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gome Results and Problems on the Diophantine Equations
Sun Qi

(Institute of Math., Sichuan University, Chengdu)
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1. On Diophentine equations x, X, ...X =2

ErdSs asked for integer solutions of the equation

KyV= 2% (1)

[q :
with x 213 y>1. In 1940, Ko Chao  proved that when (x,y)=1,
- equation (1) has no solutions in positive integers x>1, y>1,
z%1 and when (x,y)®, equation (1) has infinitely many solu-
tions
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nd»1, with 4xy=z, Other solutions have not been found yet.
Recently, Erdds pointed out that it is possible that these
should be all the solutions of the equation (1).
In 1984, Ué%%%%géfq proved that there can only be a
finite number of solutions for any fixed value of Q=xy/z< %.
Anderson conjectured that the equation w¥x*yY=12% has no
solution with 1<w<x(y.

(3]
In 1964, Ko Chao and Sun Qi = proved the equation

R o % »
'ﬂ'x.b=z y x>, k22, i=1,...,k,
1=\

has infinitely many solutions
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of which the first one is x,—3 2A, X _51226, x,_51)25

:31425 for k=5, 1t gives a.counter—example to Anderson's
ConJjecture.
~For: 2+xy are there any solutions of equafi.on,('l)? This
still remains unproved. For the equation x,x' xi‘ x’;’—_:z,} we asked

fhat'areﬁ there any solution with 1<x <K X,< Xy, 2f’x~,x:lx:3?;

2. Some exponential equations

Jesmanowicz conJectured that the diophantme equa'tion
%
o +
has no integer solution except x-y,z-2, wherea b c sa'tisfy

141~ [e]
a4p=¢*. Ko Chao made a lot of investigations about

it in 1958-1965. Lu Wendu‘anm, Chen Jingrun rs1 and Sun Qi gl
also have studied this conjecture. For example, Lu proved
that 1f Q=4 -1, b=in, c=brt 1 , then Jesmariowibz's conjec-
ture is true. - |

For the Diophantine equation

X+ b9= c ¥ | (2)
whereQ, b, ¢ are different primes. In 1958-1976, Nagell,
& k) (A) |

Makowski, Hadano Uchiyama/\studled this equation.' They ’gave

I\ o
all the solution (x,y,z) for max(a,b,c)é’l?. In 1984, Sun Qi

67



68

) - ‘. ' '
and Zhou Xiaoming 3gave all the nonnegative integral solu~

tions of equation (2) for max«x,b,¢)=19,' wé proved also that
the eéuation (2) has no solutions in non-negative integers
xy, ¥y, 2, if thgt a=2, b=p, c=q,Awher¢ P= 5‘(mbod 8) >or p=1
(mod 8) and p=uz_-\—16v"; Z}V',. and 9 =3 (mod 4), q=2 (mod p).
In 1985, for‘max(a.b;c)=23,d%as been solved by Yang xiaozuq?ﬂ
In 1987, for 29<max(&,b c)<1OO Cbhas been solved by Cao Zhenfu

Selfr;dge.asks for whatQ and b

|, (3)

is true for all n?

Sun Qi and Zhang Mingzhinﬂ proved that for 0<b<a if
and only 1f (&,b)=(1,0), (2,1), (3,1), (4,2), (5,3), (5,),
(6,2), (7,3), (8,4), (8 2), (9,3), (14 2), (15, 3) (16,4),
(3) is ture for all n.

3. Some diophantine equations which arise in the combinsto-
- rial theory and the theor'y of finite groups ‘

Hall asked for the integer solution of the Diojphantine
equation: b

| P’y 2=q° | L : (4)
which arises in the combinatorial theory, where p, q are prime’
numbers. This includes that 51-I- 2=33 » but we know no other
case'j.n which both r>1 and s>. Sun Qi and Zhou Xiaoming (sl
studiéd the case‘p+2=q in (4). Cao Zhen:fuwJ proved that when
p+2=q, then the equafion (4) has no:éovlution for rm™1, s>1.

