goooboooogn
0 6630 19880 3-22

Formula- Database in Computer Algebra System GAL

b

Mlkaw o xR, SIRAR
T. Sasaki™’, Y. Masunaga®’, Y. Saigusa

AEpIR 8 FILP ter} BEY
T‘SA% Absz'), “F. B;I‘otoyoshi‘?), M. Sasakil)

2)

1) The Institute of Physical and Chemical Research
Wako-shi, Saitama 351-01, Japan -

2) University of Library and Information Science
Tsukuba-shi, Ibaraki 305, Japan

3) Electro-Technical Laboratory, MITI
Tsukuba-shi, Ibaraki 305, Japan -

Abstract
With the purpose of wutilizing a database by an algebra system automatically, we
designed a database system of mathematical formulas and implemented it on Japanese
algebra system GAL., How to index the formula is crucially important for the automatic
utirlization of database, and we have devised three types of indices. It is shown by
examples that we can make a detailed retrieval with reasonably low noise By combined
use of these indices as well as GAL's pattern matcher. Furthermore, a user retrieve

statement is defined which simulates the human retrieval of formula books.

§1. Introduction

Although heuristic method was widely used in the early ages of compl;lter algebra,
algorithmic method is dominantly used in the current algebraic computation. | The
progress of algorithm study> is quite rapid, and we have now many powerful algorithms,
in particular, for polynomial operations such as GCD, factorization, ideal membership,
etc. However, there are still many mathematical operations for which we have only
very ineffective algorithms or have no systematic algorithm yet., For example, current
integration algorithms are almost powerless for many special functions (some special
functions can be integrated algorithmically).

Even for such algorithmically ‘hard operations, humans are performing calculations
without any special difficulty, and the key is the utilization of formula books. This

method of computation, i.e., formula-based computation is indispensable in the actual

computation, and it is realized in the existing algebra systems as capability of[:j
user—definition of rewriting rules (for example, LET statement in REDUCEI) and RULE |

command in MACSYMAZ)).

However, the realization is very much restricted compared with
human utilization of formula books, In order to wutilize mathematical formulas by'j

algebra systems in such a way that human utilizes, construction of formula database is

absolutely necessary. Furthermore, the database must be such that not only human but

also the algebra system can retrieve formulas, Among the current algebra systems, [

only SMP3) is equipped with a formula database, but it is quite unsatisfactory from :

the viewpoint of automatic retrieval by the algebra system,
Equipping with a formula database as a basic facility of an algebra system willél

surely lead to a new development of computer algebra, We think the formula—based;i

computation is quite fruitful for the following operations,

(a) Calbulating integrals for which algorithmic methods are powerless,

(b) Solving differential equations by pattern matching,

(c) Manipulation of various finite/infinite power series,

(d) Automatic simplification of wide classes of expressions,

Of course, many more researches are necessary for realizing these operations on
computers, but the construction of formula database is obviously the first step of
such researches, This paper describes a formula database which has been constructed

as a basic unit of Japanese algebra system GAL“.

§9. Basic considerations

In this section, we consider how the mathematical formulas are used in various
calculations and investigate the necessary condition}s for formula database which is
retrieved automatically by algebra systems.

First of all, we note some features of mathematical formulas,

1) The number of formulas is not many compared with the data in large-scale database,

92) Renewal of data is seldom necessary (renewal is necessary only when the input data
contain errors or new formulas are added).

3) Most formulas are given no names, and retrieving formulas by only their names or
main function names is almost uséless,

The features 1) and 2) mean that we need not worry about many typical problems for

large—scale database, such as fast access to data in disk or renewal of data without

causing mutual inconsistency. On the other hand, 3) means that we must devise a use-

ful and effective indexing method for formulas,

We usually retrieve. formulas from formula books by noticing not only names of
operations and functions but also the structure of expressions, and there are many
conventions in expressing mathematical formulas, Therefore, the ready-made database
systems which are based on indexing by keywords will not be useful for our purpose,
We think the indexing method is crucially important in constructing formula database.
As we see below, the indexing is closely related with hgw to vformulate‘ the expression
transformation,

Most formulas in formula books can be classified into the following two Kkinds.

