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1. Introduction

We prove the following conjecture [1]:

Ro ® R, is left-linear and complete (complete = confluent + terminat-
ing) iff Ry and R; are so.

Note that Ry @ R, is confluent iff Ry and R; are so [3]. Clearly, the direct sum
of two systems always preserves their left-linearity. It is trivial that if Ro & R,
is terminating then Ry and R; are so. Thus, in this paper, we shall prove the
termination property of Ry @ R,, assuming that Ry and R; are left-linear and
complete.

2. Notations and Definitions

Assuming that the reader is familiar with the basic concepts and notations con-
cerning term rewriting systems in [3], we briefly explain notations and definitions
for the following discussions.

Let F be a set of function symbols, and let V be a set of variable symbols. By
T(F,V), we denote the set of terms constructed from F and V.

Consider disjoint systems Ry on T'(Fp, V) and R; on T(F;, V). Then the direct
sum system Ry @ R, is the term rewriting system on T'(Fp U F;,V'). From here on
the notation — represents the reduction rclation on Ry @ R;.
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Lemma 2.1. Ry @ R, is weakly normalizing, i.e., every term M has a normal
form (denoted by M |).

The identity of terms of T(Fo U F1, V') (or syntactical equality) is denoted by
=. - is the transitive reflexive closure of —, 2 is the transitive closure of —,
5, is the reflexive closure of —, and = is the equ1va,lence relation generated by —
(i.e., the transitive reflexive symmetric closure of —). 5 denotes a reduction of

(m > 0) steps.

Definition. A root is a mappmg from T(FoU F1,V) to Fp U F1 UV as follows:
FOI‘ M € T(Fo U Fl,V),

_ f lf‘M=f(M17"',M’n)’
root(M) = { M if M is a constant or a variable.

Definition. Let M = C[B,,...,B,] € T(F, U F,V) and C # 0. Then write

M = C[By,...,B,] if C[,..., ] is a context on F; and Vi,root(B;) € F; (d €

{0,1} and d = 1-4d). Then the set S(M) of the special subterms of M is
inductively defined as follows:

S(M) = {M} if M € T(Fy,V) (d =0or 1),
‘_ U; S(B;)U{M} if M =C[By,...,B,] (n>0).

The set of the special subterms having the root symbol in F; is denoted by
Si(M)={N| N € S(M) and root(N) € F,}.

Let M = C[By,...,B,] and M3 N (i.e., N results from M by contracting
the redex occurrence A). If the redex occurrence A occurs in some B;, then we
write M — N; otherwise M - N. Here, — and — are called an inner and an outer
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reduction, respectively.

Definition. For a term M € T(Fy U F1,V), the rank of layers of contexts on
Fy and Fj in M is inductively defined as follows:

(1 if M € T(Fy,V) (d=0or 1),
rank(M), _ { maz;{rank(B;)} +1 if M =C[By,...,B,] (n > 0).

Lemma 2.2. If M — N then rank(M) > rank(N).

Lemma 2.3. Let M — N and root(M),root(N) € Fy. Then there exists
a reduction M = My, —» M, — M2 +v+ = M, = N (n > 0) such that
root(M;) € Fy for any .
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The set of terms in the reduction graph of M is denoted by G(M) = {N| M = N}.
The set of terms having the root symbol in Fj is denoted by G4(M) = {N| N €
G(M) and root(N) € Fy}.

Definition. A term M is persistent iff ‘G(M ) = G4(M) for some d.

Definition. A term M is erasable iff M 5 z for some z € V.

From now on we assume that every term M € T(Fp U F1,V) has only z as
variable occurrences, unless it is stated otherwise. Since Ro @ R, is left-linear, this =

variable convention may be assumed in the following discussions without loss of
generality. If we need fresh variable symbols not in terms, we use z, 21, 23, -

3. Essential Subterms

In this section we introduce the concept of the essential subterms. We first prove
the following property:

VN € Gy(M) 3P € S((M), MSP 5 N.

Lemma3.1. Let M - Nand Q € S4(N). Then, there ex1sts some P € Sy(M) ;
such that P S Q. |

R, consists of the single rule e(z) > z. — denotes the reduction relation of R.,

and 2 denotes the reduction relation of R, ® (Ro @ R;) such that if Cle(P)) & > N

then the redex occurrence A does not occur in P. It is easy to show the conﬂuence
property of —.
el

Lemma 3.2. Let Cle(Py), -, e(Piua), e(P),(Pua), -+, e(Py)] =+ e(P,). Then
C[Py,+ s Py, e(P), Py o+ By o e(Py) (K < ).

