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ABSTRACT

This paper proposes an algebraic tool to solve the constraints of
propositional calculus. Any constraint of propositional calculus can
be described in terms of equations in a Boolean algebra, and also
translated into equations of a Boolean ring where the constraint is
represented in the form of a finite set of polynomials. We give an
algorithm which produces a rewriting system for a given Boolean
constraint, which reduces Boolean polynomials equivalent under the
constraint to the same normal form. The algorithm is a central part
of the constraint solver in CAL (Contrainte avec Logique), which is
a constraint logic programming language being developed at ICOT.

1. Boolean ring

We assume that the reader is familiar with elementary algebraic notions such as ring
and ideal (see [Waerden 37, 40], for example), and the terminology of rewriting systems
(see [Huet 80}, for example).

For a Boolean algebra < B,V,A,— >, define z + y =g4e5 (z A 7y) V (—z A y) and
T XY =gef A y for each z, y in B, then < B, X,+ > is known to be a commutative
ring with a unit with the following properties.

(i) VzeB z+4+z=0
(i) Ve€eB zxe==x

A ring with these properties is called a Boolean ring. Here, we define a Boolean ring
of polynomials specifically, as used in this paper

Definition 1.1

Let there be countably many Boolean variables, which are denoted by metasymbols
a,b,c,.... A Boolean monomialis a (finite) multiset of Boolean variables. It is denoted
by using x. For example, a X ax bx ¢ denotes multiset {a,a, b,c}. The empty Boolean
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monomial, {}, is denoted 1. We use metasymbols A, B, C,... for Boolean monomials.
A x B is defined as the multiset union of A and B. For example, A x B = {qa,a,b,c}
when A = {a,b} and B = {a,c}. A Boolean polynomialis a (finite) multiset of Boolean
monomials. It is denoted by using +. For example, A + A + B + C denotes multiset
{A, A, B,C}. The empty Boolean polynomial, {}, is denoted 0. We use metasymbols’
X,Y,Z,... for Boolean polynomials. X + Y is defined as the multiset union of X
and Y. Binary function X is extended to Boolean polynomials in a natural way. For
example, ’ ' ' "

C(A+B)x(A+C+D)=AxA+AxC+AxD+Bx A+BxC+BxD.

Note that both x and + are associative and commutative, and are also distributive,
ie, X X (Y +2Z) =X xY 4+ X x Z for each Boolean polynomial, X, Y, and Z.

‘We abuse metasymbols a, b, ¢,... to denote Boolean monomials {a}, {b},{c},... and

A,B,C,... for Boolean polynomials {A},{B},{C},..., which will be clear from the

context.

In this paper, we omit X. For example, we write aab instead of a X @ X b.
Definition 1.2

The rewriting rule, —y, on Boolean monomials is defined as X + aaA —x X + aA for
each variable a, monomial A, and polynomial X. The rewriting rule, —, oni Boolean
polynomials is defined as X + A+ A —4 X for each monomial A and polynomial X.

It is easy to show the following:

Proposition 1.3 |

The rewriting system of rulés {—x,—+}1s confluent and terminating. |
Definition 1.4 o

For a Boolean polynomial, X, the normal form of X by {—x,—4} is denoted X|
and called a Boolean normal polynomial. For example, aabbcce)| = abe, (aabc + abee +
bc + cdd)| = bc + cd. A Boolean normal polynomial is the sum of different Boolean
monomials, each of which is the product of different Boolean variables.

Definition 1.5

Define the product, X, and the sum, 4, of Boolean normal polynomials as follows:

(XD X YD) =aes (X xY)] (XD +H(Y]) =des (X +Y)]
It is easy to check that these are well-defined.

The set of all Boolean normal polynomials with operatioﬁs X and +, defined above,
forms a Boolean ring. ' :
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2. Boolean Grobner base
‘Deﬁniti'on 2.1

Let > be an ordering on Boolean monomials. The ordering is said to be admassible if

the following hold:

(i) A > B for any monomials A and B such that A C B in the sense of multiset
inclusion.

(i) If A> B, then AC 2 BC for any monomials A, B, and C.

Let V be a fixed finite set of Boolean variables. The fact that an admissible ordering
on monomials consisting only of the variables in V is well-founded is well known as

Dickson’s lemma [Dickson 13], or easily proven as its corollary. An admissible ordering

on monomials is extended to polynomials by employing induced multiset ordering -

[Dershowitz 79]. Since induced multiset ordering is well-founded if the base ordering
is well-founded, the extension is well-founded on polynomials consisting only of the

variables in V. Moreover, induced multiset ordering is total if the base ordering is total.

