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1. kIntroduétion

Surface waves of a liquid in a closed basin ‘subjected to
horizoﬁtal or verticél oscillation have been studiéd recently
from a viewpoint df 1ow—dimensional chaos. Faraday (1831) first
éﬁudied experimentallyi fhe ?afterhs of standing waées in a
éontainer which 1is oscillated vertically and found that the
frequency of surféée oscillation is one-half of that of tﬁe
excitafion. Based on‘line?f thapory, Reniamin £ Ursell (1954)
explained the eﬁoitation of standing waves of an inviscid. liquid
thch is associated with the instability of solﬁtions of Mathieﬁ
equétion for parametric resonant modes. Oékendon & Ockendon
(1973) analysed’ three types of horizontaily or vertically
oscillatéd gfaviﬁy waves éf a finite amplitude and pointed ou£
that the horizontall& excited casé is closely related td vDuffing
éduation which ié now well—knowh td possessing chaotic solutions,
and that in the verticaliy.exciféd casé (briefly éalled as
Fafaday pfoblemf, \theré exists a Eifufcétion »from a stabie

quiescent state to a stable standing wave of a finite amplitﬁde.
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Miles (1976) formulated the weakly nonlinear problem fof
gravity waves. He reduced the kinematical boundary-value problem
to a variational problem and introduced Lagrangian and
Hamiltonian functions in terms of generalized coordinates of the
free surface displacements { qﬂ }. This formulation is épplied
to the weakly or resonantly coupled free oscillations, where

averaged Lagrangian function is introduced. Analyses of the

-external-internal parametric resonant surface waves are given in

the following works: Faraday problem in Miles (1984a}, the
internally resonant problem in Miles (1984b), and the
horizontally excited problem in Miles (1984c). Iﬁ the last paper
he found chaotic solutions for two degenerated modes which are
similar to the system of a pendulum oscillated horizontélly.
However for Faraday problem with w, = 2w, ; no chaotic solution
is found.

On the other hand, several experiments‘have been made and
periodié, quasi-periodic, and chaotic wave motions are reported.
Keolian <t @i:311981) usad a narrow Plexiglas annulus and found
long-period subharmonic sequences arising from period-doubling.
Keolian & Rudnick (1984) used both liquid helium and water and
observed quasi-periodic motions and phase locking. Gollub & Meyer
(1983) found that an axisymmetric mode breaks down and changes
into a non-axisymmetric one as the driving amplitudei increases
with a fixed frequency. Ciliberto & Gollub (1985) (hereinafter
denoted by C&G) examined the case that the driving amplitude and
frequency are chosen to bernear the intersection of the stability
boundaries of two nearly degenerated modes. They found periodic

and chaotic competition of two modes characterized as (m,n)=(4,3)

2
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and (7,2) by optical measurement, where mode (m,n) expresses the
. . , i . _

eigenfunction Jm()<mAY)oosm9 . Klmn_g mn/R, 3'pn D th zero of

Jm(x), and R the radius of the circular container. They showed

that mode competition occurs in only one side of the phase
diagram.. fhey also measured a positive Lyapunov characteristic
éxéonent (LCE) and some fractal dimensions from experimental
data.

More recently, Funakoshi & Inoue (1987,1988) studied chaotic

motions of surface waves in a circular cylinder subjected to

horizontal oscillation and showed that the experimental
measurement agrees well with numerical calculation of the
dynamical systems derived by Miles (1984c). We made an experiment

on Faraday problem and found that there exists a competition of
two modes (4,1) and (1,2) different from C&G’s case.