Let M = C[P] € T(Fo, U F1,V) be a term containing no function symbol e.
Now, consider C[e(P)] by replacing the occurrence P in M with e(P). Assume
Cle(P)] —*7 e(P). Then, by tracing the reduction path, we can also obtain the |
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redﬁction M = C[P]- P (denoted by M -——*—l-l) P) under Ry @ R;. We say that the
pu

reduction M _:17 P-pulls up the occurrence P from M.
pu . ,

Example 3.1. Consider the two systems Ry and Rj:

| F(z) - G(z,z)
- Ro { G(C,x) —» T

R, { h(:c) —

Then we have the reduction:
F(e(h(C))) - G(e(h(C), e(A(C))) - G(R(C), 6(h(C))) — G(C, 6(h(C))) - e(h(C))-
Hence F(h(C))mh(C). However, we cannot obtam F(z)mz. Thus, ‘m

generally, we cannot obtain C|[z] _)*u z from C [P] —>*” P.O
pu pu
Lemma 3.3. Let P 5 Q and let C[Q)] —:ﬁ) Q. Then C[P] Lﬂ)P.
, pu pu
Lemma 3.4. VN € G4(M) 3P € Sa(M), M__*T; PS5 N.
. o

Now, we introduce the concept of the essential subterms. The set E;(M) of
the essential subterms of the term M € T(F, U F1,V) is defined as follows:

Ey(M)={P|PeGM)NSy(M) and -3Q € G(M)N Su(M) [Q 4 P)}.

The following lemmas are easily obtained from the definition of the essential
subterms and Lemma 3.4.

Lemma 3.5. VN € G4(M) 3P € E,(M), P55 N.
Lemma 3.6. Ed(M) = ¢ iff Gd(M) =

We say M is deterministic for d if |E4(M)| = 1; M is nondeterministic for d if
|E4(M)| > 2. The following lemma plays an important role in the next section.
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Lemma 3.7 If root(M |) € F; then |E4(M)| =1, i.e., M is deterministic for
d. , .

4. Termination for the Direct Sum

In this section we will show that Ry & R; is terminating. Roughly speaking,
termination is proven by showing that any infinite reduction My — M; — M; —
.-+ of Ry ® R; can be translated into an infinite reduction Mj — M} - M} — ---
of Ry.

We first define the term M? € T(Fy, V) for any term M and any d.

Definition. For any M and any d, M? € T(Fy,V) is defined by induction on
rank(M): ‘
(1) Mi=M ifMeT(F,V).

(2) Mé==z if E4(M) = ¢.
(3) M?=C[M¢,---,MZ2] ifroot(M) € Fyand M = C[M,---,M,] (m > 0).

(4) M¢ = P? if root(M) € Fj and Ey(M) = {P}. Note that rank(P) <
rank(M).

(8) M= CL[Cyf - Cpur[Cplz]]--*]] ifroot(M) € Fy, Es(M) = {P1,---,P,} (p >
1), and every P? is erasable. Here P? = Cj[x] —*”m: (¢! =1,---,p). Note
pu

that rank(P;) < rank(M) for any i.
(6) M? =z if root(M) € Fy, |E«(M)| > 2, and not (5).

Note that M¢? is not unique if a subterm of M is constructed with (5) in the
above definition.

Lemma 4.1. root(M l)¢ Fyiff M? |= .

Note. Let EyM) = {P,---,P,} (p > 1). Then, from Lemma 3.6 and
Lemma 4.1, it follows that every P; is erasable. Hence case (6) can be removed |
from the definition of M9, 1
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‘Lemma 4.2. If P € E4(M) then M? 5 P,

We wish to translate directly an infinite reduction My - M; - M, —
into an infinite reduction Mg = Mg 5 Mg = However the following example
shows that M; — M, cannot be translated into M; d = Mé 4 in generally.

