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Yang-Mills connections and the index bundles

MigKY XYA /f‘-}?ﬁgz—)ﬁvﬂ\ (Mitsuhiro Itoh)

1. Let P bea C G-principal bundle over a compact
connected oriented Riemannian 4-manifold M ( G 1is compact and
semisimple ). The moduli space of Yang-Mills connections on P
which are anti-self-dual ( or self-dual ) carries a finite
dimensional space structure. As is known, it proposes an
effective machinery in studying the low dimensional topology
and complex manifold theory ( [ 4 1 [ 51 ).

We shall investigate in this paper certainly defined
finite dimensional vector bundles, namely index bundles, over
the moduli space and then develop geometry of them from .
a viewpoint of metric connection and curvature.

The motivation of this paper is to make a sufficient study
of the following conjecture: if the base manifold M is
a complex Kahler surface with an ample line bundle, then
the moduli space admits reasonably a holomorphic line bundle
of positive Chern class.

A Yang-Mills connection is to be defined.by a connection
which is stationary fo the variation with respect to the Yang-Mills
functional. However any connection is in an original meaning

a first order differential operator ---- covariant differentiation.



Indeed, every connection. A on P gives a covariant

E
A

We suppose that there exist another real(or complex)vector bundle

derivative V on any vector bundle E associated to P.
V— M and also an elliptic operator §) ; I‘l(V) — I‘2(V)
associating with V. V is for example a holomorphic vector
bundle and @ is the operator associated to the twisted
Dolbeault complex. Then on the tensor product V ®E

a family of elliptic operators @A ; I‘]'(V®]E)  — I‘2(V8]E)

is defined by coupling. {13:} to A.

Obviously,  subspaces = Ker @ , Coker@A are of finite
dimension and from the Atiyah-Singer index theorem their difference,
the numerical index, is independent of a choice of connection.
If we move a connection in the space @ of connections on P,

we get a family of formal differences ‘{Ind@A}, Ind @A =

Ker @A - Coker@A. ‘As the group @ of gauge transformations
of P acts equivariantly on @ , Ind @ = '{Ind@ ; A éAw }

can be regarded as an element of K@) , @ = @/@ Thus
we can argue such virtual ( or probably proper ) vector bundles
over @ and also over the moduli space of anti-self-dual
connections @, the subspace of @

So we pose a question: how extent we are able to get
knowledge of the index bundle Ind.@".

The following is indeed known with respect to this question.
The index formula on a family Ind 4 =" { Ind 2§A } associated
to Dirac operators coupled to éonnections gives the Chern :
character formula in an integral form as  ch(Ind 3) = jMQ(M)ch@}),

where Q(M) is the characteristic form of the spinor bundles
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so that fM 201) is the ﬁ—genus. and @ is the vector bundle

associated to the Poincaré bundle P —> M x@ ([21). Therefore

the. Chern. forms are computable in principle. On the othe hand

. . _ a b
the determinant line bundle det Ind@ = ( A"Ker @) & (A" Coker @A)
a = dim Ker @A’ b = dim Ker Coker(D, , defines a proper line
bundle ([ 31, [12]). Bismut and Freed apply superconnection
formalism and also a heat equation method - to:-get a Her-

_ mitian connection and the curvature of det Ind@@ ([31], see also
(61, [12]1). Their method is rather analytical. However, the
method which we adopt here is fully simple and accessible in,é geo-
metrical sense. Namely, we stay the standpoint that the scheme
"of projection (;}——><§} presents a principai bundle structure
with infinite dimensional group (§> and it inherits a natural
connection. Regarding Ind@} over @D as a subbundle of
certain Hilbert space vector bundle associated to {5?——9(§3 we
restrict the connection to Ind(@} to define noﬁ only a connection,
but second fundamental form. So the vector bundle version of

Gauss equation on curvature is available.

Although the conjectare is half solved as we shall - see,
the main results which we obtain by the Gauss equation are the
following. |

The index bundle over the moduli space has the curvature of
type (1,1) provided that \' is a complex vector bundle over
a Kdhler surface M. with an Einstein Hermitian connection
(Theorem 5.3). Hence the complexified index bundle inherits
a holomorphic structure. Further the Ricci form ¢ can be
expressed in terms of the second fundamental form and the ambient

Space curvature term ® (Theorem 6.1) so that the difference

-1
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—

® has an estimation even if ¢

This note will appear glsewhere.

is not estimated by itself.
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2. Principal bundle with group @

‘We denote by @ the space of all irreducible connections

on P. The action of @ on @, (g, A) — g(A) =
g’ldg + g-l.A.g , defines the space of orbits of irreducible
connections on P, @ -——->C]§,) which actually admits a principal
bundle structure. Since the stabilizer of each connection is

the center ZG of G, we should take the quotient group @/Z
instead of @ in order that the action is free.
At each A €(A) the tangent space T@ splitss into

the sum of vertical and horizontal subspaces;
\ = A
T, @ @ @ ).