J

Crescenzo investigated the 9quat1.on (5) below, which

arise in‘ the theory of finite groups.

12)



pm—2qn:=i_1, P, q brimes, md>1, nvi.  (5)
Crescenzo proved that with the exception of the relation
(239)2—-2(133#:: -1, every solution of (5) has exponents m=n=2.
- However, it should be noted that Crescenzo's théorem is
wrong. Because the equation (5) has another solution p=3,
q=11, m=5, n=2. | |
For diophantine equation
3.,'”:2qn==1, my1, n», q is an. odd prime, ZI}m, (6)
we conjectured that equation (6) has no solution except g=11,
m=5, n=2, | |
For equation (6), the proof of folloWing results are
easy. ’ | | |
1) If‘zln, then the conjecture is true.

2) If the eQuation (6) has solution, then g=1:(mod 12)
3) If the equatlon (6) has solutlon then (%)—(T3)~(n57)
=1, where (—) denotes legendre symbol '

Recently, Sun Qi  studles further equations (7) and (8)
below, which include (4) and (6) réSpectively{
For diophantine equation ‘ »
a™kb= 2, k0, 2k, | (7
and diophantine equation
; o o ; _
a-1'=1, 150, (8)
we proved the follbwing results,

1) If the equation (7) has positive integar salution Q,,

i 2! o)
b, m, n, with Z}fm,n,, m,>1, n,51, then +k’ by +a z‘b,;-m.

is the fundamental solution of the Eell's equatlon x -k b, y=1.

LN l" LR 2
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2) If the equation (8) has positive inte rer solut;.on az,
. oY B R
b,y My, nz, with 2+m2n2, mz>1, n>1 then Qg +;QL +2g&z§> £

JRazb, " is tbe fundamental solution of the Pell's
equatlon X -l(hb}y =1, the

From above results, we proved that;quatxon (7) has no
positive integer ‘solution Qs by, my, 0y, Z%m,n, s m,>’l, n,>1,‘
if that Q= kb‘tz-}-z‘or bl=ka,tz+ 2, etc. For the equation (8),
ve proved simiiar results also. If q:pt‘+2, where pPs q de- ‘
note odd prime nﬁnib,_efs, thén equation qmzpi?e- 2 halé no integer
solution m n Wit'n m>1, ny»l, Z)Lmn..

We proved also the following ,resuit.

If g=6s+1, then the equation (6) has nc solution.

4, Some Cubic equations and Quartic e@uatibns
From. the well known identity

(x+1)+ (x—’l) -2x3- 6x,
Mordell <;ugg,es*t@d that perhaps most of the numbers can be

expressed as x3+ vt 223 with integers x, y, 2. In 1936, Ko

Chao“g]gavé the decompositions into four c-ubes in this form
for n$100 except the numbers 76, 99. v o ;

For the diophantine equations xg-fy%- 223=76 and x3+ )3+ 223
..99, we asked that a¥e there any integeral volution Xy ¥y 272
This still remains unproved. |

A interesting equation is

pykZ=a | (9)



When n-;.ﬁ,' there are solutions given by (%,¥,2z)=(1,1,1),
(4,4,-5), (4,-5,4), (=5,4,4). TIn 198k, Scarowsky and Eoyarsky
proved that the eQuatiOn (9) has no new solutions were found
 for lmls 50000, where x+y}z=3m, meZ. In 1985, Cassels
proved that any integral solution of the equation (9) has

x=y=2z (mod 9). Recently, Sun Qi[m

proved thst if n=9a°,
where o 1s not'divisible by primes of the form 6k+’1, then

any integral solution of the equation x3+ y3+ z=9 a3 satisfies

9 X2 where (x,y,z)=d. If n=30.3. 3-"4, then zmy integlﬂal

a3 _
solution of the equation x"+y +z =34 satisfies 333 (mod
9.

