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Diffusion of Vortices in Planar Navier-Stokes Flow
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1. Introduction

We consider the flow of a viscous and incompressible fluid in the whole
plane Rz, assuming that the vorticity of the flow is initially concentrated in
a small region. The motion of the fluid is described by the two-dimensional
Navier-Stokes system :

u' - vau + (u-v)u + vp = 0, veu =0,
(1.1) _

, u>0 as x| »~, u(x,0)=a(x), Vv-a=0,
where u and p represent unknown velocity and pressure, respectively, v >0
is the kinematic viscosity, (u-v) = 21 u1a/axi , Veu = Zi au1/axi and

u' =9u/dt. The density of the fluid is assumed to be oﬁe. Our assumption for

the initial velocity a is formulated as follows :

The initial vorticity : v x a = aa2/ax1 - aal/ax2
(1.2) | |
is a finite Radon measure on R2.

The velocity fields satisfying (1.2) include those with vortex sheets and vortex
lines, which are both important in the vortex theory for ideal fluids. Recently,

Marchioro and Pulvirenti [19], [20] and Turkington [31] have studied the relation

between the classical theory of the motion of vortex lines and the solutions of
the Euler equation, i.e., the system (1.1) with = 0. For the Navier-Stokes
system (1.1) Benfatto, Esposito and Pu]virenti'[BJ constructed a global smooth

solution of (1.1), assumihg that vxa .is a finite pure-point measure :

m
vxas= Y o, s(x-2))
was ] agslezg)
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and v is sufficiently large comﬁared with zj [djl ; here d(x—zj) is the
Dirac measure supported at Z5 GRZ. This result means that the point source
vorticity can be smoothed and diffuse following the Navier-Stokes flow when v
is large. -

Our main purpose in this paper is to show the same existence result as above
under the more general condition (1.2) without any restriction on the size and on
the form of the initial measure vxa. We note that our result does not follow from
the classical theories of the Navier-Stokes equations as'de§e10ped by Léray [17],
Ladyzhenskaya [16] or Temam £30]. Indeed, the -initial velocity a is not always
square-summable, even locally, when vxa is a measure. o

We prove the existence result by a standard procedure. First we‘regUTaFize
the initial velocity a, construct the corresponding regular solution for (1.1),
and then take a subsequence converging to the desired solution of the original

problem. Necessary estimates for extracting the subsequence are derived from the

so-called vorticity>equation for v = vxu :

. vl = vAv + (u-V)v =,O,
(1.3) '
u = Kgv

for: smooth initial data v(x,0) = vxa, where
, 2 R
(1.4) K(xl,xz) = (-xz,xl)/Zﬂ]xl > X = (xl,xz)
and X ‘dehotes the convolution. Note that there is no vorticity stretching term
in (1.3) since the space dimension is 2. We regard (1.3) as a linear parabolic
: . ¥ U
equation for v and write corresponding fundamental solution as ru(x,t;y,s).

A bound for r = due to Osada [25] (see also'(24] and [26]) gives our key estimates:

' -1 2
Ci(t-s) “exp -Co|x-y|"/(t-s) < r, (x,t3¥58) <

(1.5) -
< C3(t-5) Texp -Cylx-y|/(t-5)

where the constants C. > 0, j=1,2,3,4, depend only on v and Ll-norm of vxa.

-
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Estimates of this type with Cj independent of the smoothness of coefficients were
first shown in[1] (see also [2]) for linear parabolic equations of divergence form.
The result in [25] extends estimates in [1] to a class of Tinear equations of
nondivergence form which includes (1.3) as a typical exémple.

We start with presenting the existence results for (1.1) on Rn, nz 2, with
initial data in Lp, p > n. Parts of our results are already known (see, e.g.,
L[7] and C21]); however, we give our version here for later use. In particular,
we discuss higher regularity of solutions up to t = 0. As a byproduct we obtain
the persistent property (in the sense of Kato [15])) of solutions of the two-
dimensional problem in fhe Sobolev spaces wm,p’ p > 2, m=0,1,2,...

More precisely, we show that if ag wm,p(RZ) and aneLq(Rz) with 1/q =

1/2 + 1/p, then the correspbnding (global) solution stéys in wm,p(RZ) for all
time with a bound independent of the vfstosity V. Pensistent property of this
sort is systematically studied in [15], [27] and {£34]. However, it seems to us
that our result is not included in either of them.