This splitting is @-—equivariant. The vertical space is isomor-
phic to Qo(ad‘ P), the space of adjoint bundle ;ralued O-forms,
which is the Lie algebra of @ So we have the distribution of
horizontal spaces defining a connection on the bundle. Its connection

form w : T@ — Qo(ad P) -has the following expression.

PROPOSITION 2.1. (i) The principal bundle (A — @;} with group

@ admits a natural connection whose connection form w is

5 1
w(a) = G(D* ), aeThley Q(adP), (2.1)
. -1
%
Wbere G, is (DA DA) .
(ii) The curvature form Q¥ = do + 1/2[w Awl, the
QQ(ad P)-valued 2-form on A, is represented by

(X,Y) = -2 G,UX, YD, (2.2)
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[A]

X, Y € T B ( [A] €®), where we restrict it
to the origin of a slice S in Q@ at A

REMARKS. (i)  The bilinear operation {.,.} @ (ad P)xal(ad P)

—_— Qo(ad P) is defined by

{x, v} Ii, nhtJ [%;,¥;1, X =] X, dx*,

71,

Y= Yidxi ( (hij) , here h is the Riemannian

(hij
structure ) N
(ii) For each A in @ a slice S 1is defined to be
transversal to gauge orbit‘s and hence gives a neighborhood centered
at [A] in @ Therefore each tangent vector to the Hilbert
manifold @ is identified with vector tangential to S  at

a corresponding connection([77],§82 ).

Proof. (i) Because of the covariance of the gauge action,
* = * = *

foyr any g e@ (Rg w)A(a) Wo (A) (Rg a) g(GADA a)

so that w is the connection form, since m(DAlp) = Y

for each vertical vector DAtp.

(ii) Extending X and Y to fields /f and Y over S,
we havé QY (X,Y) = Xw(?) - Yw(%) , because X, Y € Ker‘ DA"‘.
Since‘ Xw(’\}’) is the derivéti§e at t=0. of w("i',) along the
‘line A = A+ X, it reduces to — GA({X,Y}).

With respect to Proposition 2.1 we should mention about the
universal connection on the Poincaré bundle. In [2] Atiyah

and Singer defined the Poincaré bundle P with a connection A.
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Actually, the action of gauge group @ on the product . P x@

yields a bundle over M ><, P= (P x@)/G —> M x@ =

G\P with structure group G by taking further a quotient of

the G-action on P X@. : By making use‘ of the natural connecfion

w on @ —ﬁ@, " we can reformulate the connection A on

P as A equals A when restricted to M x [A] and
also equals evx(w) to {x}x (B), here ev is the
evaluation map at x: ﬂo(ad P) ——>(ad P_)__x and further (ad P)X

is identified with the algebra (g.

So, we obtain readily with respect to the product structure
of x(® the curvature F of A; F = ]F2’0 + ]Fl’]’ +
]FO’Z, where IE‘Z’O F@A), the curvature of A on P,
' ]FO’2 = evx(SZw) = — 2 evx(GA{.,.}) and ]Fl’l is represented
by FUl(Ya) = - a®  for (Y, a) € Tg a (Mx®),
(Y e TxM’ o€ Ker DA* )
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3: The index bqndle.

Let V be a vector bundle over M with a fibre
metric. We suppose that V enjoys an elliptic operator @iz

rtevy—s  12(v).

For convenience’ sake we assume that GD is the Atiyah-Hitchin-

Singer operator;

@= v+, ™ . ol — BdHw,

{ V¥ 1is the adjoint of a metric connection Vv on V  and Qi
is the space of self-dual 2-forms ). We can of course consider
the case of Dirac operator on the spinor bundles.

Let E be a vector space on which G acts through p
and E the associated vector bundle P XDE. Then tensoring
V with E we get a new vector bundle V QE, It is equipped
with a family of connections Vs the connection V coupled to
connections VAF on E as A moves on P.
The representation p of @ on sections of V &E induces

the action on coupled connections;
= -1 o o
Vg(A) p(g )‘VA p(g), g 6@-
Consider the first order elliptic operators
+ 1 0 2
= * :
@ = (7% 4d,7): 2 (VOE) — (2® ) (VROE)

parametrized by connections on P. Here dA+ is %(dA +.*dA),
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Since ®A is @-equivariant, the index bundle Ind@
= { Ind@A 1, Ind ®A = Ker@ - Coker@ makes a suitable sense
as an element of K@)) .