(1) Formulas of the first kind are to perform definite operations such as integration,

summation, etc, An example of formula is _rexp(—xz)dx = erf(x).

(2) Formulas of the second kind are used to the expression transformation (in a narrow

sense). An example of formula is sinz(x) + cosz(x) = 1.
Although there may be various formulas, most formulas used by algebra systems will be
classified into either of the above two. Therefore, in designing a formula database
for algebra system, we confined ourselves to handle the above two kinds of formulas.

The first kind formula has the following form

(F1) Op(F,...) = [right],

where "Op" is an operation name such as "Integ” or "Sum”" (operator for integration and
summation, respectively) and "F" is the main argument. In the GAL, "Integ"” or "Sum”

etc. are classified into "pseudo-functions” and clearly distinguished from ordinary

” ”n

functions such as "exp"” or "sin". Usage of the first kind formula (F1) is very
simple: only to perform the operation "Op" for the expression “F". In the retrieval
of the first kind formula, we usually notice the pattern of "F" as well as the name
"Op" but do not mind the [right]. Therefore, we impose the requirement (I): the

formula database should be such that the first kind formula (F1) is retrieved by the

name "Op"” and the pattern of "F".

The retrieval and usage of the second kind formula is not simple because of the
following two reasons. The first reason is that the mathematical expression can be
transformed in quite various ways and we must select formulas to attain a desired
transformation; the second reason is that, although the adequateness of formula selec-
tion is judged by the form of transformed expression, we can specify the form only
vaguely before the transformation. Consider, for example, the formula

(F2) sin(a+B) = sin(a)cos(f) + sin(B)cos(a).
Some users want to utilize (F2) as the rewriting rule

(F3) sin(a+f) — sin(a)cos(B) + sin(B)cos(a),
and the other users will utilize it as the rewriting rule

(F4) sin(a)cos(B) + sin(B)cos{a) — sin(a+pB),

while formula (F2) in its form is scarcely used. We must select one of (F3) and (F4)
to attain the desired transformation. Therefore, we impose the requirement (II): the

formula database should be such that the second kind formula "[exprl] = [expr2]” can

pe retrieved as rewriting rule "lexprl] — {expr2]"” in some cases and rewriting rule

n[expr2] — [exprl]” in other cases.

' ‘That the transformed expression can be specified only vaguely is crucial in
devising the indexing method for formulas. One may regard the expression transforma-
tion as a procedure of finding a "transformation path” between a given expression and
a space of expressions specified vaguely, VThen, we ‘must construct a rough structure
of transformed expression, vwhich seem to be not easy. On the other hand, when
transforming expressions, we seldom image the transformed expressions definitely but
notice only the direction of transformation. The direction of -transformation by the
rule "[left] — [right]” can be specified clearly by the relative difference between
[left] and [right]. With this model of expression transformation, it seems to be easy
to select desired formulas automatically. Therefore, we impose the requirement (III):

the formula database should be such that the second kind formula can be retrieved by

" specifying the relative difference between [left] and [right].

Although the mathematical formulas are not so many compared with £he data in
large-scale database, the number is considerably large, For example, formulas .of
Fourier transforms or elliptic functions are collected to thick books, Hence, it is
desirable that the formulas for the same operation, such as integration or Fourier
transformation, are grouped and saved into the database‘separately from other
formulas, By this, we can make a fast access to data by loading only the necessary
data on the main memory. Some kinds of special functions are frequently used in some
application areas. Hence, it is desirable that such special functions are grouped and
added to the database independently from other formulas., By this, we can construct a
special-purpose database peculiar to an application calculation. Therefore, we impose

the requirement (IV): the formula database should be divided into sub-databases each

of which is independent from others,

In the actual application of a formula to a given expression, the expression
sin(x), for example, in the formula must match with sin(a), sin[cos(x)], etc. in the
given expression, Processing of this complication is a job of pattern matcher of the
algebra system, and it is irrelevant to the database system.

