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ABSTRACT

This paper proposes an algebraic tool to solve the constraints of
propositional calculus. Any constraint of propositional calculus can
be described in terms of equations in a Boolean algebra, and also
translated into equations of a Boolean ring where the constraint is
represented in the form of a finite set of polynomials. We give an
algorithm which produces a rewriting system for a given Boolean
constraint, which reduces Boolean polynomials equivalent under the
constraint to the same normal form. The algorithm is a central part
of the constraint solver in CAL (Contrainte avec Logique), which is
a constraint logic programming language being developed at ICOT.

1. Boolean ring

We assume that the reader is familiar with elementary algebraic notions such as ring
and ideal (see [Waerden 37, 40], for example), and the terminology of rewriting systems
(see [Huet 80], for example).

For a Boolean algebra $<B,$ $\vee,$ $\wedge,$ $\neg>$ , define $x+y=def(x\wedge\neg y)\vee(\neg x\Lambda y)$ and
$x\cross y=defx\wedge y$ for each $x,$ $y$ in $B$ , then $<B,$ $\cross,$ $+>is$ known to be a commutative
ring with a unit with the following properties.

(i) $\forall x\in B$ $x+x=0$

(ii) $\forall x\in B$ $x\cross x=x$

A ring with these properties is called a Boolean ring. Here, we define a Boolean ring
of polynomials specifically, as used in this paper

Definition 1.1

Let there be countably many Boolean variables, which are denoted by metasymbols
$a,$ $b,$ $c,$ $\ldots$ . A Boolean monomial is a (finite) multiset of Boolean variables. It is denoted
by $using\cross$ . For example, $a\cross a\cross b\cross c$ denotes multiset $\{a, a, b, c\}$ . The empty Boolean
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monomial, $\{\}$ , is denoted 1. We use metasymbols $A,$ $B,$ $C,$
$\ldots$ for Boolean mononials.

$A\cross B$ is defined as the multiset union of $A$ and $B$ . For example, $A\cross B=\{a, a, b, c\}$

when $A=\{a, b\}$ and $B=\{a, c\}$ . A Boolean polynomial is a (finite) multiset of Boolean
monomials. It is denoted by $using+$ . For example, $A+A+B+C$ denotes multiset
$\{A, A, B, C\}$ . The empty Boolean polynomial, $\{\}$ , is denoted $0$ . We use metasymbols
$X,$ $Y,$ $Z,$ $\ldots$ for Boolean polynomials. $X+Y$ is defined as the multiset union of X
and Y. Binary function $\cross is$ extended to Boolean polynomials in a natural way. For
example,

$(A+B)\cross(A+C+D)=A\cross A+A\cross C+A\cross D+B\cross A+B\cross C+B\cross D$ .

Note that both $\cross and+are$ associative and commutative, and are also distributive,
i.e., $X\cross(Y+Z)=X\cross Y+X\cross Z$ for each Boolean polynomial, $X,$ $Y$ , and $Z$ .
We abuse metasymbols $a,$ $b,$ $c,$ $\ldots$ to denote Boolean monomials $\{a\},$ $\{b\},$ $\{c\},$

$\ldots$ and
$A,$ $B,$ $C,$

$\ldots$ for Boolean polynomials $\{A\},$ $\{B\},$ $\{C\},$ $\ldots$ , which will be clear from the
context.

In this paper, we omit $\cross$ . For example, we write $aab$ instead of $a\cross a\cross b$ .

Definition 1.2

The rewriting rule, $arrow\cross$ , on Boolean monomials is defined as $X+aaAarrow\cross X+aA$ for
each variable $a$ , monomial $A$ , and polynomial $X$ . The rewriting rule, $arrow+$ o\’{n} Boolean
polynomials is defined as $X+A+Aarrow+X$ for each monomial $A$ and polynomial $X$ .