In what follows let > be a fixed admissible total ordering on Boolean monomials.

" Definition 2.2

Let A + X be a Boolean normal polynomial such that A is the greatest Boolean
monomial in A + X with respect to >. Let Y be a Boolean polynomial such that
Y = S 4 AB and V be a Boolean normal polynomial such that V =T + AC. If Z is
a Boolean polynomial such that Z = S+ X B and W is a Boolean normal polynomial
such that W = (T + XC)|, then we write Y —»a4x Zand V =>44x W.

This means that Z or W is obtained from Y or V by substituting A for X by using
the rule A = X which is equivalent to A + X = 0.

In this paper, we assume that A is the biggest Boolean monomial in any Boolean
normal polynomial expressions such as A + X. '

Example 2.3
Let Y = abc+bc. ThenY —gpyc cc+bcand Y =444 ¢+ be, since (cc+ be)] = ¢+ be.

Lemma 2.4

Let A + X be a Boolean normal polynomial. fY —4.x Z, then Y > Z for any
Boolean polynomials Y and Z. If V =>4y x W, then V > W for any Boolean normal
polynomials V and W. '

Proof: Easy to check. | ;
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Corollary 2.5

For any set of Boolean normal polynomials {X;, X>,...,X,}, the rewriting systems

{=x, =4, = X1, = Xzs---,—x,} and {=x,,=>x,,...,=x,} are terminating. ||

Definition 2.6

Let R be a finite set of Boolean normal polynomials. We write Y =>r Z if there exists
X € Rsuch that Y =x Z, and YZgZ if Y = Z or there exists a possibly empty
sequence Yi1,Y3,...,Y,, of polynomials such that Y =5 ¥1,Y; =r Ys,..., Y1 =r
Y, Ym =r Z. That is & g is the transitive reflexive closure of = R- '

In iWhat follows, we will discuss ideals in the ring of Boolean normal polynomials.
Intuitively, an ideal can be regarded as the set of all normal polynomials of value 0
under a certain constraint. '

\ Definition 2.7

Let I be an ideal of the ring of Boolean normal polynomials. A Grobner base for I'isa -
finite set of Boolean normal polynomials R such that = g is confluent and terminating,
and moreover, the following two conditions are equivalent for any polynomials, X and

Y.

@) (X+Y)el(orX=Y (mod I))

(ii) There exists a polynomial, Z, such that X% rZ and Y 2.

Theorem 2.8

Let E be an arbitrary finite set of Boolean normal polynomials, then a Grébner base .
for the ideal generated by E exists and, furthermore, we have an algorithm to construct
it from E. ' '

Intuitively, an element of the generated ideal is a polynomial of value 0 under the
constraint that all elements in E have value 0. A Grobner base can be viewed as a
mechanism to determine whether a certain polynomial is in the ideal. First, we give
an algorithm, then show its correctness. We need to define several notions.

Definition 2.9

Let R be a finite set of Boolean normal polynomials. For each Boolean normal poly-

~ nomial X, X |g denotes a Boolean normal polynomial, \Y, such that X£rY and YV

is irreducible by =R, i.e., there exists no Boolean normal polynomial, Z, such that
Y =g Z. (Note that Corollary 2.5 assures the existence of such Y. However, it may
not be unique. X |z denotes one Y'.)



Definition 2.10

Let A+ X be a Boolean normal polynomial, and a a variable in A." Then (aX + X)|
is called a self-critical pair of A + X. ' ‘

If A+ X is in an ideal, I, then so are all the self-critical pairs of A + X. In fact,

let a € A i.e., A = aB for some (possibly empty) Boolean monomial, B. Then
aB+Xel 1mphes ((a+1)(aB + X))| = (aX -I—X)l el

Example 2.11
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Let A+X be ab+b+c. Then, (a(b+c)+(b+c))| = ab+ac+b+cand (b(b+c)+(b+c))l =

bc + c. Therefore, self-critical pairs of A 4+ X are ab 4+ ac+ b+ ¢ and be + c.

Definition 2.12

Let A+ X and B + Y be Boolean normal polynomials, and C the intersection of A

and B as multisets. According to fradition, let us call C' the GCD (greatest common
divisor) of A and B. Suppose that A = CA' and B = CB'. Then, (B'X + A'Y)] is

called the critical pair between A+ X and B+Y.