From now on we assume Coker @A = 0 for each connection A.
If M. is a complex Kihler surface, for example,and V - is
a Hermitian-Einstein vector bundle with positive Riceci field,
then from the Weitzenbbck formula Coker @\A must vanish

for each anti-self-dual connection A,

The index bundle is then from that assumption a finite dimensional
subbundle of an infinite dimensional Hilbert space vector bundle
@= A X3 Ql(V ®]E.) So the Hilbert space bundle is decomposed
into @ = IndD @® Ind(® -L, Ind@-'_ is the orthogonal
complement and is spanned by the eigenspaces of positive eigenvalues
with respect to the operator @"@

Letting V be the connection on@ induced from the bundle

@ —-—>@ , we have

V'X“ £ = VX £ + oy z, (3.1
where 3 is a section of Ihd® and X & T[A]®'
PROPOSITION 3.1( Gauss equation ). Denote by © and @
the curvature of V and V, respectively and by <, >
the Lz-inner product on Ql(V RFE). Then

<Q(X)Y)E) Tl> = <Q(X.Y)E,ﬂ> + <0x£!0Yn> (3.2)
- <GY€90XH>
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5, n€md®), X Y & T1,(B

We find this proposition for submanifolds in any ordinary

book on differential geometry ( see for example [&8] ).

10
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4. The second fundamental form and the curvature formula.

We restrict the bundle @——-9 @ to the moduli space @
of anti-self-dual connections on P.
Before getting the formula on the second fundamental form o,

we need the following C"(X)-bilinear mapping

o' (ad P) x 2'(v 6 E) — @° @) (v ®E)
(4.1)

(X, ) —> p(X°% = (Lo, ~(p(X)Ap)T)

vwhere we regard p(X)A as an eiement of Ql(End(V QE)).
Then we obtain
PROPOSITION 4.1.
og £ = B, Dy*(p(X)°F), (4.2)

X € T[A]® g e Ker@k. Here (BA

denotes the Green operator of the operator @A.}@A

Proof.  Let At be a curve of anti-self-dual connections with
initial velocity vector X, AO = A. We extend E & Ker@A
tg E. € Ker ﬁAt _along‘ Af':. - Since dim Ker@At 1s
independent of t, E, is written as Ee zil=<1 gl(t)Bi(t)
with respect to an orthonormal basis { Bi(t), 1gick } of
Ker ®A each of which depends smoothly on t.

c .

11
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By its definition

oy £ = @yE) = (dlg Bt pENDT =
( d/dt gtlt=0).’.’ since X €& Ker @A."? .and hence w(X) vanishes.
So, it reduces to ) Ei(O)(éi(O))$ = ¥ gi(O) GA(§A*6@A)(éi(O))

by observing that GAA* @) gives just the orthogonal projection

to the orthogonal complement. ( ’ means the differentiation with
respect to t ). On the other hand we differentiate (@'@;)A Bi(t)
t

= 0 and set t=20 to get

©F @, (85 (0)) + (@ g o@ Oy )50 =0, (4.3)
t
1l ¢1i¢k. As B "’= Bi(O) & Ker @A is in the ambient
space Ql(V QE), the second term in RHS ¢f (4.3) 1is reduced

to  @*(-p(XL8, (p(X)AB)T)  from which (4.2) follows.

Since we have from Prop.3.2 QX, g = -2 p((DA*DA)—l{X,Y})g,

we derive the curvature formula from the Gauss equation.

PROPOSITION 4.2. Let V  the connection on Ind D naturally
defined. Then its curvature is represented as
QEE, > = =2 < p((D,*D X, IDE, n>
” (4.4)

- <G *p(X)°E, EO),*o(M)on> + <G D) *o (M), &D)*p(X) °n>

12
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REMARK. We should mention on the canonical Riemannian structure
on the moduli space (@ defined in [7]. The Riemannian
structure was defined by the crucial aid of the Kuranishi map,
a map linearizing the moduli space and also the Hodge theory relating
the deformation complex. Also;there are diffrent definitions of it and
different ways to define. Indeed S. Kobayashi applied in [9 ]

the method of submersion due to O’Neill to discuss it. Although

the curvature formula was obtained in [7/] by tedious calculation,

we can apply in a direct way thus described curvature formula of

the index bundle to the trivial situation that V 1is the trivial

bundle M x R and @: ( ax, .'d+ ) Q]. N QO ® Q-ZP and
E is ad P with the adjoint representation as p. Indeed,
since  p(XNLY = (XY}, (DT = @Y, we get

immediately the formula ( Theorem 5.1 in [7]).