In Section 3 we state our key a-priori estimates for solutions of the two-
dimensional problem given in Section 2, and apply them to the proof of existence
(and uniqueness in some special cases) of solutions of the original problem,
i.e., the problem (1.1) in R2 under the condition (1.2). It is to be noticed
that the theory of the Loréntz spaces ([4]) p]ays an important role in giving
a precise meaning to the initial condition.

For other results on the initial value problem for nonlinear equations with
measures as initial data, we refer to [5), [35], [23], (18], C22], [241, [29].

The details of the results presented in this note will be published

elsewhere ([36]).
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2. Existence and Uniqueness in R" with Initial Data in LP

As is a usual practice ([7,10,11,12,14,32,33,34]), we consider (1.1) in the

form of - the integral equation :
(2.1) u(t) = e"* a + sQuJ(t), t>o0,
where

(2.2)  sTud(t) = STu,ul(t) 5 Sfuwl(t) = -fg ev(t;s)A-P(u-V)w(s)ds.

Here etA

is the solution operator for the heat equation in Rn; P s the
projection on each Lp(Rn)?;'l < p < =, onto the subspace of divergence-free -
vector fields. Using the boundedness of the operator P and the so-called

LP-L9 estimates for solutions of the heat equation, we can easily prove

Lemma 2.1. Let 2<n<p<w, T>0 and o =1/2-n/2p. Then :

(i) IS[u,w'jlp’T < M(\)T)(’I\ulp’T lep;T/v provided that veu =0 3

(i) |(vt)1/2 vS[u,mﬂlp,T < M(vT)oiu|p’TJ(vt)1/2 vw|p,T/v H

1-2¢ -1 -1

1/2 |
/ vulp,r Wlgp/v s @t =17

(153)  IsDumdlg 7 s MO ful 2% 1(ot)

where lep,T = SUPQ tcT Ilw(t)lp , ”'“p is the LP-norm,‘and M is a positive

constant depending only on n and p.

We note that the assertion (iii) is proved with the aid of the Gagliardo-Nirenberg
inequality ({9, p.24, Th. 9.3]). Using Lemma 2.1, we try to solve (2.1) by the

successive approximation :

(2.3)  ugg=ug+Slud,  ug - eVt a, j=0,1,2,...

Our existence result for the initial data in LP (p > n) is the following.
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Proposition 2.2. (i) Let a be in Lp(Rn) with p>n and v-a = 0.

Then there is a unique local solution u of (2.1) which, for some T > 0, belongs
to the space Bp'T of continuous and bounded functions on [0,T] with values in
3 B

Lp(Rn). Further‘we‘have

(2.4) IUIP,T s 2al, -

(ii) The time T can be taken so that

(2.5) T2 o YO al e, o s 12 -z s

1/2

(2.6a) (vt) /2 wes, 1 owith |(v6)? wul o <clal) 5 and

(2.6b) If va€L9(R™) with 1/q = 1/p+l/n, then vuly,7 < Alval

where C depends only on n and p.

k

(iii) Let m 2 0 be an integer and supposeithat" v aelfYRn), k =0,..., m.

Then in addition to (i) and (ii) the time T can be taken so that

(2.7a) VkueBp . and lvkulp 1SCh k=0, m;
(2.7b) (vt) /2 Vm+1u€Bp o oand [ (w2 v'“"lulp ;C
(2.7¢) Vkazué Bp 7 and |vk32u|p TS C' for k+#2h <m,

where C' depends only on n, m, p and bounds for v and Hvkanp, k=0,..., m.

~Assertion (i) follows in a.standard manner if we apply Lemma 2.1 to (2.3).
(2.5) is due to the factor (vT)° which appears in the estimates of Lemma 2.1.
Note that o > 0 since p > n. (2.6a)-(2.7b) follows in a similar way if we

take Vk

of (2.3) and apply the same argument as in (i). For the details we
refer to 36 ; see also 12 . (2.7c) is immediately obtained from (2.5),

(2.6a)-(2.7b) and the equation : u' = vAu - P(u-vV)u. .
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The next result establishes a regularizing effect for our solutions.