If A+ X and B +Y are in an ideal, I, then so is the critical pair between 4 + X and
B+Y. Infact, (B(A+ X))+ A(B+Y))| =(B'X+AY)| el

Example 2. 13

Let A+ X =abct+a+band B+Y = abd +a+b, then (d(a+b)+c(a+b))l =
ac + ad + bc + bd. Therefore, ac + ad +bc+ bd is the critical pa1r between abc + a + b
and abd + a + b.

Definition 2.14

Let X be a Boolean normal polynomial and R be a finite set of Boolean normal
polynomials, then CP(X, R) denotes the set consisting of all the non-zero critical

‘pairs between X and each élement of R and all the self-critical pairs of X.
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Now the algorithm can be presented.

input E

R——10

while E #£ 0
choose X € E ‘
E——F—{X}and X' — X|p
if X' #0 then \

for every A+Y € R
ifA=x 2 .

then E «— EU{(Z+Y)|} and R — R—{A+7)

else R — (R—{A+Y})U{A+Y|rux3}
end-if
end-for
E «— EUCP(X',R) and R «— RU{X'}
end-if :
end-while
output R (R is a Grobner base)

(In this algorithm, the choice of an element in E should be fair. That is, any element

of E should be chosen at some stage in the outermost while loop.)

This algorithm terminates and returns a Grobner base. To prove the correctness of

the algorithm, we study a more general form of the algorithm.

Definition 2.15

We define inference rules on pairs (E, R) of finite sets of Boolean normal polynomials.

Rule 1 : —g%g%—:—g where X =r Y

Rt B oLz

Rule‘3 Z’,]}zaiii‘;{i where X =>‘RY

Rule 4 BRUAB+X} ) B iZecRandA#£0

EU{(AZ + X)l}, R
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EU{A+X},R
E,RU{A+ X}

Rule 5

"Rule 6
E.R
EU{(CX + BY)[},R

‘where AB+ X, AC+Y € Rand BNC =0 (critical pair)

E,R

Rule 7 EU{(aX + X)|}, R

where aA 4+ X € R (self-critical pair)

Definition 2.16 (General form of the algorithm)

Let Ey = E, Ry = 0. For each 1, let E; 11 and R;4+1 be obtained from E; and R; by one
of the above rules. In the following, U52, N2, E; is denoted by E*° and US2, N2, R;
by R®. We give priority to Rules 1 and 2. We need two restrictions to make the
algorithm correct.

(1) The algorithm must be fair, i.e., E® = {.

(i1) Any possible critical pair or self-critical pair must be taken, i.e., for each X €
R*, any self-critical pair of X must be put in some E; by Rule 7 and for each
X,Y € R, any eritical pair of X and Y must be put in some E; by Rule 6.

Then for some i, E; is empty and R; is a Grobner base. (Note that the previous
algorithin takes the form defined here.) : \

To prove the last statement, we need some more definitions.

Definition 2.17 -

Let R be a finite set of Boolean normal polynomials. A rewriting rule on Boolean
polynomial — g is defined as follows. X »g Y if X —7 Y for some Z € R. g is
defined as a reflexive and transitive closure of { =g, —x,—4+} and &g as a symmetric,
- reflexive and transitive closure of —g.

Definition 2.18

Let X and Y be arbitrary Boolean polynomials such that X — 44z Y for A+ ZeE;. -

We associate the rewriting X — 447 Y with a triple ({X, X}, A, Z), where {X, X} is
a multiset. Similarly, we associate the rewriting X — 447z Y for A+ Z € R; with a
triple ({X1}, 4, Z ). We also associate the rewriting X —x Y or X —4 Y with a triple
({X},e,e), where o is a special constant. We introduce an ordering on the above
triples defined as follows. The first component is compared by the multiset ordering
induced by the ordering on Boolean polynomials and the second or third component
is compared as a Boolean monomial or Boolean normal polynomial, respectively. We

T
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define e as bigger than any Boolean monomial and any Boolean normal polynomial.
Finally, we define an ordering on triple lexicographically by the components. We
denote this ordering >. Note that this is well-founded. We also consider this ordering
as an ordering on rewritings. »

Definition 2.19

Let X and Y be arbitrary Boolean polynomials. A proof of X & p. g, Y is a sequence
=1,29,...,2m of rewritings such that each =; is a rewriting from X; to X;4; or
from X;4; to X; where Xy = X and X,, = Y. Note that there might be many
proofs of X&p.up,Y in general. We define an ordering on proofs as the multiset

ordering induced by the ordering on rewritings defined above. Note that this is also
well-founded. '

Note that the definition of the ordering does not depend on i. Therefore, we can
compare a proof of X & g,ug,Y and a proof of X & g, ugr; Y, even if i and j are different.