It is quite common in actual retrieval that the user gets many more formulas than
he wants, The formulas which are undesirably retrieved are called "noise”. We define

the noise-ratio of each retrieval as

. . number of formulas retrieved
noise-ratio = -1
number of formulas user wants

Although the noise-ratio depends on the retrieve condition as well as the user, it

will be a rough measure of goodness of indexing method,

§3. Indexing of mathematical formulas

The mathematical formulas in our database are given three types of indices, which
we call indices of types I, II, and IlII. We describe indices of types I and Il in
this section, and index of type III is explained in §5. In determining the indexing
methods for types I and II, the following three points are regarded as important,

(a) The requirements (I), (II), (III) given in §2 are satisfied.

(b) The noise-ratio is made as low as possible,

{c) The retrieve keys can be extracted automatically.

In the following, we regard the mathematical formula "[exprl] = [expr2]" as a
rewriting rule "[left] — [right]", where [left] may be either [exprl] or [expr2] so
that the requirement (II) given in 82 is satisfied,
Definition 1 [keyword]. = The keywords in an expression are operation names (such as
"Integ” or "Sum") and function names (such as "sin" or "exp"”) contained. When the{
expression contains no operation or function but contains transcendental constants§

such as 7 or e, we use the constants as keywords. /7

Definition 2 [vlevelv of keyword]. Let Key be a keyword in a given expression. The
level of Key is 1 if it appears at the top level position of the expression (i.e., not
in the arguments of keywords). Lét Key be a keyword of lével £, then the keywords
appearing at the top level position of the arguments of Key are of level £2+1. //

Indexing of type [

(1) Let the rewriting rule be "[left] — [right]”. Let [left] = Op(F,...) if the rule
is of the first kind, and let [left] = F if the rule is of the second kind. .Let
'(fl,.,_,fm) be the keywords of level 1 in F, (gl....{gn) be the keywords of level 2
in F, and so on,

(2) We define the type I index of the rewriting fule to be

((anf), (gha8), o). A/
Example 1.1. Integ(exp(—xz),x) — erf(x).
The top level keyword "Integ" is an operation name, so we index the formula by the

keywords in the main argumant, exp(-—xz). Hence the index is ((exp)). //

y+xcos@

Example 1.2. Zatan(Sqrt(i—;ly)tanw/Z)) T 8COS\ x¥ycosd

where |y| £ |x| and 0 < 6 < =,
The "atan" is a keyword of level 1, and "sqrt” and "tan" are of level 2. Hence the
index is ((atan) (sqrt tan)). //
The index of type I is very simple, yet it gives more information than a simple set
of keywords, Howevef, it does not satisfy the requirement (III) given in §2. Hence,
we determine the indexing of type II as follows,

Indexing of type II

(1) For a given expression F, let (Kl.....Km) be the keywords of level 1 in F. We
characterize F by the number of terms, the term-degree, and' the degree of each
keyword K.. We abbreviate these quantities to #TERM, #DEG, and deg(K,),
respectively, (The counting rule for these quantities are given below.) 7

(2) Let the rewriting rule be "[left] — [right]". If the rule is of the first kind,

with [left] = Op(F,...), then we define the type Il index to be the characteristic

numbers for F, otherwise we define the index to be the increase-decrease relations
of characteristic numbers for [left] and ([right]. //

Counting rule for #TERM, #DEG, and the keyword degree.

‘expression T1 + e + Tn, where each Ti is a monomial, we count as #TERM = n and

For a monomial v‘ilnvg‘m f;l--f;“, with d > 0 and e > (0, where Vis o Vg are f,
variables and f,, ..., f are functions, we count as #DEG = E‘in=1di + X,_e and

deg(fj) = e Below, the keyword degree is counted similarly as #DEG. For the {

#DEG = max {#DEG(T),) | i=1,....n}. For expressions F*'? and sqrt(F)", we count as #TERM :
= #TERM(F) and #DEG = #DEG(F)X(n/2). For the expression N/D, where D is not a number, ;
we count as #TERM = #TERM(D) and #DEG = - #DEG(D). //
Example 2.1. Intég (exp(—xz),x) — erf(x);

The main argument of [left], exp(—xz), is characterized as

(#TERM=1, #DEG=1, deg(exp)=1).