Proposition 2.3. (i) Let a€LP(R"), p > n, with vea =0, and Tet u be

the corresponding local solution given in Proposition 2.2. Then, vkag

continuous from [e,T) to Lp(Rn) for all k,h >0 and 0 < e < T. Further we have

u s -

k.h
sup Iv7aqull () < C

Ce,
with C depending only on €, p, n, k, h and a bound for HaHp. In particular,
u is smooth for t > 0 and solves the Navier-Stokes system in the classical

sense for t > 0.

> 0. Then all derivatives

-

(i1) Suppose further that v_kaeLp(Rn) for all k

vkagu are bounded and continuous on RnXED,T) so that

sup[[7%aul () < ¢
S (R |

. : ” ' 2
with C depending only on p, n, k, h, v and bounds for MaX(0 p <k+2h+1 Hv.aﬂp .

Proof. (i) By (2.6a), HVqu(tO)'g C for 0<t,<T with C depending

0
only on n, p, t; and Haﬂp. We then solve thg Navier-Stokes system for tz t;
with initial data  u(-,t0) and obtain, due to the uniqueness, Hvzqu(Zto) < C.
Repeating this proéess yields that vau"p(mto)l is bounded by the same C so
long as mtO < T. Since to may be taken arbitrarily small, this shows that

v is continuous from Ce.T) to Lp(Rn) for all e >0 with a bound C

depending only on p, n, m, ¢ and HaHp. Combining this with (2.7c) gives the

estimate in (i). (ii) follows from (2.7c) and the Sobolev inequa]ity.

From now on, we restrict ourselves to the two-dimensional case. In this
case, the vorticity v = vxu = auz/ax1 - aul/ax2 is a scalar which satisfies

the so-called vorticity equation :

(1.3) vi = vAv + (u-v)v = 0 ; v(x,0) = (vxa)(x,0).
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Suppose that a 1lies in :Lp(RZ), p > 2, together with all its derivatives.

Then by Proposition 2.3 u s boundéd on ,RZX[O,T) together with all its deri-

vatives ; thus the linear parabolic operator

L. =2

U g ooVt (uev)

has a unique fundamental solution

Iyt s yss), 0gs<t<T, x,y€R2

such that L I =0 as a function of (x,t) and

Tim [ o T (%t 5 y,s)f(y)dy = f(x)
t>s R Y

for every bounded and continuous f on ;Rz ; see [8]. The fundamental solution

Ty has the:following properties :

i

(2.8) [ 5T (xt 5 y,s)dy =1, 0 < s<t«<T.
R | . g |

1l

(2.9) f o T (st 5 y,8)dx =1, 0<s<t<T.
R , : ‘

Note that (2.9) follows from the condition : veu = 0. The result below i<

immediately obtained.

Proposition 2.4. (i) Let vfa€LP(R®), k = 0,1,..., for some p > 2 and

vea = 0. Let u be the Tocal solution given in Proposition 2.2. Then v =

Vxu is expressed as
(2.10) v(x,t) = fRz r (%t 5 ¥,0)(vxa)(y)dy, 0O <t<T.

(i1) Suppose further that vxa €L9(R®) for some q with 1<q < 3
then

(2.11) lvﬂq(t) < "an"q s, 0<t«<T.

We have thus established a good estimate (2.11) for the vorticity v. Our next

task is to find a way in which to recover the velocity u from its vorticity v.
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and the corresponding convolution operator U = kw¥. Note that K s in L

To state the relation between u and v = Vxu, we introduce some function spaces.
By 9N we denote the space of all finite Radon measures on R2 with norm given
by the total variation. A measurable function f on R2 is said to belong to
LP"(R%), 1< p < =, iff

Hflp o = sup o meas{x ; [f(x)]| > a})l/p

a>0

where meas denotes Lebesgue measure on Rz. Although | lp . s not a norm,
H]
2

it is known (see [4]) that LP**(R°) 1is a Banach space-with respect to a norm

| D"
Let us now consider the function

LP>" s often called a Lorentz space.

which is equivalent to

K(X) = (X, xl)/2wlxI2 . X = (Xgs Xp)

2(R?),

but is not contained in any Lp(Rz), 1<p g~

Lemma 2.5. (i) U = KeV satisfies the estimates :
(2.12) Ul < clkl, Vi, if VELH(RY), 1<q<2 and 1/p=1/q-1/2
(2.120)  |IU], , < CIKI, [IVlom, for Ve M;

.dzc VU, s | or € ’ <r <o,
(2.12¢) vl s clvi, for vel"(R%), 1

with C independent of V, where HVHq”b denotes the total variation of the
Radon measure V.