It is easy to show the following:

Proposition 1.3

The rewriting system of rules $\{arrow\cross, arrow_{+}\}$ is confluent and terminating. 1
Definition 1.4

For a Boolean polynomial, $X$ , the normal form of $X$ by $\{arrow\cross, arrow_{+}\}$ is denoted $X\downarrow$

and called a Boolean normal polynomial. For example, $aabbccc\downarrow=abc,$ $(aabc+abcc+$
$bc+cdd)\downarrow=bc+cd$ . A Boolean normal polynomial is the sum of different Boolean
monomials, each of which is the product of different Boolean variables.

Definition 1.5

Define the product, $\cross$ , and the sum, $+$ , of Boolean normal polynomials as follows:

$(X\downarrow)\cross(Y\downarrow)=def(X\cross Y)\downarrow$ $(X\downarrow)+(Y\downarrow)=def(X+Y)\downarrow$

It is easy to check that these are well-defined.

The set of all Boolean normal polynomials with operations $\cross and+$ , defined above,
forms a Boolean ring.
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2. Boolean Grobner base

Definition 2.1

Let $\geq be$ an ordering on Boolean monomials. The ordering is said to be admissible if
the following hold:

(i) $A\geq B$ for any monomials $A$ and $B$ such that $A\subseteq B$ in the sense of multiset
inclusion.

(ii) If $A\geq B$ , then $AC\geq BC$ for any monomials $A,$ $B$ , and $C$ .

Let $V$ be a fixed finite set of Boolean variables. The fact that an admissible ordering
on monomials consisting only of the variables in $V$ is well-founded is well known as
Dickson’s lemma [Dickson 13], or easily proven as its corollary. An admissible ordering
on monomials is extended to polynomials by employing induced multiset ordering
[Dershowitz 79]. Since induced multiset ordering is well-founded if the base ordering
is well-founded, the extension is well-founded on polynomials consisting only of the
variables in $V$ . Moreover, induced multiset ordering is total if the base ordering is total.
In what follows let $\geq be$ a fixed admissible total ordering on Boolean monomials.

Definition 2.2

Let $A+X$ be a Boolean normal polynomial such that $A$ is the greatest Boolean
monomial in $A+X$ with respect to $\geq$ . Let $Y$ be a Boolean polynomial such that
$Y=S+AB$ and $V$ be a Boolean normal polynomial such that $V=T+AC$ . If $Z$ is
a Boolean polynomial such that $Z=S+XB$ and $W$ is a Boolean normal polynomial
such that $W=(T+XC)\downarrow$ , then we write $Yarrow A+xZ$ and $V\Rightarrow A+xW$ .

This means that $Z$ or $W$ is obtained from $Y$ or $V$ by substituting $A$ for $X$ by using
the rule $A=X$ which is equivalent to $A+X=0$ .

In this paper, we assume that $A$ is the biggest Boolean monomial in any Boolean
normal polynomial expressions such as $A+X$ .

Example 2.3

Let $Y=abc+bc$. Then $Yarrow_{ab+c}cc+bc$ and $Y\Rightarrow_{ab+c}c+bc$ , since $(cc+bc)\downarrow=c+bc$ .

Lemma 2.4

Let $A+X$ be a Boolean normal polynomial. If $Yarrow A+XZ$ , then $Y>Z$ for any
Boolean polynomials $Y$ and $Z$ . If $V\Rightarrow A+XW$ , then $V>W$ for any Boolean normal
polynomials $V$ and $W$ .