We studied the Faraday problem of subharmoﬁic mode
competition of (mi;nl) and (mz,nz) where nH>t nﬁ:t mkxo, for
i,j,k=1,2, including C&G’s and our experiments. We derive the
dynamical systems for two médes, analysed them numerically and
found that periodic mode competing solutions, period-doubling
bifurcation and chaotic solutions exist on the same side in the
phase diagram as C&G found chgotic motions. All LCEs are cbmputed
and it is shown that there exists one positive maximal LCE in
the chaotic region. Meron & Procaccia (1986,1987) analysed C&G’s
experiment by normal form and center manifold theory but their
systems are equivalent to  our result derived by Miles’

formulation.
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2. Dynamical systems of surface waves

We consider weakly noniinear surface waves of an ‘inviscid
liquid in a closed basin.  Let (x,y) and z be horizoﬁtal and
vertical coordinates in a reference frame fixed in a basin B with
a cross section S and n being the outward normal, 2::“(1,-%) the
free surface, z=-d the bottom and d the . depth of the undisturbed
fluid. We assume that the motion is irrotational so that. the

velocity relative to B is expressed by a velocity potential

Pt 4, 2) asw=wd .

‘We may obtain the solution in the form

¢ = 2 Gult) Y (x. 4) Ha ), S (2.1a)
=T MOt t), (2.1b)

where ykk are the eigenfunctions of the linear system;
I »r - _ _
( 55+ st Kn) Y. = 0, (2.2a)
with - \pP,. = 0 em 28, (2.2b)

js\?le‘/’m dxdd = S5 | (2.2c)

where'<§h“is the Kronecker delta, 9;; is the boundary of §  and

Ha(2) = sec Kud ws® Kn Z

Miles(1976) reduced the kinematical boundary-value problem
to the variational problem of the integral

I= 20, copraxdydz - J pe=n) e dxd¥ (2.3)
with respect to 'S¢> for given ’ )Zt_‘ . This is eduivalent
to.Dirichlet’s principle that the velocity field W satisfying
div ¥ =0 gives the minimal value of I among -all irrotational
flows occupying a bounded simply connected region V.

Substituting (2.1a,b) into the integral I, we obtain

ST = ‘;’_‘ R m ¢m¢n ~ dmn )im ¢'n (2.4)

where
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Bon = S—l‘v\V1/’M‘\V1{’K'Hm(%)Hu(*)did‘dol?; (2.52)
and

dmm = S~ L- 17L‘m *. Ha (2= ") dx dy. (2.5b)

The variational principle yields .

-E— 1 = O . (2.6)
~ which relates { ¢,,~_ } and { Nw } as
P = A (1) Lo, (2.7)
where 1 =d .k -1 and dots mean the differential with respect
“nm " nllm

to time.
Averaged Lagrangian 1is constructed in terms of { q,\ }
including a capillary effect. The kinematic energy of the fluid

is given by

T= Lpf, () dedddz
1

( Voo 4

= Psvﬁnn ¢M ¢n = 7 PJ‘QM,\ yl“* y[.»\_ ’ (2.8)

where a = 1. k... . : (2.9)
mn imij o jn’
Expanding a. leads to

_ B ] ' : : .

Bmn T 5 mn °m +‘almn q 1 + F ajlmnylj ql+ Y, (2.10)

where a_ = k_ 1 = {} ienh} d) ) (2.11)

n n n n
21mn Clmn - Dlmnaman (2.12)
(a 4a )} + 2 D. .D (2.13)

a. = -D. .a.a_a
Jjlmn Jlmn'"m "n Jmi lni"i " m n

Clan® S7SYe Yo ¥u drdd, Citmn™ S f;/’& Ve Yontrdzad( 2 142,0)

and Dlmn:‘s L‘h \Vi}«,;\VY},‘dxdy', Djlmn: SJLV}VL‘D%-"Dyudl‘{#-(Z‘15a'b)

The potential energy due to the free surface displacement is

Ve pSdxds (Cgxde

= PS (Qnn + ’21234,‘1:'), (2.16)

where Q. = - 1(3111‘333) dzd#,‘ | | (2.17)
: . .

and  dol= - 9+ §, s2wt . (2.18)

The capillary energy due to the surface tension ¥ is
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Vez 7 L[{ [+ (W) 15 = 1) dxdy
¥ S Kn n = 78 Ejamn 13N T lnt -, (2.19)

-

A
2

where

Ejtmn = S l(\\?’}‘;-\v‘lh)'(\v?m-\?%) Adxdg, (2.20)
which arises from nonlinearity of the capillary effect. We.assume
that this term is less dominant than other nonlinear terms in

(2.8). Lagrangian function devided by P S is given by

L= j}(TL-V—Vc)
= L Qe Ll (AR §- G520t P LT+ Qula
: ) (2.21)
where is a capillary length and about 2.8(mm) for clean
water. Qn vanishes for Faraday problem.