Example 4.1. Consider the two systems Ry and Rjy:

F(C,z) » z
o { F(z,C) >z

#(z) = g(2)
r | f(e) > he)

g9(z) — =

Let M = F(f(C),h(C)) = N = F(¢(C),h(C)). Then E(M) = {f(C)} and
Ei(N) = {g9(C),h(C)}. Thus M* = f(z), N* = g(h(z)). It is obvious that
M' 5 N' does not hold. O

Now we will consider to translate indirectly an infinite reduction of Ro EB R,
into an infinite reduction of R,.

We write M =N when M and N have the same outermost-layer context, i.e.,
M = C[M,,-- m]] and N = C[Ny,- -+, N,] for some M;, N;.

Lemma 4.3. Let A——)M M—N,A=M, and root(M),root(N) € Fy. Then,
for any A? there exist B 'and B? such that
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Proof. Let A = C[Ay, -+, An], M = C[My,---,M,], N = C'[M;,,---,M,]
(i; € {1,---,m}). Take B = C'[A;,,--,A:i,]- Then, we can obtain A— B and

B5N. From A? = C[A4%,---,A%] and B? = C'[AL,---,A¢], it follows that
A? - Bi. O )

Lemma 4.4. Let M 5 N, root(N) € F;. Then, for any M? there exist
A (A=N) and A? such that
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Proof. We will prove the lemma by induction on rank(M). The case rank(M) = ‘
1 is trivial by taking A = N. Assume the lemma for rank(M) < k. Then we Wﬂl
prove the case rank(M) = k. We start from the following claim.

Claim. The lemma holds if M = N.

Proof of the Claim. Let M = C[Mi,---,Mn] 3N = C[Ny,---,Ny,] where

M; 5 N; for every i. We may assume that N, = z,:++,Npoy = z, Toot(N;) €
Fy(p £1<g-—1),and root(N;) € F; (¢ £ j £ m) without loss of generality.
Thus N = C’[;c,; 2, Np,+++,Ny_1, Ny, ++,Npp]. Then, by using the induction
hypothesis, every M; (p <i < ¢—1) has 4; (A;=N;) and A such that
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Now, take A = Clz, -, z,Ap, -+, Ag1, My, - -+, M,]. Tt is obvious that M = A.
From Lemma 2.3, we can have the reductions 4; > N; (p <i < ¢) and M; 5 N;

(¢ £ j £ m) in which every term has a root symbol in Fj. Thus it follows that
A——»N and A=N. From Lemma 4.1 and M; |= 2z (1 < < p), M |= =

Therefore smce
Mé=C [Mf, M: 1

and A% = C|z,---,z Ap AL,
of the claim)

M, M:I,Md ., M2

ME, Md 4], it follows that M?¢ = A%, (end

Now we will prove the lemma for rank(M) = k. Consider two cases.

Case 1. root(M) € Fy.
From Lemma 2.3, we may assume that every term in the reduct1on M35 N has
a root symbol in Fy. By splitting M -5 N into M — -2 R - —-» N and using the

~claim for diagram (1) and Lemma 5.1 for dlagra,m (2), we can draw the following

diagram:
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M % * * N
i 5 o 1 i o 1 i
Lo a s s
Nowi (2) ki (1) o+ i (2) x i (1) i
N R LR a o haa
' (A=N)
* * *
Meo . e el S S e L Jad

Case 2. root(M) € Fy.

Then we have some essential subterm Q € E;(M) such that M = @ = N. From
Lemma 4.2, it follows that M?¢ 5 Q7. It is obvious that rank(Q) < k. Hence, we
can show the following diagram, drawing diagram (1) by the induction hypothesis:

‘ * Coxk
VLIS LN
) |
N 34
(A=N)
* d * '
Me . ? ____________ . JA¢

Now we can prove the following theorem:
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Theorem 4.1. Every term M has no infinite reduction.

Proof. We will prove the theorem by induction on rank(M). The case
rank(M) = 1 is trivial. Assume the theorem for rank(M) < k. Then, we will
show the case rank(M) = k. Suppose M has an infinite reduction M ——— ---.
From the induction hypothesis, we can have no infinite inner reduction i

“in this reduction. Thus, — must infinitely appear in the infinite reduction. From

the induction hypothesm all of the terms appearing in this reduction have the
same rank; hence, their root symbols are in Fy if root(M) € F;. Hence, from the
discussion for Case 1 in the proof of Lemma 4.4, it follows that M¢ has an infinite ,

reduction. This contradicts that R, is terminating. O
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