13
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5. Holomorphic structure on the index bundle.

We assume that the base 4-manifold M is complex Kdhler.
Then the moduli space of anti-self-dual connections over M
carries in a natural sense a complex manifold structure and
a Kihler structure([71). In fact, the almost complex structure
at each tangent space of (@D defining the complex structure is
given by the bundle endomorphism I : Ql(ad P) — Ql(ad P)
which is induced from the base space almost complex structure

I: Ql-‘—> Ql.

The first observation is the following

W

PROPOSITION 5.1. The curvature form Q of the natural connection

w on the bundle @ —ﬁ>@§ restricting to (ﬁ) is of type (1;1).‘
Hence any finite dimensional complex vector bundle associated to it

is endowed with a holomorphic structure compatible with the connection.

REMARK . Choose a point x in M and consider the IE-framed

moduli space @§3; i.e.,the G-quotient of the set {( A,¢); A 1is
X which is

anti-self-dual and ¢ € E, }, a vector bundle over @g) with fibre

E. Since éﬁx associates to the bundle @D —> (E} and

the curvature of the induced connection is seen to be p(evx(Qw)),

thecomplexified framed moduli space becomes from the proposition

a holomorphic vector bundle.

| " _ _
Proof. At [A] e, “x,Y) = -2 G, {X,Y}, X, Y € T[A@

which is identified with the first cohomology Hl( ad P; A).

14
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1t suffices::to show that {Z,W} = 0 for any pair of complex vectors
z, W of type (1,0) or of type (1,0).  Since each vector of
type (1,0) ( or of type (0,1) ) is a + /-1 eigenvector of I,
respectively.-and also {X,IY} 1is given by the inner product of
[XAY]+ ‘with the Kahler form and hence is symmetric with respect to
real X, Y, {Z, W} obﬁibusly vanishes. Since the curvature

condition on type is just the integrability of holomorphic structure

(L1 z. the proposition holds.

PROPOSITION 5.2. Let P —> M x(M)  be the Poincaré bundle
related with the bundle P over M. Then the

connection A has curvature whose type is (1,1) and hence any

complex vector bundle associated to P admits a holomorphic

structure compatible with the induced connection.

This follows proposition 5.1 by observing the expression of
the curvature F.

The Poincaré bundle with the connection corrsponds to the algebro-
geometrical notion of universal bundle which might impose interesting

problems on us([10],[411).

The following asserts the integrable condition on holomorphic

structure of the index bundle.

THEOREM 5.3. Assume that the vector bundle V carries an Einstein—
Hermitian connection V with positive Ricei form.  Then, (i)

the complexified index bundle Ind® e decomposes into subbundles
md@® 10 ang Imd® %! wien respect to the almost complex

Structure I defined on (), (ii) the curvature form @

15



34

restricting to Ind @ 1,0 ( or Ind@ 0.1 ) is a (1,1)-form
and hence (iii) Ind@ 1,0 ( or Ind@ 0,1 ) is equipped with

a holomorphic structure which is consistent with the connection V-

REMARKS. (i)Since the Einstein-Hermitian connection has curvature of
type (1,1), the operator @ : Ql(V) — Qo® Qi) Q')

naturally associates to the twisted Dolbeault complex

1] V"
' d
- QO 1 V)

o0 ) > QO’Z(V) - and consequently by

coupling anti-self-dual connections on P so‘does the coupled
operator (D,  to
vy d,"

LeE) —— Olyer) — 220 o).
Therefore the subbundle Ind@o’l is regarded as the bundle
over @ with fibre Hl(V ®E, dA"), the first cohomology
of the above coupled Dolbeault complex.

) (ii) Quillen examines a new metric and its curvature od the
determinant line bundle of the index bundle over a Riemann surface
associated with operators @A = VA” : QO(E) —_— Qo’l(lE)
([31,061,012]). The metric defined by the Ray-Singer analytic

torsion is of interest. However, he argues it only over @

Proof. From Proposition 4.2 and Prdposition 5:1. it-suffices to
| prove that
<0,(E=/711g) o (nt/-1In)> = 0  for 2, W € T

and g, n & Ind@.

16
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We assert first the formulas:

op £ = BV, (LY + T €7, (pINLE) - 8,d, " ([p(x)1£1?)