(ii) If UeLP(R®

)s 2<p <o, VveU=0 and VxUQLg(RZ) with 1/q=1/p+l1/2,
then ' |

U = Ke(xU).
(i1i) 1f UeL®"(R%), v.U =0 and vxUeMD, then

U= K*(VXU).
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{2.12a) is the generaliyed Young's inequality ([28, p.32]). Since vK

is a Calderon-Zygmund kernel, (2.12c) follows from the standard theory of

singular integral operators ; see [13,vChap.9]. (2.12b) is shown in the following
way : Consider the linear operator Af = f%V for any fixed V€éWD. It is easy

to see that A defines a bodnded linear operator on each Lp(RZ), l<p <o,

with operator-norm 5 HVHQWJ. Thus it follows from an interpolation theorem

2’m(Rz) with norm g C'IIV{I%. This

([4, Th. 5.3.4)) that A is bounded on L
shows (2.12b). (ii) and (ii1) are easily obtained from the Liouville theorem

for harmonic functions on the whole plane R2.

The following result is now obvious from the preceding arguments.

Proposition 2.6. Let VkaELp(Rz), k =0,1,..., for some p > 2, vea =0

and VXaeLﬂ(Rz) with 1/q = 1/p + 1/2. Then the solution u given in

‘Proposition 2.2 is expressed as

u(x,t) = K¥(vxu) = IRZ K(x-y)(qu)(y,t)dy,_ 0 gyt:< T.
Further, we have the estimate
(2.13) vllUllp(t) s Cloall(t) < Clv<all, » 0t <T |

with C depending only on p.
‘We can now show our global existence results, using estimate (2.13).

Theorem 2.7. Under the assumption of Proposition 2.6, the solution u
extends uniquely to a global (in time) solution, which is again denoted u,
such that ué¢ Bp o ? wqu . - and

lul

e = ClPealg 1wl < Clv=al

q
~with C depending only on, p. The derivatives'kaagu “belong to va T for

;any finite T.



Note that the extensibility of u follows from (2.13) and the estimate
(2.5) for the "life span" T of the local solution. The next result is

obtained by combining Theorem 2.7 with Proposition 2.3.

Theorem 2.8. Let aeLp(Rz) for some. p > 2 with v-a =0 and
VmaeLg(Rz), 1/q = 1/p + 1/2. Then there is a unique global solution u of

(2.1) such that ueBpoo s Vuqu . and

uly . s Clwal s vl < Clvsal

P>

with C depending only on p. Moreover, the derivatives vkagu exist on

RZXZb,m) for any e > 0 and satisfy, for any T > 0,
| k.h
sup, 117 Rul() < ¢

with C depending only on p, T, k, h, e, v and a bound for "anHq.

We close this seétion by stating our version of persistent property (in
the sense of [15] and [27]) of solutions of the two-dimensional problem.

In what follows wm’p(Rz), m=0,1,2,..., denotes the usual LP Sobolev space

with norm : | .
. WmP

Theorem 2.9. Let aGVW“p(Rz) for some p > 2 with v-a =0 and
vxaelg(Rz) where 1/q = 1/p+1l/2. Then the solution u. of (2.1) given in
this section is continuous from [0,T] to wm’p(RZ) for all T >0 and

satisfies

(2.14) SUPro, 1] Hu”wm’P(t) < C  uniformly for v > 0.

Proof. The case m =0 1is already shown in Theorem 2.8.. For the case
m = 1, the vorticity equation for v = vxu, together with (2.12c), gives
hvu“p(t) 5 CMva(t) < CHv#aHp .‘ncbmbining this with (2.14) for m =0 gives -
(2.14) for m = 1. We next assume m = 2. We-apply v to the vortex equation,

multiply the resulting equality by Ivvlp-zvv and integrate by parts,.to get.
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(2.15) (v < cllvul Jloviiy

with c depending only on p. To estimate HVun we appeal to the following

result of Kato [15,'Lemha A3] :
(2.16) Ivull, < cUivl, +livil, + HVII,,O'109(1+(H\7VIIP/HV|IW)))

with C depending only on p. Since |[v|  x [vxall_ < cllall 2.p and Hv"z,g
w )