Here we assume the amplitude of the displacement of the n-th

mode is of the form

Nuz Pu(®) wswt + futdamm wit + Ale) od 200t + B (1) amrwt + Cu(x) (2. 22)

where subharmonic modes pn:qn:O except n=1 and 2, P, 9, =0(¢ ),
Y .

An’ Bn’ Cn = 0(¢), and T = iLu)t is a slowly varying time.

Substituting {2.20) into (2.18) and averaging with respect to

over 27TC / w yield

<Ly = Lanw [(Paqu-pagor+ L (- Wi/t (pdt §2)
#3Re (p2gdy e (1= @ )ale B - 20 O
+ R (Qamn = £ Qxtm) {CPepu= 308 Ant (Prunt $ape)Bu)
t L fa Qulm (P2 Pt 92 %) Cun
T 33 e (Qpmnt Bt ) [Py Pet 85 92) (Pt §uq.)
T 2R 4,RICP G- P0Y ]

(2.23)

where
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L
Wn = {k“g(u A‘K:)}‘ (2.24)
is a natural frequency of the n-th mode. Requiring <L> to be
stationary with respéct to Ah, Bn’ and Cn yields
(A“'B“)='”%%“(|;'w:74wly4(almn' %a“lm)
« ( Pr P Q2 3, P2 Qut b)), (2.25a,b)

k.
Cu = :f'éL“.’_x Ontm (Pebmt % du). (2.26)
4 o .

Using (2.25a,b) and (2.26), averaged Lagrangian is expressed

as
> = L pada- P+ H (2.27)

PO

where P, 4, are normalized by a factor %Fa] for n=1, 2, <L> is

devided by g and H is a Hamiltonian function with a,» P, being

conjugate coodinates and momenta:

IL- (ﬂ"‘ p:.‘- ..Q..\/ %:) -~ Onw ( t~ w"L/4wL)(A:1’ B:.)i' anu)kaLCwl

v (Qjemn * O30wm) {CBBY 430 (pusbat §ude)
+’-(P;%» fzf’w)(h%.\ 2 P.‘)} (2.28)

where () - le(w w'\ + 22 ,& ) ; (2.29a)
d Ay _ - _2_0 (9 29b)

and nls So0 (wh-wd - £ n). |

The evolution equations for p, s q, are expressed by Hamilton’s

equation. Calculating H for explicit modes 1:(m1,n1) and

2:(m2,n2) with m, mj m, 0 for i, j, k =1 or 2 yields

H(Py1Q;1Pp1d9)% 3 (2 P +02587) + % Sn (Pt )"

Lo (pre ) (pi+ )+ e (pgu-put), (2:30)
where bn’ c and e are constants which depends on d and R. Simple
estimation leads to

b, # b, = ¢ & d/; 4 | (2.31)
(see Umeki(1988) for detail).

Although the inviscid theory leads to Hamiltonian systems,
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real motion of surface waves is dissipative. So we may add the
linear damping terms phenomenologically as (-4, '), ’ -—o(,_ 2, ,
~ oy P‘ , —ola 2}_ ). dw. are determined so as to reproduce the
stability boundaries in C&G's experiment. Tnen we study the

dissipative nonlinear dynamical systems of the form

Pos —oupr + (-7t RTErE) 4. - b M. (2.32a)
do= it (a-vRHpo- bM Y (2.32b)
Po= —daPet (-al+vi+v )+ b M b, (2.32c)
§o= -oA2qut (.- r=v2) b+ bM 40 (2.32d)
where rn2 = pn2+ qnz, M:plqz—pqu and b=1.6.
3. Stability analysis