Proof: Easy to check. 1
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Corollary 2.5

For any set of Boolean normal polynomials $\{X_{1}, X_{2}, \ldots, X_{n}\}$ , the rewriting systems
$\{arrow\cross, arrow+, arrow x_{1}, arrow x_{2}, \ldots, arrow x_{n}\}$ and $\{\Rightarrow x_{1}, \Rightarrow x_{2}, \ldots, \Rightarrow x_{n}\}$ are terminating. 1
Definition 2.6

Let $R$ be a finite set of Boolean normal polynomials. We write $Y\Rightarrow_{R}Z$ if there exists
$X\in R$ such that $Y\Rightarrow xZ$ , and $Y4_{R}Z$ if $Y=Z$ or there exists a possibly empty
sequence $Y_{1},$ $Y_{2},$

$\ldots,$
$Y_{m}$ of polynomials such that $Y\Rightarrow_{R}Y_{1},$ $Y_{1}\Rightarrow_{R}Y_{2},$

$\ldots,$
$Y_{m-1}\Rightarrow R$

$Y_{m},$ $Y_{m}\Rightarrow_{R}Z$ . That is $\xi_{R}$ is the transitive reflexive closure $of\Rightarrow R$ .

In what follows, we will discuss ideals in the ring of Boolean normal polynomials.
Intuitively, an ideal can be regarded as the set of all normal polynomials of value $0$

under a certain constraint.

Definition 2.7

Let $I$ be an ideal of the ring of Boolean normal polynomials. A Grobner base for $I$ is a
finite set of Boolean normal polynomials $R$ such $that\Rightarrow R$ is confluent and terminating,
and moreover, the following two conditions are equivalent for any polynomials, $X$ and
Y.

(i) $(X+Y)\downarrow\in I$ (or $X\equiv Y(mod I)$ )

(ii) There exists a polynomial, $Z$ , such that $X\Rightarrow_{R}Z$ and $Y\Rightarrow_{R}Z$ .

Theorem 2.8

Let $E$ be an arbitrary finite set of Boolean normal polynomials, then a Gr\"obner base
for the ideal generated by $E$ exists and, furthermore, we have an algorithm to construct
it from $E$ .

Intuitively, an element of the generated ideal is a polynomial of value $0$ under the
constraint that all elements in $E$ have value $0$ . A Gr\"obner base can be viewed as a
mechanism to determine whether a certain polynomial is in the ideal. First, we give
an algorithm, then show its correctness. We need to define several notions.

Definition 2.9

Let $R$ be a finite set of Boolean normal polynomials. For each Boolean normal poly-
nomial $X,$ $X\downarrow R$ denotes a Boolean normal polynomial, $Y$ , such that $X\Rightarrow_{R}Y$ and $Y$

is irreducible $by\Rightarrow R$ i.e., there exists no Boolean normal polynomial, $Z$ , such that
$Y\Rightarrow R$ Z. (Note that Corollary 2.5 assures the existence of such Y. However, it may
not be unique. $X\downarrow R$ denotes one Y.)
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Definition 2.10

Let $A+X$ be a Boolean normal polynomial, and $a$ a variable in $A$ . Then $(aX+X)\downarrow$

is called a self-critical pair of $A+X$ .

If $A+X$ is in an ideal, $I$ , then so are all the self-critical pairs of $A+X$ . In fact,

let $a\in A$ , i.e., $A=aB$ for some (possibly empty) Boolean monomial, $B$ . Then,
$aB+X\in I$ implies $((a+1)(aB+X))\downarrow=(aX+X)\downarrow\in I$ .

Example 2.11

Let $A+X$ be $ab+b+c$. Then, $(a(b+c)+(b+c))\downarrow=ab+ac+b+c$ and $(b(b+c)+(b+c))\downarrow=$

$bc+c$ . Therefore, self-critical pairs of $A+X$ are $ab+ac+b+c$ and $bc+c$ .

Definition 2.12

Let $A+X$ and $B+Y$ be Boolean normal polynomials, and $C$ the intersection of $A$

and $B$ as multisets. According to tradition, let us call $C$ the GCD (greatest common
divisor) of $A$ and $B$ . Suppose that $A=CA’$ and $B=CB’$ . Then, $(B’X+A’Y)\downarrow is$

called the critical pair between $A+X$ and $B+Y$.

If $A+X$ and $B+Y$ are in an ideal, $I$ , then so is the critical pair between $A+X$ and

$B+Y$ . In fact, $(B’(A+X)+A’(B+Y))\downarrow=(- B’X+A’Y)\downarrow\in I$.