Heilce, the index is (#TERM=1, #DEG=1, exp=1). //

Example 2.2. sin{a+B) — sin(q)cos(ﬁ) + sin(B)cos(a).

SR e

e magaegagmﬁwé;% s

The [left] and [right] are characterized, respectively, as

(#TERM=1, #DEG=1, deg(sin)=1, deg(cos)=0),

(#TERM=2, #DEG=2, deg(sin)=1, deg(cos)=1).

Therefore, the index is (#TERM=up, #DEG=up, sin=same, cos=up). //

Note 1. The operation name "Op"” of the rule "Op(F,...) — [right]"” does not appear in

the indices, and it is used as the sub-database name (see §5).

Note 2. For some expressions, we cannot count #TERM and/or #DEG definitely. An

example is x + X2 4+ eee + x". In such cases, we give "INDEF" as the key status.

Note 3. Formulas which "are equivalent but represented differently may be indexed

'x“
:
i
|
4
)

1/2

differently in the above. scheme, For example, (x+1) contains no keyword but-"

sqrt(x+1) contains the keyword "sqrt”, Solving this complication of indexing is not

easy. One reasonable solution is to standardize the source data of formulas by a

Preprocessor,

In the retrieval of a formula "Op(F,...) — [right]"”, we can specify F by both
indices of types I and II. Similarly, in the retrieval of the second k‘ind formula,
poth indices of types I and II are combinedly used, Therefore, we expect the
retrieval of low noise-ratio, which is checked in §§. The above indices are enough

simple for computer to extract retrieve keys automatically.

§4. User. retrieve statement

In our formula database, not only the GAL system but also the user can retrieve
formulas by using a retrieve statement. From the user's viewpoint, usefulness of the
data:taase depends not only on the indexing but also on the retrieve statement. We have
defined the statement so as to satisfy the following requirements.

(a) The retrieve statement is as simple as possible,
(b) Detailed retrieval is possible by the statement.
(c) The user can retrieve database as if he retrieves formula books.

Before defining the statement, let us consider how we retrieve formulas from
formula books. The typical retrieve process will be as follows,

Typical process of human retrieval of formula books

Step 1: Regarding the desired formula as a rewriting rule "[left] — [rightj", we image
the structure of [left] (the structure will often be definite for the first kind
formula, while it will often be vague for the second kind formula);

Step 2: Using keywords in [left], ‘we open a relevant section of the book;

Step 3: Scanning formulas in the section, we retrieve formulas the left hand sides of
which match with [left];

Step 4: Among formulas retrieved, we select some of them by checking the relation
between the left and right hand sides of each formula {(this step will be
unnecessary in the retrieval of the first kind formula),

In some cases, we perform the following retrieval,

Retrieval by name: Retrieval by formula names, names of persons (such as Gauss or

11

12

Newton), or by names of operation or subjects., //

We have determined the retrieve statement so that it may simulate the above process
naturally as follows:

FIND <pattern expression>
WITH <pattern&retrieve condition>
ABOUT <list of names>;
(Note 1) <pattern expression> may be "@" (see below),
(Note 2) WITH- and/or ABOUT-clause may be null,
(Note 3) "WITH" may be written as "WHERE".
Let us explain this statement in deiail,

The <pattern expression> is the same as ordinary expression except that it may
contain pattern variables; the‘ péttern variable is a variable which matches with any
expression, and it is a symbol beginning with character "@" in GAL. When the <pattern
expression> is not specified, the FIND statement is written as "FIND @ WITH ---",
The usage of pattern expression is simple and any user handling mathematical
expressions frequently will be able to use the pattern expression easily. - For
example,

(P1) (sin(@X)**@N + cos (@X)**x@N) *@Y
is a pattern expression which matches with any of the following expressions:
(ED) ex[sins(x)r + cos3(x)] <+« « @X=x, @N=3, @Y=e"