- 2 - » .
WP 1P < lloall 72/Plosal /P, (2.16) gives

(2.17) jvull_ 5 c(1 + 1og+uvvnp),

wiﬁh c depending 9n1y on p, Hanﬂq and »Ha“wz (Note that here we have used

the Sobolev inequality.) Estimates (2.15) and (2.17) together imply that
(2.18) HVVHp(t).s C, te€(0,T),

where C depends also on T. Using Vzu»z VKk#(Vv) and the fact that vK 1is a
Calderon-Zygmund kernel, we see that Hvzqu(t) <C on (0,T). This implies
K :

(2.14) for m = 2. Suppose finally that mx 3. 'We'apply v tokthe'vorticity

equation and then multiply by lvkvlp_zvkv. ‘After an integration by parts, we

get, by the Sobolev inequality,

(I1,)" 5 Ol oo IV 1

with C depending only on m and p. Integrating this, using induction on m,
together with the relation u = Kiv, we get the desired result.

Remark. Kato [15] and Ponce [27] discuss persistency in the L2 Sobolev spaces.
Their results are then extended in [347] to LP casé. Namely, they prove in [ 34]
the persistency in the spaces Hz’p, s > 142/p. However, our result above is

not covered by the results in(34] when m =0 or 1.

' |
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3. Existence of solutions in 'Rz with measures as initial vorticity

In this section we show the existence (and uniqueness in some special cases)
of solutions of the Navier-Stokes system in R2 corresponding to the initial
data a such that aéLz’w(RZ) and VXae%. The (generalized) Young's
inequality imp]ies‘that the function anv=‘evnA a, n >0, lies in Lp(RZ) for
all 2 <p<ow anq that ann is in Lq(RZ) for all 15 q g », together with
all their derivatives. The result in Section 2 therefore 1mp11es that there
exists for each n > 0 a unique global solution u with initial value a .
Here we wish to let n >~ 0 1in order to-obtain-é solution corresponding to the
initial value a. Necessary estimates for u are derived from the fo}]owing

result, in which rn(x,t 5 ¥»s) denotes the fundamental solution of the linear

parabolic operator Ln =8, - VA + (un-v),.

Proposition 3.1. (i) There are constants Cj >0, j=1,2,3,4, depending

only on v and a bound for “an"qn, S0 that
(3.1) Cl(t4s)'lexp(-C2|x-y|2/(t-s)) S,Pn(x’t 3 Y»S)
-1 12
5 C5(t-s) “exp(-Cyx-y[%/(t-s))

for x,yeR2 and 0 xs <t.

(ii) There is a B, 0 < B <1, depending only on v and a bound for Hanan,
so that

(3.2) Irn(x,t ; y;s)FPn(x',t' ; y',S')I
. 18/2 . . 1B/2 "
£ Gl [s-s'1B/2 4 qymy' 1B+ -t P2 0 xex?|®)

for t < t-s, t'-s'.<  and x, x', ¥y, y'€ R2, where C5 depends only on

v, T.> 0 and a bound for ‘HananJ, ’

Note that estimates (3.1) and (3.2) are uniform for the parameter n > 0.

-2
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Assuming Proposition 3.1 for a moment, we continue the discussion as to how we

can obtain the desired solution. From Proposition 3.1, we obtain

Proposition 3.2. Let u, be the unique global solution corresponding to the

initial velocity a . Then we have the following estimates :

(3:3) vl () 5 I7algn,s vy = P05y (6) < Cvllap, for >0

where |[[+], s the norm of Lz’w(Rz) and C depends only on [IKl, _ .

(3.4a) anHr(t) 5_Ct'1+1/rHvxquna for t>0 and 1<r<w;

(3.4b Ivu |l .(t) s Ct'1+1/rHanH for t>0 and 1 <r <=
n'r wu

(3.4c)  lu | (t) s ct?/"?

IanH(m, for t>0 and 2<r<e ,
with C depending only on r, v and a bound for |vxafqp, -

k.h
(3.5) Sup[a,T] v atunﬂw(t) <C, >0

with C depending only on e, h, k, v, T and a bound for anqun’.

Proof. The first estimate in (3.3) is a direct conséquence of the formula,

(3.6) ) = [ T (X 0N (T ) (Y)Y

the relation (2.9) and the estimate : Hvxanﬂl,g “an”cnn, . The second estimate in
(3.3) follows from the first one and the generalized YoUng's inequality (2.12b).
(3.4a) 1is obtained from (3.6) and (3.1), while (3.4c) is obtained from (3.4a)

and (2.12a). Since vu, = VK*Vn » (3.4b) follows from the Calderon-Zygmund theory.