Example 2.13

Let $A+X=abc+a+b$ and $B+Y=abd+a+b$, then $(d(a+b)+c(a+b))\downarrow=$

$ac+ad+bc+bd$. Therefore, $ac+ad+bc+bd$ is the critical pair between $abc+a+b$

and $abd+a+b$.

Definition 2.14

Let $X$ be a Boolean normal polynomial and $R$ be a finite set of Boolean normal

polynomials, then $CP(X, R)$ denotes the set consisting of all the non-zero critical

pairs between $X$ and each element of $R$ and all the self-critical pairs of $X$ .
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Now the algorithm can be presented.

input $E$

$Rarrow\emptyset$

while $E\neq 0$

choose $X\in E$

$Earrow E-\{X\}$ and $X’arrow X\downarrow R$

if $X’\neq 0$ then
for every $A+Y\in R$

if $A\Rightarrow_{X’}Z$

then $Earrow E\cup\{(Z+Y)\downarrow\}$ and $Rarrow R-\{A+Y\}$
else $Rarrow(R-\{A+Y\})\cup\{A+Y\downarrow_{R\cup\{X’\}}\}$

end-if
end-for
$Earrow E\cup CP(X’, R)$ and $Rarrow R\cup\{X’\}$

end-if
end-while
output $R$ ( $R$ is a Gr\"obner base)

(In this algorithm, the choice of an element in $E$ should be fair. That is, any element
of $E$ should be chosen at some stage in the outermost while loop.)

This algorithm terminates and returns a Gr\"obner base. To prove the correctness of
the algorithm, we study a more general form of the algorithm.

Definition 2.15

We define inference rules on pairs $(E, R)$ of finite sets of Boolean normal polynomials.

$E\cup\{X\},$ $R$

Rule 1 where $X\Rightarrow_{R}Y$

$E\cup\{Y\},$ $R$

Rule 2 $\frac{E\cup\{0\},R}{E,R}$

$E,$ $R\cup\{A+X\}$
Rule 3 where $X\Rightarrow_{R}Y$

$E,$ $R\cup\{A+Y\}$

Rule 4 $\frac{E,R\cup\{AB+X\}}{E\cup\{(AZ+X)\downarrow\},R}$ where $B+Z\in R$ and $A\neq\emptyset$
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$E\cup\{A+X\},$ $R$

Rule 5
$E,$ $R\cup\{A+X\}$

Rule 6
$\frac{E,R}{E\cup\{(CX+BY)\downarrow\},R}$ where $AB+X,$ $AC+Y\in R$ and $B\cap C=\emptyset$ (critical pair)

Rule 7 $\frac{E,R}{E\cup\{(aX+X)\downarrow\},R}$ where $aA+X\in R$ (self-critical pair)

Definition 2.16 (General form of the algorithm)

Let $E_{0}=E,$ $R_{0}=\emptyset$ . For each $i$ , let $E_{i+1}$ and $R_{i+1}$ be obtained from $E_{i}$ and $R_{i}$ by one
of the above rules. In the following, $\bigcup_{n=1}^{\infty}\bigcap_{i=n}^{\infty}E_{i}$ is denoted by $E^{\infty}$ and $\bigcup_{n=1}^{\infty}\bigcap_{i=n}^{\infty}R_{i}$

by $R^{\infty}$ . We give priority to Rules 1 and 2. We need two restrictions to make the
algorithm correct.

(i) The algorithm must be fair, i.e., $E^{\infty}=\emptyset$ .

(ii) Any possible critical pair or self-critical pair must be taken, i.e., for each $X\in$

$R^{\infty}$ , any self-critical pair of $X$ must be put in some $E_{i}$ by Rule 7 and for each
$X,$ $Y\in R^{\infty}$ , any critical pair of $X$ and $Y$ must be put in some $E_{i}$ by Rule 6.