(E2) sin(x+y) + cos(x+y) - « - « @X=x+y, @N=1, @Y=

sin(z)+cos(z) ' 1
(EB) ———————— 6 6 ® & & e e @X:Z, @N:l, @Y:
sin(z)—cos(z) sin(z)—cos(z)

It is needless to say that the pattern expression is suitable foi' represgnting rough
structures of expressions,

The <pattern&retrieve condition> is a combination of <pattern condition> and
<retrieve condition>, and it is separated to each condition by the GAL parser. The

pattern expression in GAL may be conditioned by WITH-clause as constraints on pattern

10

variables or pattern sub-—expressions, For example, if the above pattern (P1) is
conditioned as "WITH DENOM(@Y) = 1" ("DENOM" is a selector of denominafor), then the
pattern matches with (E1) and (E2) but not (E3). Next, the <retrieve condition>
specifies the formula index of type Il in a simple way. For example, when performing
the retrieval of the first kind formula, the <retrieve condition> will be like

WITH #DEG = 3 AND 2 <= #TERM <= 4 AND sin = 2.
For specifying <retrieve condition> for the second kind formula, we use words "up”,
"down", "same", and "none" as follows., Let Key denote a keyword, #TERM, or #DEG, and
let d = | Key-value for [right]| - | Key-value for [left]| . We write up(Key....),
down(Key,...), same(Key,...), and none(Key,...) for representing the cases d>0, d<0,
d=0, and non-existence of Key in [right], respectively. For example,

WITH down(sin, cos) AND NOT up (#TERM, #DEG).

The ABOUT-clause has the following two meanings,

(1) Our formula database is divided into sub-databases (see §5 for details). By
specifying the sub—database name, we can narrow the range of retrieval,

(2) We can retrieve formulas by names of formulas, persons, etc.

As an example of (1), consider the function name "sin", This keyword appears mainly

in formulas of trigonometric functions, but we can also find "sin" in thé intégration

formulas, etc. Therefore, .if we do not specify the sub-database name, the retrieval

is made over many sub-databases,

Let us check how the FIND statement simulates the human retrieval mentioned above.
The structure of [left] of the formula is expressed by <pattern expression>. We can
represent both clear and vague expressions by pattern expressions, A sub-database can
be viewed as a section. of a formula book. By specifying a sub-database name (or
names), the user can "open a required section (or sections)”. The = <pattern
expression> is also used as [left] in Step 3, and the relation between [left] and
[right] in Step 4 can be specified by <retrieve condition> Furthermore, retrieve by

name can be realized by the ABOUT-clause,

The FIND statement is quite simple, yet it allows us to perform detailed retrieval
so long as we specify the <pattern expression> and <pattern&retriev‘e condition>
suitably. Therefore, we think that the FIND statement satisfies the requirements (a)
~ (c) given at the beginning of this section, except for the following problems on

ABOUT-clause,

Among the names in the augument of ABOUT-clause, the names of formulas and persons

are universal to the user, while the names of sub-databases etc., are not so because

there are many similar names., Hence, it is unreasonable to expect the user to specify

the names of sub-databases etc. correctly. Furthermore, misspelling of names will

happen frequent]y.\ We will solve these problems by the following mechanisms.

(1) Word matcher which detects misspelling.

(2) Tables for associating related names, etc.

So far we have implemented only the mechanism (1), The usefulness of the above

mechanisms is not clarified yet,

§5. Composition and function of formula database

Our formula database consists of a database management system and data sets. The
management system is composed of two units, a sub-database builder and a formula
retriever, The data sets are composed of the following four kinds of tables,

(1) Tables of the formula indices of type I.
(2) Tables of the formula indices of type II.
(3) Tables of the formula indices of type III.
(4) Tables in which actual formulas are saved.