(5.1)

oxIE = = §,7, (p(INLE) + T §,7, (p(XILE)- €,d, " ([p (1) 1E1%)

(5.2)

o1xE = GuUAG(INLE) = T €7, ((OLE) — &4, ((o()aE1%)

(5.3)
where we set [p(X)AE]2 = [p(X)A&]z’0 + [p(x)Ag]O’z.

Indeed [poAE]T =  [pne1? + o)zl with
p0AE1° = HGELID® w,. S0 8d, " (exaa? =

*
5 d, € (((OLIO w)  reduces to I 7, (p(XILIE) (  w, is

the Kahler from ). By the aid of the formula p(IX)LIg =

p(X)Lg which is caused by the naturality of I, we obtain (5.1).
(5.2) and (5.3) also follow from the formula [p(,X)AIg]2 =

[p(IX) AE]Z.

-By making use of these formulas, we have

< oxlg, oyIn > = < opygE opyn > (5.4)
and hence

< 0y, ogn > + < oZIg, oWIn > = 0 (5.5)
for z = X -/°1IX, W=Y -/-1IY € a1

17
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Therefore
< oz(g+/:115), ow(n—/:iln) >

- /-1 { < 0,&, oyIn >

W

18

'<OZI£: an>}

< ozg, oyn > + < oZIg, owIn >

i
o
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6. The Ricci form.

To get an expression of the Ricci form on the index bﬁndle,
we recall the defi\nition of the Ricci form of a holomorphic bundle.
Let F be a holomorphic vector bundle with a Hermitian fibre
metric over a complex manifold M. Then the Ricci form &
of F which is a (1,1)-form over M is defined by
trace of the endomorphism Q(X,Y)X : FX —_ Fx’ x &M,
where Q is the curvature form of the fibre metric.

The 2-form 1/2“‘/3_ ) represents the first Chern class of F.

We consider now the index bundle Ind@ over the moduli
space @ of anti-self-dual connections. . We already observed
that Ind()l”o carries a holomorphic structure with

a Hermitian fibre metric. Thus, if we let ‘{F,i} be an

1gigk
orthonormal basis of Ind (D), then the Ricci form & of

md(®) 1  is by the definition written as  o(X,Y) =

Kk - _ ~ o |
zi=l< Q(X,Y)q)i’ ¢i >, ¢i - ( Ei -/_llgi)//Z’ X, Y G T[A]@'

We denote by 0 the 2-form on B and hence on @ defined by
Eilif ﬁ(X,Y)¢i, $i>. The 2-form & is just the trace of

the curvature endomorphism Q(X,Y) restricted to Ind @
) B _ _ _ _ k g
THEOREM 6.1. 3(Z2,2) - o(z,Z) = &4 2i=1{u €V, (p(OLIE,) +

18,7, (o OLE) 17— fo,dy” (o ng1H 1% 3. (6.1

19
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Proof. By the Gauss equation we have < X, V)g, £ > =

< QX,IE, £ >. On the other hand the pair (X,Y) generates
a gauge transformétion 8¢ which preserves the Lz-inpér
product < , > on Ql(V QE) so that < Q(X,Y)g, € > =

% d/dt|t=0 </p(gt)§, p(gt)g > vanishes. Hence
<X, YE, E> = 0, ¥e Ind@A (6.2)
Therefore from this
<X, V)¢, =%/ <a(X,1)E;, T8> — <X, YV)IE;,E;> )
= -1/, {<aX, Ve, Ig> - <A, YIE 8> 2 <o IE;,0yE;>
+ 2 <cYIgi,ngi> }.

Here we used the fact that G(X, V)1t = I(A(X,Y)¢).

Thus the Ricci form is represented as

$(X,Y) = /-1 [ <BVIE;LTE > - V-1] (o <ogleg,opEs> -
Therefore we see for Z =X — /-1 IX €& Tb’&? M that
(2,Z) = 2/-1 #(X,IX) 1is given by
0(Z,Z) = — 2-§i <Q(X,IX)E;,1g;> +2 zi{<0XI£i’°IXEi>

- <UIXIgi9 oxgi> } (6-4>

20
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By making use of formulas (5.1), (5.2), (5.3), we can reduce

the terms <0XI£i,oIXgi>'— <GIXIgi’0Xgi>‘ to
-2 { <GAVA(§(X)LIgi), GAVA(p(x)LIgi)>
+ <8V, (p(X)LE;), &7, (p(XILE;)>

2 <8V, (p(OLIE;) , I(E,T, (p(OLED> H 218,d, " (ena1dI
= -2 18,9,((LIE) + 1(6,7, (p(Le ) 1+ 205, (Lo g1 A2,

Thus, (6.1) is shown.

21
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