Then for some $i,$ $E_{i}$ is empty and $R_{i}$ is a Gr\"obner base. (Note that the previous
algorithm takes the form defined here.)

To prove the last statement, we need some more definitions.

Definition 2.17

Let $R$ be a finite set of Boolean normal polynomials. A rewriting rule on Boolean
$polynomialarrow R$ is defined as follows. $Xarrow_{R}Y$ iff $Xarrow zY$ for some $Z\in R$ . $arrow R*$ is
defined as a reflexive and transitive closure of $\{arrow R, arrow\cross, arrow_{+}\}$ and $rightarrow R*$ as a symmetric,
reflexive and transitive closure $ofarrow R$ .

Definition 2.18

Let $X$ and $Y$ be arbitrary Boolean polynomials such that $Xarrow A+zY$ for $A+Z\in E_{i}$ .
We associate the rewriting $Xarrow A+zY$ with a triple $(\{X, X\}, A, Z)$ , where {X, $X$ } is
a multiset. Similarly, we associate the rewriting $Xarrow A+ZY$ for $A+Z\in R_{i}$ with a
triple $(\{X\}, A, Z)$ . We also associate the rewriting $Xarrow\cross Y$ or $Xarrow+Y$ with a triple
$(\{X\}$ , $\bullet$ , $\bullet$ $)$ , where $\bullet$ is a special constant. We introduce an ordering on the above
triples defined as follows. The first component is compared by the multiset ordering
induced by the ordering on Boolean polynomials and the second or third component
is compared as a Boolean monomial or Boolean normal polynomial, respectively. We
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define $\bullet$ as bigger than any Boolean monomial and any Boolean normal polynomial.
Finally, we define an ordering on triple lexicographically by the components. We
denote this ordering $\geq$ . Note that this is well-founded. We also consider this ordering
as an ordering on rewritings.

Definition 2.19

Let $X$ and $Y$ be arbitrary Boolean polynomials. A proof of $X^{*}rightarrow E_{1}\cup R;Y$ is a sequence
$\Xi_{1},$ $\Xi_{2},$

$\ldots,$
$\Xi_{m}$ of rewritings such that each $\Xi_{j}$ is a rewriting from $X_{j}$ to $X_{J+1}$ or

from $X_{j+1}$ to $X_{j}$ where $X_{0}=X$ and $X_{m}=Y$ . Note that there might be many
proofs of $X^{*}rightarrow E:\cup R:Y$ in general. We define an ordering on proofs as the multiset
ordering induced by the ordering on rewritings defined above. Note that this is also
well-founded.

Note that the definition of the ordering does not depend on $i$ . Therefore, we can
compare a proof of $X^{*}rightarrow E:\cup R:Y$ and a proof of $X^{*}rightarrow E_{j}\cup R_{j}Y$ , even if $i$ and $j$ are different.

Lemma 2.20

The equivalence relation, $rightarrow E;\cup R_{i}*$ , is the same for every $i$ . Moreover, if a proof, $\Psi$ , of
$X^{*}rightarrow E:\cup R;Y$ is given, we can construct a proof, $\Phi$ , of $X^{*}rightarrow E_{j}\cup R_{j}Y$ for each $j>i$ such
that $\Psi\geq\Phi$ .

Proof: It is enough to show the following.

(i) If a proof, $\Phi$ , of $X^{*}rightarrow E_{i+1}\cup R_{i+1}Y$ is given, we can construct a proof, $\Psi$ , of
$X^{*}rightarrow E_{i}\cup R:Y$ .

(ii) If a proof, $\Psi$ , of $X^{*}rightarrow E:\cup R:Y$ is given, we can construct a $pro$of, $\Phi$ , of
$X^{*}rightarrow E_{i+1}\cup R:+1Y$ such that $\Psi\geq\Phi$ .