Let us explain the fourth tables first., - The formulas are classified into many
classes and saved into many files so that the formulas in the same class are saved
into the same file and formulas in different classes into different files. Each file
i1s called a sub-database and given a unique name, In each sub-database, every formula

is given a unique number and saved so that we can easily take out it by specifying the

12

formula number., FEach sub-database is completely independent from others, so that the
requirement (IV) in §2 is satisfied. |

The classification of formulas and the sub-database name are specified by the
system builder in a systematic way as follows, First, the formulas of the form
"Op(F,...) — [right]" are saved into the same sub—dafabase of the name "Op". Second,
formulas which are classified into the same class conventionally are saved into the
same sub-database which is named after the class. For example, the sub-database
"Trig" contains formulas for transforming trigonometric functions, Third, the
sub-database name may be peculiar to users in some application areas. For example,
the name may be "HEphysics"” if the user constructs a sub-database containing some
kinds of special functions for peculiar calculations in high energy physics,

Note. The same formula may be saved into different sub—databases, For example, some
of the integration formulas of the form f exp(—xt)f(x) dx = g(t) will be saved into
both "Integ” and "Laplace"” sub-databases.

According to the above classification of formulas, the keywords of level 1 of
[left] of a formula are closely related with the corresponding sub-database name,
Hence, in indexing each formula, we construct an -association list (our system have
been implemented in Lisp) such that

((Keyl sub-DB11 ...) (Key2 sub-DB21 ..) +-*)
which means that formulas with the top level keyword "Keyl" appear in sub-databases
"sub-DB11”, ..., and so on. This list is used to find sub-databases to be retrieved
when no sub-database name is specified by ABOUT-clause.

Each formula read into the sub-database is given indices of types I and II. Thus,
we obtain index lists as shown in Figure 1. Note that the index lists contain formula
numbers and not the formulas themselves, By this, we can efficiently perform set
operations which are necessary in the retrieve procedure, The index lists are then
converted to the so-—called inverted-index lists which are saved into the tables (1)

and (2) mentioned above, The inverted-index list is a nested association list, as

..13_

13

16

shown by Figure 2. We see that the inverted-index list is suited for getting formula
numbers by specifying indices, while the index list is suited for getting indices by

specifying formula numbers,

Il Fig.1 || Il Fig.2 |l

When reading formulas into sub-databases, every formula with name (formula name,

person name, etc,) is checked and a list
(formula number, the name, sub-database name)

is saved into another file, We call the index thus obtained the index of type III.
The list of type III indices is also converted to an inverted-index list and saved
into a file, which is the above-mentioned table (3). All of the above-mentioned works
are done by the sub-database builder.

Let us next explain the formula retriever, Given a FIND Statement or a FIND
command issued by GAL, the retriever works as follows,

System retrieve procedure

Step 1: Find the name(s) of sub-database(s) to be retrieved and load the necessary
tables, Finding the sub-database name is done by checking the ABOUT-clause first, %i
and if no name is found then the finding is done by checking the keywords of level

1 in the <pattern expression> or <retrieve condition>,

Step 2: Calculate the type I index of <pattern expression> énd. if the index is not
null, retrieve the index table of type I. If the <retrieve condition> is not null
then retrieve the index table of type II. If both retrievals are made then take
the intersection of the formula numbers retrieved, If no formula number is
retrieved then goto Step 4.

Step 3: Using the formula numbers retrieved, retrieve formulas from the formula—saving
table. Then, perform the pattern matching of [left] of each formula with the
<pattern expression> under the <pattern condition>, and discard the formula if

matching fails, Return the remaining formulas,

Step 4: If the ABOUT-clause contains names which are not sub-database .names, then

retrieve the index table of type III and return all the specified formulas. //

g§6. Evaluation of the indexing

17

Let us consider the system retrieve procedure presented above, In the retrieval of .

the first kind formula, the <pattern expression> is usually given to specify actual
expressions considerably definitely. Hence, even if many formulas are retrieved in
Step 2 of the above retrieve procedure, most of them will be discarded at Step 3; the
pattern matching in Step 3 is not time-consuming because both <pattern 'expressio,n> and
[left] of formula are small-sized. On the other hand, in the retrieval of the second
kind formula, low noise-ratio is crucially important. @ One reason is that the <pattern
expression> in this case is often given. to specify actual expressions only vaguely (it
will often be "@"), hence Step 3 of the above retrieve procedure is not well effective
for formula selection. Another reason is that adequateness of the formula retrieved
is judged only after applying to a given expression, but the expression is usually of