Ljunggren proved that if D>2 be a square-free integer

" which is not v,divis'j;blev by primes of the form 6n+1; then equa-

tions }

L x3x=pyt | S - (10)
at most one solution in positive integers x; y. 1In 1981,

Ko Chao and Sun Qi[?oj‘slﬂ‘ -proved that the only solution in-
integers of the equations (10) is x= 1, y=0. In 1975-1981,

Ko Chao and sun a1 ®htudied the equation |

| x'-Dy*=1, D>1, M(D)%O0. (11)
@ proved that 1) If D=3 (mod 8), £=x4y,4D is the funda-

mental solution of the equation xz-Dy"=1 and if xoao (mog 2),
then the equation (11) has no solutions in positive integers
X, Yo 2) If D=2p, p is an odd prime number, then the,‘equa-

tion (11) has no positive integral solutions except p=3,

x=7, y=20. 3) If D is not divisible by primes of the form

.. 6 ..
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in41, then the equatlon (11) has no positive integral solu-

tions. In 1979 and 1981, Ko Chao and Sun Qim7}-hq] also

stu;iied. the equations x"eDy‘}-.;..-1 , x¥+ L=Dy" and x 3tg=py".
For- equation 6y=x(x+1)(2x+1) Mordell asked if there was

t3s
an elementary proof. 1In 1985, Ma Degang f)have answered the

Mordell's question. ‘7%zﬁf,‘41”” o ; o
" In 1942, Ljunggren showed that the only solutions of

xﬁ=2yg—1,in positive integers are (1,1) and (239,13) but his
proof is difficult. Mordell askc if it is p0351ble to flnd a

" simple or elementary proof, Thlq still remains ﬁy;oved

. In 1967, Bumby pro\/ed that the diophantine equcn.u.on
2y"= 3xt-1 | | (12)

only integer solutions x=#1,%* 3. The proof derends upon an

application.of the‘lawfﬁﬁédratic,reciprociﬁi)infthe quadratic
fields Q({-Z).

In 1979, Bremner proved that the diophantine equation

sty ot H12y* -9=0 | | (13)

- only positive lnt.eger’solutions, x=1, y=1, and x=3, y=3.

.The proof depends upon an application of the SKolen's p-adic

method.

. We asks if.it is possible to find an elementary proof

for the equation'(12) or the eguation (13).

5. The equation L SO R Znam problem.

X\ XgTXpeooXg
S~problem. ‘

 For the équatibn

; , .
X _--—-——--——:1, O<X‘<...(XS, (14)



1)

in 1964, Ko Chao and Sun Qi gave all solutions for s=5
and s=6. |

Let _(2(s) be the number of positive integral solutions
of the equation (14). 1In 1978, Sun Qith] 'prov;ed/' that when
sz 4, then {)(s) <Us+1). o

In 1978; Janak and chula gave eighteen solutions of the

system of congruences

XyeeeXin) Kogy ...xn-}.‘IEO (mod Xi)' x>, i=1,...,}n,_r1> 1,

(15)

for n=7. Let H(n) be the num'ber of solutions of the system
&R ‘
of congruences (15). In 1983, sSun Qi proved that if n2 4,

then H(n){ H(n+1). As a corollary one obtairis: Ifn>7, then
H(n)> n¢ll. | ‘ | |

In 19‘724 Znam asked whether for every po:u.tlve integer |
n71 there exist integers X. >1 (1—1, ..,n) such that X; 1s
a proper divisor of the numbers X, ...x‘,_, xUH ...xn-H for
every i In 1983, Sun Qi‘ ol proved that let Z(n) be the
number of solutions of the Znam problem with 1< x‘(... ( X,
we have Z(n)>__(2(n) ﬂ(n—’l))O when nz 5. Hence the problem
of Znam is completely solved. It is difficult to‘p.rove
Z(n+1)>Z(n), when n2 5. |

In 1985:,' Sun Qi and Cao Zhe‘nfutzg) stodied the equation

1___ 1 | ‘ ‘
b ees ol IR ECUEEER S Y (16)

I

MO\

,
1]

Let A(s) be the number of solutions of the equetioh. (16).