The first claim is shown by checking that the rule, $arrow x$ , for $X$ , which is a new Boolean
normal polynomial added to $E_{i+1}UR_{i+1}$ by Rule 1-8, can be simulated by a combi-
nation $ofarrow\cross’arrow+and$ the rules in $E_{i}\cup R_{i}$ . The second claim is shown similarly, but
in this case it must be verified that the simulation generates the same proof or less
than it. Later, we will show such simulation in several interesting cases. However,
since such simulation is a routine in general, we omit details. 1
(We have this property since we discussed a rewriting rule, $arrow$ on Boolean polynomials.
Note that this property does not hold $for\Rightarrow on$ normal polynomials.)

We use the simple notation, $rightarrow*$ for the above equivalence relation, $rightarrow E_{i}\cup R_{i}*$ , since it
does not depend on $i$ .

Before going to the next step, we will show several lemmata.
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Lemma 2.21

Let $A$ be a monomial and $X_{1},$ $X_{2}$ , and $Z$ polynomials. Then there exists a polynomial
$U$ such that $Z+AX_{1^{arrow}(X_{1}+X_{2})\downarrow}^{*}U$ and $Z+AX_{2^{arrow}(X_{1}+X_{2})\downarrow}^{*}U$ . We denote this situation
simply

$Z+AX_{1^{arrow(X_{1}+X_{2})\downarrowarrow z}}^{**}+AX_{2}$ .

Proof: If $(X_{1}+X_{2})\downarrow=0$ , clearly $X_{1}\downarrow=X_{2}\downarrow$ . Then,

$Z+AX_{1^{arrow}}^{*}Z+A(X_{1}\downarrow)=Z+A(X_{2}\downarrow)*arrow Z+AX_{2}$ ,

$wherearrow*$ denotes application $ofarrow\cross andarrow+$ , performed a finite number of times. If
$(X_{1}+X_{2})\downarrow\neq 0$ , then let $(X_{1}+X_{2})\downarrow=C+W$ , then, either $C\in X_{1}\downarrow orC\in X_{2}\downarrow$ .
Without loss of generality, we can assume that $C\in X_{1}$ . Let $X_{1}\downarrow=C+X$ . Then,

$Z+AX_{1^{arrow}}^{*}Z+AX_{1}\downarrowarrow_{C+W}Z+A(W+X)arrow*Z+A((W+X)\downarrow)$

$Z+AX_{2^{arrow}}^{*}Z+A(X_{2}\downarrow)$ .

It is clear that $(W+X)\downarrow=X_{2}\downarrow$ . $1$

Lemma 2.22

Suppose that Rule 1, 3, 4, or 5 is applied in the i-th step and a polynomial in $E_{i}$ or
$R_{i}$ , say $X$ , is eliminated. Any rewriting $usingarrow x$ can be replaced by a smaller proof
in $E_{i+1}\cup R_{i+1}$ .

Proof: The lemma is clear for Rule 5 by the definition of the ordering. We show the
lemma only for Rule 4. The proof is almost the same for Rules 1 and 3, and much
easier. Let $X=AB+X’$ for some $B,$ $A$ , and $X’$ such that $B+Z\in R_{i}$ and $A\neq\emptyset$ .
Then $(AZ+X’)\downarrow\in E_{i+1}$ . If $Parrow AB+x\prime Q,$ $P$ is of form $W+CAB$ and $Q$ is of form
$W+CX’$ . Therefore, by the above lemma,

$P=W+CABarrow B+zW+CAZarrow(AZ+X’)\downarrowarrow W+CX’=Q$.

Finally, let us verify that this proof is smaller than the original proof, $Parrow AB+X^{t}Q$ .
The first rewriting, $Parrow B+ZW+CAZ$ , is smaller, since $B<AB.$ Therefore, the
whole proof is smaller, since the other rewritings are clearly smaller. I
Lemma 2.23

Let $X$ and $Y$ be arbitrary Boolean polynomials, and $\Xi_{1},$ $\Xi_{2},$
$\ldots,$

$\Xi_{m}$ a minimal proof
of $Xrightarrow*Y$ .