We consider the system with parameters chosen so as to Dbe
consistent with C&G’s experiment. Fixed points of (2.32a-d) are

given by

Chor %o, ko, §o)

= ( o -, o , O s 0 ) (3.12a)
= ?5*_. 9, ¢, 0 ) (3.1p)
-+ pX L 4%, 0, 0 ) (3.10)
=+ ( o, o, pf, ) (3.1d)
=+ ( 0o, o, PN, BN (3.1e)
where % X ’ X
Pre = (Vu's - ne/{(vhe - )+ a5} (3.2a)
9L = v /(e - al) % o A ~ (3.2b)
and ' L. L
e = [E{awalt ((a.+00% 2 (aanivdd 2}
= 2 - L, 4+
= [Jffl*w/wnzi((gff%, o)} (3.2¢)

Other fixed points with all non-zero components may be exist.

If we consider the evoluion of thev same (m,n) modes
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different "only in an athiﬁuthal phase of I/i , because of
N, =y and n.= fl;_ , it is shown that the angular ﬁomentum M will
be dissipated: | v
M= Moo *T% | (33)
where MO is an initial angular momentum and ¢, = oy = & . (Note
ithat it 1is not proved the angular momentum of two degenerated
azimuthal éosine and sine components . vanishes if we consider two
modes of (ml,nl), (mz,nz)'each of which has cosine and siné
components, but here we assume :fhat this breaking of the
degeneracy is less dominant and consider only two modes expressed
azimu£haliy by cosine.)
Linear stability of the fixed points are determined by

considering the roots of the equation requiring the determinant

of‘the linearrequatiohs of small perturbations (Pcfic,pl,%n) QAI

to vanish. Stability diagram Calculated with parameters we chose
is shown in figure 1. We devide the phase diagram into six
‘regions labelled as I, II, ..., VI by numbers of fixed points. In

any region the fixed point (3.1la) exists and 1its stability
boundary is shown by a solid line, which is equivalent to the

transition curves of damped)Mathieu equation.

In the region (I), there are one stable fixed point (3.le)
and one unstable fixed point (3.1d) except (3.1a). Although the
state at rest is stable, if the (4,3) mode is excited in other

parameter region and then the parameter is changed into this
region, the {(4,3) mode will continue to be excited.

In the region (II), a staBle fixed point (3.le) exists and
(3.1a) is unstable with the instability direction (4.3) mode. So

if we begin to oscillate the basin filled with still water, the
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Figure 1.
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(4,3) mode will be excited.

There exist one unstable fixed point (3,1c) and one stable
fixed point (3.1le) in the region (III). ‘The (4,3) mode will be
excited as well as the region (II).

In tﬁe region (IV), there exist three fixed points except
(3.1a). Oné is an unstable (4,3, mode (3.1d), another is a stable
(4,3) mode (3.1le), and the other is the (7,2) mode (3.1c). And
the stability of the (7,2) mode changes when the parameters cross
the line 11. The (7,2) mode is stable under ll>and unstable over
it. This suggests that there exist bifurcations and chaotic
motions just over the line 1,. If the barameter crosses the line

1

1 the direction of the instability of (3.1d) changes from (4,3)

2’
into (4,3) and (7,2).

All fixed points exist in the region (V). Stable fixed

points are (3.1a), (3.1¢c), (3.1e) and unstable fixed points are
(3.1b) and (3.1d). 1In the region (VI), the only fixed point is
(3.1a) and it is stable. No standing wave will not be excited.

Note that the change of the stability of nontrivial fixed points

occurs only in the region (V), in which C&G found chaotic
motions.
Figures 2a,b show schematic bifurcation diagrams obtained

by stability analysis of fixed points (3.la-e) for u§(00;<u&, and
Wed< W < W, 4 where wy is the value of «w at the point of the
intersectiQn of two stability lines. Solid and dashed lines show
stable and unstable fixed points respectively. The arrows
indicate the direction of instability. In fig. 2a2, B is a

subcritical bifurcation point and C is a supercritical pitchfork

11
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one. There is no Hopf bifurcation in this region. But in fig.4b,
E is a pitchfork one, H is a subcritical one and F is another new
bifurcation point. It suggests the possibility that there exists

a periodic solution near F arising from a Hopf bifurcation.