large—sized and the application takes a lot of time,

Il Fig.3 |l Il Fig.4 1l

We have evaluated our indexing methéd by many examples. Here, we give some typical
examples, Figure 3 shows some retrievals of the first kind formulas (retrieval in the
sub-database "Integ"). Fig. 3-1 for the retrieval without selection by pattern
matching, and Fig. 3—-2 for the retrieval with selection by pattern matching. Figure 4
shows retrievals of the second kind formulas (retriéval in the sub-database "Trig").
Fig. 4-1 for the retrieval by type I index only, Fig. 4-2 for the retrieval by type II
index only, and Fig. 4-3 for the retrieval by indices of types I and II. We see that,
although index of type I or Il alone is not so effective, combined use of them works
pretty effectively, However, the noise-ratio depends on the <retrieve condition>

largely, and it becomes .quite small if we give a. good condition . (in fact, the

18

noise-ratio in the last example of Fig. 4-3 is almost ().

§7. Conciuding remarks

In this paper, we have classified the mathematical formulas in formula books into
the first and second kinds, devised three types of indexings suitable for automatic
utilization of formula database, and showed usefulness of the indexings. Furthermore,
we presented a simple and desirable composition of formula database, such. as subdivi-
sion into sub-databases. The indexings and system composition was determined mostly
from the viewpoint of practical usefulness,

Although we have tested our indexings through FIND statement, the test is not
enough; in particular, it is unknown whether or not the indexings are effective for
formula-based integrator or series manipulator, etc. Probably, the details of
indexings will be modified when we will implement these operations actually (for
example, a keyword for rational functions may be introduced). However, we think that
the basic composition of our database will be unchanged,

Various notations are used in mathematics and some of them are not easy to handle
by computers (for example, gonsider path integrals); the GAL parser is pretty general
yet it cannot r‘ead many of the formulas. Constructing formula database requires us
not only to input -formula data and devise effective indexing but also to develop
various supporting facilities such as general pattern matcher and parser, and in
particular we need an algebra system which accepts various kinds of expressions,
Still, the formula database on an algebra system is not truely useful if it is not
utilized by an algebra system automatically. Therefore, we may say that we have
passed only one step of a long way. Development of various utility modules, such as

formula-based integrator or series: manipulator, is now waiting for us,

Aknowledgements

This work was supported financially by The Kurata Foundations in 1982 and by The

-16_

Ministry of Education, Science and Culture (Grant-in—Aid for Scientific Research) in

1985-86 fiscal years.

References

Reterences

1) Hearn, A.C., "REDUCE user's manual”, Version 3.0, The Rand Corporation, 1983.

9) The MATHLAB Group, "MACSYMA reference manual”, Version 9, Lab, Computer Science,
MIT, 1977.

3) Cole, C.A., Wolfram, S., et al,, "SMP handbook”, Version 1, CALTEC, 1981.

4) Sasaki, T., "Japanese algebra system GAL" (preprint in preparation).

5) Sasaki, T., "Simplification of algebraic expression by multiterm rewriting rules”,

Proc. SYMSAC'86, ACM, New York (1986), p. 115.

Figure captions

Fig. 1. Example of index list of type I.

Fig. 2. FExample of index list of type II.

Fig. 3. Examples of retrievals of integration formulas. The results are showed by
formula numbers and not the formulas themselves,

Fig. 4. Examples of retrievals of trigonometric formulas, The selection by pattern
matching (Step 3 of the retrieve procedure) is skipped to see the effectiveness of

indexings.

._17.._

20

(350
(351
(352
(353
(354
(355
(356
(357
(358
(359

(COMBI (UP 157 166 395 397))

(COoS

CINDEF 537)

(!#DEG
(!#DEG
EG .
EG .
EG .
EG .
EG .
EG .
EG .

CL#D
CL#D
(1 #D
C!#D
C1#D
C!#D
(L #D
CL#D
(SUM

EG

Fig.