@jproved that 1f t»9, then A(t+1)2.0) (t)+.(2(t-1)+6.

For s=6, we gave that there are 17 solutions .of equation

(16) in all. I conjecture that if n3 3, then A(n+1)> A(n).

L) 8‘..
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In 1984, Sun Qi and Cao Zhenfu proved that ﬂ(,sﬂ))
_Q(s)'\-B, when s210. From this result, we also have' Z2(s)=23
and H(s)Z 3s~9, when s> 10 . i A |

In 1986, Sun Qi and Cao Zhenfut?] proved the following
theorems. | |

1) If 522, then Z(s)=H(s)- H(s=1).

2) 1f s/10, then S2(s%1) 2.2 (s)+5.

3) If s)‘lj]; then Z(s)Z 5.
For Z(s), we conaecture that if s24, then

z(s+1)> Z(s). |

In 1984, Sun Qi posed such a problem that, for each

integer n> 1, if there are n 1ntegers x> 1 (1=1,...,0) such

ditoSor

that each x; is a proper of integer x,...Xx; X.
L A . : -l T

céll the pf-éblem 'as séproblem for c;implicit‘y. For eauh inte-

seo0X "1- We

ger n>1; we use the symbol X(n) to express the nu:nbew o.L
solutions to §-problem for the case of n integers. Recently,
Li-—Shuguang“n proved that ifnz4, then X(n)> 0 and ifn= 2
3, then X(n)=0, Thus,’ the é-pronlem is solved. Is thlus
ture that X(n+1)> X(n) for n2 h’> o -

6. The equation Z d =0 (mod 1). Diophantine equation
. = o

over Finite fields.

Let d, y eens d,, be flxed posxtive integers. It is well-

know that 'the nwnber I(d, ye o ,d,,) of qolut.Lons of the equaticn
4 ‘1 -
-a‘- -al-\- -‘-\-%";:O (mod-’l), y; integers,
1€y, <d; (1=1,...,n) (17)

.. 9 ..



play anuimpoftant role in the study of diagonal equations

over finlte fields..

| | Al |
In 1948 and in 19&9, Hua and Vandiver, rtado,

Weil at about the same time proved the following results. If

N denote the number of solutions of the equation

E a;x; .‘ O where d. q-1

| | (1=1,...,0) o (18)
over finite field F , then
( _ ‘ , e
IN-éﬂqls,l(d.,---;d”)(q-1)q 2 (19)

Hence the value of I(d‘,...,d ) heavily affects the estimate
of the number N of solutions of the equatlon (18)

For the case dr_d -..“_d it is proved thot I(d,...,d)

::ga—((d—1) + (-1) ). TFor the more general case d,,d2 .o

L4
,4th, in 1986, Sun Qi, Wan Daqing,'Ma Degang ) proved that

@/ -l

L(d‘,...,d,)—-n—(d -1)- TT(d -1) '...+( 07 (@100, =10+

(-1) (d,=1). A complicated formula for I(d,,...,d,) was

obtained inaependently by Lide and Nlederrelter, Stanly, end

us l‘”wrt;h different methods. The formula can be stated as
follows |
| ~7) A':l"""lir ’
1(dy st =) 2 )™ ST lemld s
mL&q, - ‘r’)
Y=\ 1$¢,¢<- .4;'51\ .