(3.5) is a consequence from (3.4c) and Proposition 2.3 (1i).

Due to the estimate (3.5), one can apply the Ascoli-Arzela theorem to extract
a subsequence of us as n > 0, which converges uniformly on any finite interval
[e,T] to a function u together with all the derivatives. Obviously, the

function u is-a classical solution of the Navier-Stokes system for t 2 0. .
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It remains to give a precise meaning to the initial condition wu(0) = a. This is
carried out with the aid of the following two results, which are also consequences

of Proposition 3.1 (i).

Lemma 3.3. The functions vn, n > 0, are uniformly bounded and equicontinuous
on any finite interval [0,T]) with respect to the weak topology of measures.
Namely, for each continuous function ¢ on R2 vanishing at infinity, the

pairings (vn(t),¢), n.> 0, are uniformly bounded and equicontinuous on any [0,T].

Lemma 3.4. The functions un, n > 0, are uniformly bounded and equicontinuous
on any [0,T]) with respect to the weak’® topology of the space Lz’w(Rz).\
25 21 1 see 4.

(Recall that L is the dual of the Lorentz space L™’

The boundedness of Vi and u, are obvious from (3.3) ; so it suffices to
show the equicontinuity. We first consider the case where ¢ 1is rapidly decreasing
in the sense of L. Schwartz. In this case, the equicontinuity of (vn(t),¢) is
directly verified by calculating the difference (vn(t),¢)—(vn(s),¢) with the aid
of the estimates given in Proposition 3.2. Since the rapidly decreasing functions
are dense in the Banach space of continuous functions vanishing at infinity, we
get Lemma 3.3. Lemma 3.4 is proved by contradiction with the aid of Leﬁma 3.3
and the relation u, = K*vn. For another proof of Lemma 3.3, which uses a
special kind of metric on the set of measures as treated in (6], we refer to [36];

see also [19], [20] and [311.

We can now mimick the proof of the Ascoli-Arzela theorem to show that the
Timit function -u obtained above is chosen in such a way that it is weak]y?k

2’°°(R2) and the corresponding vorticity v = vxu is

continuous from [0,») to L
weakly continuous from [0,=) to QDZ,.
The foregoing arguments are summarized in the following form, which is the

first part of our main results.
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Theorem 3.5.(Existénce).'Suppose that ael?’m(Rz), Vea = 0; and that
Vxa is a finite measure. Then the problem (1.1) has é global solution u which

is smooth for t > 0 such that

(i) u : [0,®) ~ Lz’w(Rz) is bounded and continuous in the weaf* fopo]ogy
and satisfies u(0) = a. _ '

(i#) v =vxu : [0,») > M5 is bounded and continuous in‘the weak topology
of measures and satisfies 'v(O) = Vxa,

(ii1) The estimates

t1/r-1/2

(3.7) ||UHr(t) <C for t>0, 2<r<oj

t-1+1/r

(3.8) HVUHr(t) sC for t>0, l<r<eo

holds with C depending only on r, v and a bound for Hanmvn: .
(iv) For 0 < e < T and nonnegative integers k, h, there is a constant

C>0 so that

k.h
SUPL. T [voLull (t) < C

and the C depends also on v and a bound for |[lvxallqy, -

2,w(R2).

(v) The function u solves the integral equation (2.1) in L

Proof. It remains only to show (v). .First we note that the interpolation

theory of the Lorentz spaces implies that the operators e“tA and P are all

bounded in LZ*"(R%) (see [4]). It is easy to see that u satisfies

| u(t) = ev(tE)s ey .fi' ev(fZTS)A ’vp‘(qm)(s)ds

- ev(t-E)A u(e) - f: Ve\’(t'S)A Plu®@u)(s)ds -

for all 0 <e<t. As e -> 0, we see from Theorem 3.51(iii)ythét~the second

2

term tends to S[u](t) in L (R2), and hence in;’Lz’m(Rz), for each fixed t > 0.

On the other hand, an elementary calculation shows that the first term tends to

et 2 in the weak® topology of Lz’m(Rz).; hence (v) is obtained.

15—
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We next discuss the uniqueness of our solutions. To this purpose, we need

the following, which is our second main result.