535)

. UP)

UP> (!#TERM .
SAME) (!#TERM
UP> C(!#TERM .
SAME)> (!#TERM
UP) C(!#TERM .
SAME) (!#TERM
UP) C(!#TERM .
UP) (!#TERM .
DOWN) (!#TERM
UP) C(!#TERM. .

1. Example of

SAME) (SINH . SAME)> (SUM . UPY)

. SAME) (SINH . NONE) (SUM . UP))
SAME) (SINH . SAMEY (SUM . UP))

. SAME) (SINH . NONE) (SUM . UP))
SAME) (SINH . SAME) (SUM . UP))

- SAME) (SINH . NONE)> (SUM . UP)Y)
SAME) (SINH . SAME) (SUM . UP))
UP) (COSH . UP) (SINH . SAME))

. SAME) (COSH . NONE) (SQRT . UP))
SAME) (COSH . NONE)Y (SINH . UP)

index List of type II

(DOWN 85 89 159 160 161 162 163 164 165 405 406 411 416 533

- (NONE 10 18 19 21 23 24 31 53 71 81 83 84 88 97 99 100 101
121 128 129 130 147 148 166 167 172 173 180 181
297 401 402 403 404 407 408 409 410 415 417 418
529 545 551 572 573)

102
184
420

103
185
515

(SAME 3 32

431

534

(UP 8 9 13

104
126
429
616
634

107
127
430
621
635

Fig. 2.

52 87 92 93 94 95 149 412 419 421 422 425 427 428

556 557)

14 15 17 20 22 25 26 33 34 35 36 37 38 39 40 50 54
S5 56 57 62 63 64 65 68 69 70 .72 73 74 75 78 79 80 82 91
108 110 112 113 114 118 119 120 122 123 124 125
150 152 154 156 170 171 176 177 413 423 424 426
432 522 523 527 536 554 555 560 561 564 565 567
622 623 624 625 626 627 628 629 630 631 632 633

636))

Example of inverted-index list of type II

i

21

FIND INTEG(SINH(®X)*COSH(aX)>)ABOUT INTEG>
;(57 58 59 60 61 65 66 82 89 90 91 92 93 94 95 96 97 100 132 133 136 137)

FIND INTEG(SINH(@X)*COSH(aX)) WITH SINH=1 AND COSH=1 ABOUT INTEG’
(57 58 59 60 61 65 66 82 93 94 100 132 133 136 137)

Fig. 3-1.

FIND INTEG(SINH(8X)*COSH(aX)) WITH SINH=1 AND COSH=1 ABOUT INTEG’
(65 66)

Fig- 3"2-

22

FIND SIN(AX)+SIN(RY> ABOUT TRIG: E
(1 13 14 15 16 17 33 34 35 36 37 38 39 40 50 51 54 55 62 63 68 69 78 79
82 86 90 91 96 98 104 105 106 107 108 109 110 111 112 113 114 115 116

117 144 145 146 150 151 152 153 154 155 156 157 158 168 169 182 183 514
544 548 554 555 567 569 570 571)

Fig- 4—1-

FIND 8 WITH UP(#DEG,COS) ABOUT TRIG’

(8 9 13 14 15 17 20 22 25 26 34 36 38 40 54 55 56 57 62 63 64 65 68 69
70 72 73 74 75 78 79 80 104 107 108 110 112 113 114 118 119 120 122 123
124 125 126 127 170 171 176 177 423 424 426 429 430 432 522 523 527 536
537 554 555 560 561 564 565 567 621 622 623 624 625 626 627 628 631 632
633 634 635 636)

2 —

FIND @ WITH UP(#DEG,COS) AND DOWNC(#TERM) ABOUT TRIG>

(68 69 70 78 79 80

Fig. 4-2.

FIND SIN(aX>+SIN(aY) WITH UP(#DEG,COS) ABOUT TRIG?

(13 14 15 17 34 36 38 40 54 55 62 63 68 69 78 79 104 107 108 110 112 i
113 114 554 555 567)

FIND SINCAX)+SINCAY) WITH UP(#DEG,COS) AND DOWNC#TERM) ABOUT TRIG; .

(68 69 78 79)

Fig. 4-3. (

—_ 20—