Lemma 2.20

The equivalence relation, & g,yg;, is the same for every i. Moreover, if a proof, ¥, of
X&E,ugr,Y is given, we can construct a proof, ®, of X & E;uR;Y for each j > ¢ such
that U > &.

Proof: It is enough to show the following.

i) If a proof, ®, of X&pE. ugr,.,Y is given, we can construct a proof, ¥, of
p ir1UR 41 g
X&%EiUR.‘Y‘ '

(ii) If a proof, ¥, of X&pg,urY is given, we can construct a proof, &, of
X&p, R, Y such that &> &,

The first claim is shown by checking that the rule, — x, for X, which is a new Boolean
normal polynomial added to Ej;; U Rix1 by Rule 1-8, can be simulated by a combi-
nation of —,—, and the rules in E; U R;. The second claim is shown similarly, but
in this case it must be verified that the simulation generates the same proof or less
than it. Later, we will show such simulation in several interesting cases. However,
since such simulation is a routine in general, we omit details. |

(We have this property since we discussed a rewriting rule, —, on Boolean polynomials.
Note that this property does not hold for = on normal polynomials.)

We use the simple notation, &, for the above equivalence relation, & g, g;, since it
does not depend on :.

Before going to the next step, we will show several lemmata.
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Lemma 2.21

Let Abea monomial and X, X3, and Z polynomials. Then there exists a polynomial
U such that Z+AX1——>(X1+X2)lU and Z+AX9——+(X1+X2)1U We denote this situation
simply

7 + AXli»(XlJer)l(iZ +AX,y.

Proof : If (Xi + X2)| =0, clearly X;| = X3|. Then,
Z 4 AXiBZ 4+ A(X1)) = Z + A(Xo))EZ + AX,,

where % denotes application of —y and —, performed a finite number of times. If
(X1 + X2)| # 0, then l/et (X1 + X3)] = C + W, then, either C € X1} or C € X,].
Without loss of generality, we can assume that C € X;. Let X1 =C + X. Then,

Z+ AX1 B2 + AXy] —crw Z+ AW +X)BZ + A(W + X))
Z+AXaBZ + A(Xa)).
It is clear that (W + X)| = X2|. R |

Lemma 2.22

Suppose that Rule 1, 3, 4, or 5 is applied in the i-th step and a polynomial in E; or

R;, say X, is eliminated. Any rewriting using — x can be replaced by a smaller proof

n Ei+1 U Ri+1.

Proof: The lemma is clear for Rule 5 by the definition of the ordering. We show the
lemma only for Rule 4. The proof is almost the same for Rules 1 and 3, and much

easier. Let X = AB + X' for some B, A, and X' such that B+ Z € R; andA;é(() .

Then (AZ + X')| € Eiy1. f P - 4B+ x' @, P is of form W + CAB and Q is of form

W + CX'. Therefore, by the above lemma.
P=W+CAB —piz W+ CAZS 47, xn EW + CX' = Q.

Finally, let us verify that this proof is smaller than the original proof, P —»4p+x' Q.
The first rewriting, P —pyz W + CAZ, is smaller, since B < AB. Therefore, the
whole proof is smaller, since the other rewritings are clearly smaller. Jj

Lemma 2.23

Let X and Y be arbltrary Boolean polynomials, and =y, s,...,Z,, a minimal proof
of X&Y.

(i) Thereis no rewriting in it which uses a rule in some E;.

—9—
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(ii) There is no j such that Z;_; is a rewriting from X; to X;_; and Z; is a rewriting
from X; to X;41 (we denote this situation X;_; « X; — Xj41).

Proof of (i): Suppose some =; is a rewriting, X —z Y, for Z in some E;. By condition
(i) of the definition of the algorithm, Z is eliminated at some stage, £k > j. By the
above lemma, there is a proof of X&Y in E; U Ry which is less than Z;. This

~ contradicts the minimality.

Proof of (ii): Also by the above lemma, if Z; is a rewriting, X —z Y, for Z in some
Rj, Z should be in R*. Suppose we have X;_; « X; — X;i;. There are several
possibilities.