(i) There is no rewriting in it which uses a rule in some $E_{i}$ .

–9–



(ii) There is no $j$ such that $\Xi_{j-1}$ is a rewriting from $X_{j}$ to $X_{j-1}$ and $\Xi_{j}$ is a rewriting
from $X_{j}$ to $X_{J+1}$ (we denote this situation $X_{j-1}arrow X_{j}arrow X_{J+1}$ ).

Proof of (i): Suppose some $\Xi_{i}$ is a rewriting, $Xarrow zY$ , for $Z$ in some $E_{j}$ . By condition
(i) of the definition of the algorithm, $Z$ is eliminated at some stage, $k>j$ . By the
above lemma, there is a proof of $Xrightarrow*Y$ in $E_{k}\cup R_{k}$ which is less than $\Xi_{i}$ . This
contradicts the minimality.

Proof of (ii): Also by the above lemma, if $\Xi_{i}$ is a rewriting, $Xarrow zY$ , for $Z$ in some
$R_{j},$ $Z$ should be in $R^{\infty}$ . Suppose we have $X_{j-1}arrow X_{j}arrow X_{j+1}$ . There are several
possibilities.

Case 1: Both reductions $arearrow\cross orarrow+\cdot$ In this case, $X_{j-1}\downarrow=X_{J+1}\downarrow$ . Therefore,
$X_{j-1}arrow X_{j}arrow X_{j+1}$ can be replaced by

$XJ^{-1^{**}}arrow X_{j-1}\downarrow=X_{j+1}\downarrowarrow X_{j+1}$ ,

which is easily verified to be less than $X_{j-1}arrow X_{j}arrow X_{j+1}$ . This contradicts the
minimality.

Case 2: One reduction $isarrow\cross and$ the $otherarrow R\infty$ . We can assume $X_{j-1}arrow\cross X_{j}arrow R\infty$

$X_{j+1}$ . There are three subcases.

Subcase 1: $X_{j}=P+aaA,$ $X_{j-1}=P+aA,$ $Parrow R^{\infty}P’$ , and $X_{j+1}=P’+aaA$

Subcase 2: $X_{j}=P+aaA,$ $X_{j-1}=P+aA,$ $Aarrow^{R_{\infty}}S$ , and $X_{j+1}=P+aaS$

Subcase 3: $X_{j}=P+BaaA,$ $X_{j-1}=P+BaA,$ $aA+S\in R^{\infty}$ , and $X_{J+1}=P+BaS$

We consider only Subcase 3. The others are much simpler. Since $aA+S\in R^{\infty}$ , its
self-critical pair $(aS+S)\downarrow\in E_{k}$ for some $k$ by condition (ii) of the definition of the
algorithm. Then $X_{j-1}arrow X_{j}arrow X_{J+1}$ can be replaced by

$X_{j-1}=P+BaAarrow aA+sP+BS*arrow(aS+S)\downarrow*arrow P+BaS=X_{j+1}$ ,

which is easily verified to be less than $X_{j-1}arrow X_{j}arrow X_{i+1}$ . This contradicts the
minimality.

Case 3: One reduction $isarrow+and$ the $otherarrow R^{\infty}$ . This case is handled much more
easily.

Case 4: Both reductions $arearrow R^{\infty}$ . There are two subcases.

Subcase 1: $X_{j}=P+A+B,$ $Aarrow R^{\infty}S,$ $X_{j-1}=P+S+B,$ $Barrow R^{\infty}T$ , and
$X_{J+1}=P+A+T$
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Subcase 2: $X_{j}=P+DABC,$ $AB+S,$ $AC+T\in R^{\infty},$ $X_{j-1}=P+DCS$ , and
$X_{j+1}=P+DBT$ where $A\cap B=\emptyset$