4. Numerical results

We calculate the dynamical systems (2.32a-d) by wusing a

- Runge-Kutta and Runge-Kutta-Gill routine of the fourth order. It

is confirmed that solutions don’t change qualitatively even if

t is changed.

Figure 3 shows a bifurcation diagram obtained numerically
by plotting the value of M at the points P. = 0 with w =
-4 -4

50.1 (rad/sec). The initial condition is taken as (10 , 0, 10 ,
0). When go/g reaches 0.03897, the fixed point (3.1c) turns
unstable (see fig.1) and a new fixed point with all nonzero
components appears. 'At gO/g =0.0403, it also changes unstable, a
Hopf ©bifurcation wocours, =2nd  the periodic mode competition .
between (7,2) and (4,3)’modes begins. At g./g =0.04147, a period-
doubling bifurcation (gluing bifurcation) occurs and at go/g =
0.04261, the motion changes chaotic. In the chaotic region
go/g = 0.04261 and 0.0441, there exist periodic windows. In
several periodic windows inverse period - doubling bifurcations
occur. The stable (4,3) mode occurs at go/g = 0.0441.

Projection of typical attractors of solutions with w = 50.1

are shown in figures 4a-d. The systems (2.32a-d) are invariant
under the symmetry transforms (Pl, Pz) —> (Pl’ —Pz), (-Pl, PZL
. d - - = 1 7 7
and ( Pl’ Pz)‘where Pn (pn, qn). Thus, if the systems have
. ) 0 0 0 0 ’ ..
solutions (Pl’ P2) (t,P1 ,P2 ) where P1 , P2 are the initial

12
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condition, they also have solutions (Pl’ Pz) (t,Plo,—PZO),
0,0, 0 0 . _

(Pl’ P2) (t,—P1 ,P2 ), and (Pl’ Pz) (t,—Pl ,—Pz ). In fig. 4 a

periodic attractor is projected in (pl, pz) planes respectively.

A period-doubling bifurcation occurred by merging two periodic

attractor (Pl’ P2) (t,PiO,PZO) and (Pl’ Pz) (t,Plo,—PZO) into one
periodic one with double period is shown in figure 4b.

Figure 4c shows an attractor of a périodic solution 1in a
periodic window of the chaotic region with a period four times
longer than in fig. 4a. The symmetry with respect to (pz, qz)
plane is broken. A chaotic attractor is shown in figure 4d. All
four attractors are merged into one in this parameter region. The
power spectra of pz.are calculated in figures 5a-d. We see
increase of components of low frequencies as go is changed, and
an almost continuous spectrum when go is in the chaotic region.

To measure the orbital instability of chaotic solutions, we
calculated all LCES'By integrating the linear nonautonomous ODEs
of the first variation with reorthonormalization after each time
step to avoid numerical divergence. LECs are ordered as A\, >
AL> N3 > X4 . Note that the sum of all LCEs is the divergence of
the flow (2.32).

Figure 6 shows temporal convergence of all LCEs with wW =
50.1 and go/g = 0.0438 (periodic solution), 0.044Q (chaotic
solution) and 0.0441 (fixed point). For a periodic solution, the
maximal LCE )\, is zero and the others are all negative. For a
chaotic solution, A is positive with Ay /iag] « | , the
second N3 is zero, and the others are negative. For a fixed
point, all LCEs are negétive. The variations of LCEs when g,. is

=0

14
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in the chaotic region are: shown in figure 7. Periodic windows in
the chaotic region correspond well to those in the bifurcation

diagram.

Lyapunov dimension defined by Kaplan and Yorke is expressed

by ) L v
g = k+ I M/(ac] (4.1)
=1 k
where k is the largest value for which 2, A{ 2 O . From fig. 9

=1

dL ~ 2.1 in the chaotic region.
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