Case 1: Both reductions are —x or —4. In this case, X; _11 = Xjt1]. Therefore,
X1 « X; — X;41 can be replaced by :

Xj15X; 1l = Xjp X,

which is easily verified to be less than X;; « X; — Xj4;. This contradicts the
minimality.

Case 2: One reduction is — and the other — geo. We can assume X;_; «x X; —peo
Xj+1. There are three subcases. ‘

Subcase 1: X; = P+ aaA, Xj_1 =P+ aA, P —5geo P’ and Xj;1 = P' 4+ aad

Subcase 2: X;j=P+aaA, Xj—1 =P+ad, A—B= S and X;4; = P—I—aaS’

Subcase 3: X;j = P+ BaaA, Xj_1 =P+ BaA, aA+ S € R*, and X;1; = P + Ba$§

We consider only Subcase 3. The others are much simpler. Since aA + S € R®, its
self-critical pair (aS + S)| € Ei for some k by condition (ii) of the definition of the
algorithm. Then X;_; <+ X; — X;4; can be replaced by '

Xj—1 =P+ BdA —->aA+5P+BS—>(a5+S)l<—P+BaS X,

which is easily verified to be less than X;_; « X; — Xj41. This contradicts the
minimality. '

Case 3: One reduction is —4 and the other — re. This case is handled much more

easily.
Case 4: Both reductions are — ge. There are two subcases.

Subcase 1: X; = P+ A+ B, A —pe S, Xj 1 = P+ S+B, B > T, and
Xiy1=P+A+T

—10—



Subcase 2: X; = P+ DABC, AB + S,AC+T € R*®, X;_; = P+ DCS, and
Xj+1 =P+ DBT where ANB = '

Subcases 1 and 2 are easy. For Subcase 3, since AB + .5, AC + T € R, their critical
pair (CS + BT)| € E for some k by condition (ii) of the definition of the algorithm.
Then X;_; «— X; — Xj41 can be replaced by

Xj—l =P + DCSL(CS—{—BT)“&P + DBT = Xj+1,
which is easily verified to be less than X; ; « X;j — Xjt1. This contradicts the
minimality. [
Lemma 2.24

{—x |X € R®} U {—,,—,} is a confluent and terminating rewriting system on
Boolean polynomials for equivalence relation &.

Proof: Confluence is clear from the above lemma and its proof. Termination is

Corollary 2.5. |}

Lemma 2.25

Let S and T be arbitrary Boolean normal polynomials such that $&7T, then there is
a Boolean normal polynomial, Z, such that S% g« Z and T2 pe Z.

Proof: Let Z be the normal form of S and T by {—x |X € R®} U {—x,—+}
Since the rewriting system is confluent and terminating, whichever order we take for
applying rewriting rules, we finally reach Z from S or T. Apply —x or —, as far

as possible in the reductions from S and 7. Then we get reductions SZgre~Z and

TéRoo Z. I

Lemma 2.26
The same statement as the above lemma holds for some R; instead of R°.

Proof: Since Ey is finite, only a finite number of Boolean variables appear in the
algorithm. Therefore, there are only a finite number of Boolean normal polynomials,
hence R is finite. Therefore, there exists some R; such that R C R; by definition
of R*®. Clearly the assertion holds for this R;. |]

Proof of the last statement of the definition of the algorithm:

Take ¢ such that the above lemma holds. Since any X in E; is reduced to 0 by = g,,
by applying Rules 1 and 2 several times, say k-times, F;1; will be empty. Note that
the above lemma also holds for Riyk. To complete the proof, it suffices to show the
next lemma. l ‘
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‘Lemma 2.27

Let I be an ideal generated by a finite set, F, of Boqléan normal polynomials. Then
for each Boolean normal polynomial, X and Y,

X=Y (modl) iff X&gY.

Proof :

(if) Tt suffices to check the following. For each Boolean polynomiail, X and Y, if
X —wzYfor Zin E,then X| =Y | (modI). Let X = BA+S,Y = BW + S and
Z=A+W,then (X +Y)| =(BA+S+BW+5)|=(B(A+W))|=(BZ)| el

(only if) Suppose X +Y = P X; + P, Xo+...+PyXn for Py, Py, ..., Py € E. Let Z; =
Y+PXi+PXo+...+BX; for each 0 <7 <n. Then Z,'_lip'.@t-zi_l + P X, = Z;.
Combining these proofs obtains a proof of X = Zo&gZ, =Y. |}

This completes the proof of Theorem 2.8.
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