Theorem 3.6. (Integral Representation for Vxu). Under the assumption of

Theorem 3.5, the vorticity v = vxu. is expressed as
(3.9) v(xst) = [ 5 T(xst 3 y,0)(vxa)(dy), t > 0,
' R

in terms of a continuous function T(x,t:y,s), xLyE Rz, t > s> 0, with the

following properties (3.10)-(3.12):

(3.10) f o T(Xst3y,s)dy = i o T(X,stsy,s)dx =1, t>s203
R R “
(3.11) I(xstsy,s) = [ 5 D(x,t52,t")1(z,t' 5y,5)dz, t>t >s>0;
, R \

(3.12) € (t=5) Texp(-C, |x-y|%/(t-5)) 5 T(x,t 5 ¥s5)

g Cy(t-s) Texp(-Cyxoy ¥/ (Es)). £ s 20,

with Cj > 0, j=1,2,3,4, depending only on v and a bound for Hvxaman.

Moreover, the estimate

t—1+1/r

(3.13) VRORY , t>0, ler<a

holds with C depending only on r, v and a bound for Hannan.

Proof. The existence of the function r follows easily from the uniform
estimate (3.2) and the Ascoli-Arzela theorem. The remaining assertions are
immediate from the foregoing arguments.

To state our uniqueness result, let us recall the classical Lebesgue decompo-

L. n
sition of a Radon measure p on R :

where He is characterized by the property uc({x}) =0 for all x € R" and

Mop is expressed as a (possibly infinite) linear combination of Dirac measures.
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Lemma 3.7. For any finite Radon measure u on R2 we have

1im sup t1-1/r HetA

< C forall 1l<r <o,
20 U"rs ”“pp“% < <

where C depends 6n]y on r.

Proof. We first recall the estimate :

et atANN

ms

Indeed, since the linear operator Af = f¥u 1is bounded in both L1 and L~ with

””r s Ct

operator-norm < Humns, applying the Riesz-Thorin theorem ([4]) yields the estimate
if we take as f the heat kernel. This estimate and the Lebesgue decomposition
together show that we have only to prove that
(3.14) tim tVr et Ll 0 forall 1<r <,

-0 r

provided u = u With no Toss of generality we may assume that ux 0. For any

c:
fixed € > 0, we take N > 0 so that, denoting B(O,N) = {x ; |x| < N},

W(RENB(O,N)) < € and hence My = (RN B(O,N))d 1 satisfies

(3.15) AN P

bl s € forall  1<r<e.

The support of the measure u; = u - u, is contained in B(O,N) and direct

calculation gives

tl-l/Y‘ “etA

(3.16) ( ulur)" - c‘t‘lfRZ (I|y|<N exn(-lx—y|2/4t)p1(dy))rdx

= c't’l(f|x‘>2N ity Yy < EXP(-!x-y|2/4t)u1(dy))rdx

= 1y(t) + Iy(t).

Since |x-y| > |x|/2 if |x| > 2N and |y| < N, we gét'
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(3.17)  Iy(t) s C'Hulﬂihq’t_l f|x|>2N exp(~rlx|2/16t)dx ~0, as t~+ 0.

For Iz(t), applying the Minkowski inequality yields

(3.18)  I(t)

[/

¢t [ ixt<ond 1xey |56 exp(-Ix-y|2/4t)u1(dy))rdx

s crtl f]xIsZN(flx-y]5§ exp('|X-¥12/4t)u1(dY))rdX

Iy (t) + In(t),
where & > 0 is to be chosen later. Obviqus]y, for any fixed & > 0,

1

(3.19) I,,(t) 5'C'meas(B(0,2N))Hu1H exp(—r62/4t)l+ 0, as t-0

ro_ .-
x t

mo

where meas 1is the Lebesgue measure on R2. On the other hand, Hélder's inequa-

lity yields
(3.20) Izz(t)'s C'I|X|$2N (ul(B(x,S)))r'll(I|X_y|<5 exp(-rix-y12/4t)u1(dy))dX/t

-1
Y‘-l “eY‘ tA

17N

C" sup | 1oy (v1(B(X:8))) uplly

r-1

A

c" Hu”qnpx}sup Ix]<2N (uy(B(x,6)))

where B(x,68) = {y:; ly-x] < 6}. Thus, we have only to show that

(3.21) . ul(B(x,&)) >0 as 6 >0 uniformly for [x] < 2N.

This is easily obtained by contradiction if we note that u({x}) =0 for xeRz.

