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Nonstandard Arithmetic of Iterated Polynomials

Masahiro Yasumoto (Nagoya university)

Let *Q be an enlargement of the rational number field Q, where
by an enlargement, we mean an elementary extension which satisfies wi-
saturation property. Let ¢ € *Q — @ be a nonstandard rational number.
Then £ is transcendental over Q. In this paper, we are concerned with
algebraic extensions of a rational function field Q(t) in *@ Structures of
such extensions are closely related to diophantine problems.

Let us begin with some definitions about such extensions. We denote
by €2, the relative algebraic closure of Q(t) in *Q.

; Qt=mh*Q

For each d € N, we define Y (£, d) to be the number of algebraic extensions
of Q(t) of degree d in *Q.

Y(t,d) = *{F *Q| [F : Q)] = db.

It is well known [2] that there is a nonstandard integer ¢ such that ¥ (¢,d) =
0 for all d > 1, in other words, {2, = Q(¢). This fact is equivalent to the
following Hilbert’s irreducibility theorem.

Theorem. For any irreducible polynomial f(X,Y) € Q[X,Y], there are
infinitely many integers n such that f(X,n) 13 also irreducsble.

In his paper [4], P.Roquette proved
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Theorem. Ift € *Q — Q s composed of standard primes only, s.e.

ay a2

“t=plpe? . pp"

where pi,...,pn are standard primes, n € N and a1,...a, € *Z, then
U Q(p[o“/d] p[an/d])
deN

where [z] denotes the largest mteger not more than z.

This theorem can be apphed to prove the following theorem [5] in
sta.ndard number theory - , ’ |
Theorem- Let f(X T1,...,Tm) be a polynomial over Q. Assume there
exist c1,...,¢m € Q other than O and X1 such that for any m mtegera

n1,...,Nm, there ezists anr € Q with
| lf(r, clll,;...,c;',,'") =0,
Then there exzist a rational function g(T,...,Tm) over @ and m integers

k..., km not more than the X -degree of f(X,T1,...,Tem) such that
F(g(Ty e Tn), T, 0 Thm) = 0.

In case of m = 1, Prof. Fried pointed out that the theorem can be
proved without nonstandard method but in case of m > 2, no proof of the
theorem without nonstandard method is known.

Next we consider another type of nonstandard integers. Let e(X) €
Z|X],a€Zand a €*N — N. Let '

t=p%a)€°Z

t may be standard. We have to excliude such trivial cases. ¢ is standard if
and only if ¢™(a) = ¢"(a) for some m # n. Since (X) is a polynomial,
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there are oniy finitely many integers a satisfying the above condition. So
in the following, we always assume that a is an integer which does not
satisfy the condition. o | o

Let ¢(X) = ¢X + d be a linear polynomial where ¢ is a rational
number other than 0 and £1. Then

so"(a)=(a— : )6“—) :

Hence
Q(p*(a)) = Q(c%)
Therefore by the theorem of Roquette,

Qpa(e) = dgv Q‘(cla/d])

Next we consider a polynomia.l P(X) € Z[X] of degree at least 2.

Then it is easily shown that Q(¢*(a)) has a tower of algebraic extensions,
Q(¢%(a)) C Q%" (a)) C Q(p**(a)) C ...

- Q(‘Pa-i(a)) c.--C ngo"(a)'

So the problem is wether
Qo) = U @ (). | (1)
€N

- But unfortunately there is a counter example of the equation (1). For
example, let p(X) = X2, then p*(2) = 22°. Hence

U Qe*~(2) = U @(2*)

tEN ' tEN
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On the other hand, by the theor_em qf, Roquette,

9220 = U Q(2[2 /d])
deN

Since 2[2°/3 is algebraic over Q(2%° ) of degree 3 but ((22°7') is algebraic
over Q(22”) of degree 2°, then 2[2°/3] is not an element of Q(22a_£) There-
fore the equation does not hold for ¢(X) = XZ%. Our aim is to give a
condition for a polynomial ¢(X) to satisfy the equation (1). First let us
consider a polynomxal ©(X) of degree at least 2 which does not satlsfy the
following condition.

(I) There exist polynomlals »(X), (X ) a.nd U(X) over K such that ,
g.c.d.(deg(p), deg(#(X)) = 1,deg(¥) > 2 and (B(X)) = $(¥(X)).
Ritt[2] and Fried[1] gave a characterization of polynomials satisfying the
condition (I). Now we can state our maiﬁ theorem.

Theorem 1. Let p(X) = cX%+h(X) € Z[X] be a polynomial of degree a.t ’
least 3 which does not satisfy the condition (I} where ¢ # 0 and deg(h) <
d—3. Let.a be an integer such that ™ (a) # p"(a) for every m # n. Then
Jor every a€*N-N,

Qpr(a) = U Q(so '(a))

‘ tGN

For proof of Theorem 1 refer to [8 ] Thxs theorem can be apphed to
prove the following theorem in standard number theory

Theorem 2. Let o(X) and a be as in Theorem 1 and let f(X,T) be a
polynomtal over Q. If for anyne N there ezists anr € Q such that

(rve"(X) —?

then there ezist a ratzonal functzon g(X ) over Q and ke N such that

Fe(T), 64(T)) =o0.
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Proof: By assumption of the theorem, there exist @« € *N =N and z € *Q
such that ' ' o : ‘ o
f(z,0%(a)) =0

By Theorem 1; for some k€ N

z € Q(¢p**(a))

Let g(T') be a rational function over @ with

z = g(¢**(a)).

Then
F(a(e**(a)), *(**(a))) = 0.

Since p*~*(a) € *Z — Z, **(a) is transcendental over @, therefore

f(T),e*(T) =0

as contended. | ¢

This is a new theorem proved by nonstandard method. It is not
known wether Theorem 2 can be generalized for polynomials of many
variables.
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