Subcases 1 and 2 are easy. For Subcase 3, since $AB+S,$ $AC+T\in R^{\infty}$ , their critical
pair $(CS+BT)\downarrow\in E_{k}$ for some $k$ by condition (ii) of the definition of the algorithm.
Then $X_{j-1}arrow X_{j}arrow X_{J+1}$ can be replaced by

$X_{j-1}=P+DCSarrow(CS+BT)\downarrowarrow P+DBT=X_{i+1}$ ,

which is easily verified to be less than $X_{j-1}arrow X_{j}arrow X_{j+1}$ . This contradicts the
minimality. I
Lemma 2.24

$\{arrow x|X\in R^{\infty}\}\cup\{arrow*’arrow+\}$ is a confluent and terminating rewriting system on
Boolean polynomials for equivalence relation $rightarrow*$

Proof: Confluence is clear from the above lemma and its proof. Termination is
Corollary 2.5. II
Lemma 2.25

Let $S$ and $T$ be arbitrary Boolean normal polynomials such that $S*rightarrow T$ , then there is
a Boolean normal polynomial, $Z$ , such that $S4_{R}\infty Z$ and $T4_{R\infty}Z$ .

Proof: Let $Z$ be the normal form of $S$ and $T$ by $\{arrow x|X\in R^{\infty}\}\cup\{arrow\cross, arrow_{+}\}$ .
Since the rewriting system is confluent and terminating, whichever order we take for
applying rewriting rules, we finally reach $Z$ from $S$ or T. $Applyarrow\cross orarrow+as$ far
as possible in the reductions from $S$ and $T$ . Then we get reductions $S4_{R}\infty Z$ and
$\tau\Rightarrow_{R}\infty$ Z. 1
Lemma 2.26

The same statement as the above lemma holds for some $R_{i}$ instead of $R^{\infty}$ .

Proof: Since $E_{0}$ is finite, only a finite number of Boolean variables appear in the
algorithm. Therefore, there are only a finite number of Boolean normal polynomials,
hence $R^{\infty}$ is finite. Therefore, there exists some $R_{i}$ such that $R^{\infty}\subseteq R_{i}$ by definition
of $R^{\infty}$ . Clearly the assertion holds for this $R_{i}$ . $1$

Proof of the last statement of the definition of the algorithm:

Take $i$ such that the above lemma holds. Since any $X$ in $E_{i}$ is reduced to $0by\Rightarrow R$;

by applying Rules 1 and 2 several times, say k-times, $E_{i+k}$ will be empty. Note that
the above lemma also holds for $R_{i+k}$ . To complete the proof, it suffices to show the
next lemma. 1
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Lemma 2.27

Let $I$ be an ideal generated by a finite set, $E$ , of Boolean normal polynomials. Then
for each Boolean normal polynomial, $X$ and $Y$ ,

$X\equiv Y$ $(mod I)$ iff $X^{*}rightarrow EY$.

Proof:

(if) It suffices to check the following. For each Boolean polynomial, $X$ and $Y$ , if
$Xarrow zY$ for $Z$ in $E$ , then $X\downarrow\equiv Y\downarrow$ $(mod I)$ . Let $X=BA+S,$ $Y=BW+S$ and
$Z=A+W$, then $(X+Y)\downarrow=(BA+S+BW+S)\downarrow=(B(A+W))\downarrow=(BZ)\downarrow\in I$ .

(only if) Suppose $X+Y=P_{1}X_{1}+P_{2}X_{2}+\ldots+P_{n}X_{n}$ for $P_{1},$ $P_{2},$
$\ldots$ , $P_{n}\in E$ . Let $Z_{i}=$

$Y+P_{1}X_{1}+P_{2}X_{2}+\ldots+P_{i}X_{i}$ for each $0\leq i\leq n$ . Then $Zarrowarrow*Z_{i-1}+P_{i}X_{1}=Z_{i}$ .
Combining these proofs obtains a proof of $X=Z_{0^{rightarrow E}}^{*}Z_{n}=Y.$ $[$

This completes the proof of Theorem 2.8.
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