The proof is completed.

Remark. Although Lemma 3.7 is elementary, it does not seem to be well-known ;

so we have presented here its complete proof.

We are now ready to state our uniqueness result.
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R®), vea =0 and that

Theorem 3.8. (Uniqueness). Suppose that ae.L2’°°(
vxa € M. Take m> 0 so that HVXaN%,sm and let u be the solution of-
(1.1) given in Theorem 3.5. Then We have the following.

(i) For all p > 2,

(3.22) Vim sup e/ Il < cl(a)yp o,

with C depending only on p;'m and wv.

(ii) For each p > 2 there is a positive constant ¢ = s(p,v,m) such that
if “(an)ppnﬁﬂa < ¢, the solution u is unique in the class of functions w
with the following properties :

2,0,.2

(a) w :[0,°) >~ L"" (R%) 1is weakly continuous and w(0) = a.

(b) w : (0,0) » Lp(Rz) is continuous and satisfies (3.22) for p > 2.

(c) w solves (2.1) in Lz’m(Rz).

In particular, the solution u is Uhique provided that vxa = (VXa)C.

Assertion (1) follows direﬁt]y from the formula u - kv (v = vxu), (3.9),
(3.12), Lemma 3.7 and (2.12a). The proof of assertion (i{) is then rather standard,

so we omit it here.
We finally discuss on the derivation of our ba{fc tool, i.e., Proposition 3.1.
Considerton R" “the fihear‘pafabolic oberator\of the form : u

1

where b = (b*,..., b™) is smooth, bounded on ‘RnXCb,T) ‘together with all its

derivatives and satisfies the following conditions :

(3.23) veb =0 3 and there are bounded functions ¢, i,4=1,..., n, on Rnx[p,T)

so that

bl = Zj 3jc13 , i=1,..., n, where 35 = B/BXj .

‘lq"‘
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We denote by I‘b(x,t 3 YsS)s x,yeRn, 0 s sxt<T, the fundamental solution

of the operator Lb'

Theorem 3.9 (25]1). (i} Let Lb satisfy (3.23). Then there are constants
Cj >0, j = 1,2,3,4, depending only on v, and a bound for Hc1jh . SO that
: L
-n/2

€y (t-5) " Zexp(~C, lx-y 1%/ (t-s)) 5 Ty (X, tsy,5)

< C4(t-5) ™ Zexp(-C, 1 x-y 1%/ (1-5))

for x,yER"f and 0 gs<st«<T.

(i1) Under the same assumption as in (i), there is a constant g, 0 < g8 < 1,

depending only on v and a bound for “Cij“,m so that
L

ITb(X,ts;YsS)-rb(X' sthsy',s! )I

s COx=x" [P+ Jy=y'|® + -t B2 4 |s-s|B/2)

for x,x',y,y'é€ R" and 0 << t-s, t'-s' <=, with 0 < t,s,t',s' < T, where C

-

depends only on v, T and a bound for Hc1jH -

The above type of estimates were first proved by Aronson [ 1] and Aronson-
Serrin [2] for the operators of divergence form. If cij, above satisfy the anti-
éymmetry condition : cij =‘-cji,,then Lb is of divergence form and ‘therefore
Theorem 3.9 is regarded as a generalization of the result of [ 1] and [2] to the
case of operators of nondivergence form. For the full version of Theorem 3.9; we
refer to [25]. We#can obtain Proposition 3.1 frém,Theorem 3.9 via the following

interesting lemma.

_.20_
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Lemma 3.10. The function
K= (KEKE) = (-0 x)/20)x1%, x = (x5 X,)

is expressed as

1_ . .3, .40 . 2 1 .2
K™ = alA + BZA 5 K™ = BlA BZA s
where | ‘
1 2.2 4 2 Lol 3 4
A® = —xlxz/nlxl , A" = -3x1x2/2w|x1 + xlxz/n]xl .
‘ o 2 4
AS - -3x1xg/2n|xl + xlxg/nlxl .

The proof is done through direct calculation. Now Tlet u, be the solution
corresponding to the initial value a = eVnd a, so that ‘un = K*vn s V= vxu .
Using Lemma 3.10, together with the estimate . anﬂl(t),g ||annI|1 < Hanan) s
we easily see that the operator Ln =9, - vh+ (un-v) satisfies condition (3.23)

uniformly in n > 0.
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