catalog data

INTEGER FUNCTION VALUE(M)
M0=N
M1=0
L=1

10 IF (M0.EQ.0) GOTO 20
MO=M0/2
IF (M0.NE.0) GOTO 30
VALUE=M1
RETURN
END

(c) program data

‘ ADDRESS
NO NAME AMOUNT
CITY COUNTRY
S1 Smith 20 | London U.K.
S2 | Jones 10 | Paris France
Sn | Adams 30 | San Francisco | U.S.A.

(d) table data
Fig.D> Examples of individual editing objects

structure level | descriptor “structure”
—(editing data)~
v
record level table object/catalog object(many entries)
term level decriptor “term”
block level text object(paragraph, sentence, etc)
‘[image object(subimage region, etc)
line level display-oriented indication for text object

Fig.6 Operational unit

<— byte-oriented data 4’ bit-oriented data —

TRANSFER — CONVERSION

TRANSFER

TRANSFER

e INTERPRE-
5 5 TATION

TRANSFER

TRANSFER TRANSFER
TRANSLATION INTERPRE-
P TATION
------------ CONVERSION
CONVERSION

Fig.7 Attribute transition among editing objects

_15-

| g