Form (19), it is interesting to determine when I(d,,...,d,)=

-0, for if I(d ,.,.,d )=0, then (18) has exactly q"~' 501;-,

tions. Some partial results have been obtained by Joly. In

1985, Sun Qi and Wan DaqingthIPPOVed‘following’theorem: Let

n>»2, then (17) has no solutions if and only if one of the
.10 L.
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following conditions holds. 1) For some d; ,(dc,ﬁg_:_?!_n_ )=1
) v

or 2) If di, +een GRS TOPRRE R n) is the set of all
]

de, A

even integers among {d‘ gove ,dn} , then 2«}1{‘, b e % are

pairwise prime, and d;’j is prime to any odd number in {df, geosy
d,‘} (3=1,...,k) 1f k<n.
Recently, Sun Qi tad have proved the following tneorems.
Theorem 1. Suppose GF(p) is a finite fileld, where p is

an odd prime number, iu,v,G}CGF(p), uv %0, 1if
b (2T x5 (5_3)(9%%:%)__ 1,
then there ere two primitive gdots o ahdﬁ 1ni_GF(:E}))_such that
u&-\-v@:@, whereﬂis Mobiﬁs funétiori, (Pis‘Euler"s totient
fﬁnctioh, w(p=1) déndtes the number df dilstincvt prime factors
of p-1. “ . | -
' Theorem ‘2. | ‘If'p7 260,’ then there are two pri;nitive roots
ot and (3 ‘such that uol+ v@:;&.
Theorém 3. Ifp>3, andb
2ofF ET AT (gl - ),
then there afe_ two primitive roots o and 3 such that *A-F=1.
Vegh asks whether, for all primes p>61, ever-y'l integer
can be expressed as the difijerencef of two primitive roots of
From theorem 2, .we easlily deduce the following corollary.
éoﬁoiléry. If p> 26‘,) ‘then every integer can be expres-
sed as the difference of two primitive roots of p.
We can extend theorems 1-3 to GE‘(»p“) (n >1) without dif-
ficulty, ;Fo‘r"example, we have the following theorem.
Theorem 4. If p“?zso’ then there are two primitive roots

L1 .



ol and(! in GF(p"‘) such that uol+ v@:&, where {u,v,&}CGF(,p’,,‘),
uv@%0,

In order to prove our theorems we need .the following.
lemmas.

Lemma 1. Let x and A be characters of GF(p), and set.

Tuy (12:8)= = X(1)X(m), then
Jultym=0

Limeqrip

' ('ﬁ) if Xf\*-'Xo.
REMRCR YOI

l 1, if XA=X,,
where X, denotes the trivial character of GF(p).
Lemna 2, 1f§>1, 951, ¥|p-1,m|p-1, (@, 8=(b,7)=1,
< o Xty t equal to
1264 Y s 1\b$'vl, then XQ(",_WS_ . ’XWH%Z are not equ

Xo , and X“"V’%' Xb(fv—\)/n—;: X, 1if —%:—h;-’; = 0 (mod 1), Xa(/;,‘()/{ R
Xotr-i)fy %o, 1z +~— ¥ 1 (mod1).
" Lemma 3. Letn CGF(p), n%0, then

,42)13_ 201C G ndn O, if n is not a pr-lmitlve root,
> A

2.8k |,
h,']?—l f’(‘k) 6= - sy if n is a primitive root,

(o ‘12) \ Q) -1

Lemma: 4, SRR
R R S
Flp-1 9 @(h-0

A natural problem is that, is the result abova true to

primitive roots modulo p (1» 2, the p is an odd prime)? The

problem is solved in (ASJ . Sun Qi and Li Shugusng have 'prov’éd
the following theorem.

Theorem , Let p be an odd prime and integer-122. When

b0 -
py 2 , there exist at least (p-2)p(’ 2 pairs of primitive roots

o 12 0.

17
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ol and B modulo p“ _such that,

ad +b@:—sc (mod pL).
T4b)

Recently, Sun Qi, A_ have proved the following theorem.
(f&ﬁ?ﬁﬂi&fiE%) |
Theorem Let p“be an odd prime and h &€GF(p), h#O0.

If m23, then there is a primitive root § in oF(p™) such that

m~}

gagtes +g? =

except m=3, p="11.

For m=3, p=11, the problem above ‘stil-l remains unproved.
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