
245

Efficient Processing of Set Oriented SQL Queries

Mohamed El-Sharkawi Yahiko Kambayashi
Dept. of Computer Sci. and Communication Eng.

Kyushu University, Fukuoka , Japan

Abstract
In this paper, we discuss efficientprocessing of

set queries. Our approach is to convert, ifpossible,
a set query into a non-set query. To do the
conversion we use set semantics, precisely set sizes.
For instance, for two sets to be equal, they must
have same size. In the relational model, the size of
set of values of some auribute that is associated
with a value of another attribute can be reasoned
using functional dependencies. Most of set queries
are convertible except one case when the two sets
are of size greater than one. However, we can do
two preprocessing steps to speed up processing the
query and detect null answers as early as possible.
1- Introduction

One of the advantages of the relational model
of databases [5] is that it supports nonprocedural
query languages to manipulate stored data. A
component of the DBMS, the query optimizer, is
responsible to process a given query in an
efficient way. There are several techniques to
optimize a query [8]. Another advantage of the
relational model is the capability of
manipulating sets by supporting set operations,
i.e. set containment and set comparison
operations. While efficient processing of queries
is discussed in deep, efficient processing of set
queries does not receive a lot of attention. Set
queries are submitted frequently in real
applications of databases and usually the
manipulated sets are of large sizes. In some
extension of the relational model, namely the
$N^{2}F^{2}$ model in which attributes are not restricted
to be atomic values, may be relations, lists, or
sets, set queries are necessary to access such data.
Last, to answer universally quantified queries in

knowledge-base systems, the query is later
mapped to a set query. Thus processing such
queries efficiently is critical for system
performance improvement. Query languages for
the relational model should support set
operations. SQL [41 (Structured Query
Language), a query language implemented at
IBM [1]. Now, it is considered as a standard query
language. SQL supports set operations and a
query which is a set query should be written in
the nested form. That is the query is written as
two query blocks connected by the set operation.
There are two possible set operations, set
comparison and set containment. The general
form of set queries in SQL are as follows:
(1) Set comparison queries:

Q.B.1 Comparison Operator ALL Q.B.2.
This query means that, the set of values is the
WHERE clause of Q.B.1 (called Outer Query
Block OQB) is related to the set of values
resulting from Q.B.2 (called Inner Query Block
IQB) with comparison operator. The set of
comparison operators are $=,$ $\neq,$ $>,$ $<,$ $>=,$ $<=$.
Throughout the paper, we concentrate on queries
with comparison operators $=and>$.
(2) Set containment queries:

Q.B.1 IS IN/IS NOT IS Q.B.2.
This query means that, the set of values is the
WHERE clause of Q.B.1 IS INAS NOT IN the set
of values resulting from Q.B.2.

In this paper, we give procedures that convert
a set query into another nested or unnested query
without a set operation. We exploit the query
semantics and functional dependencies between
attributes to do such conversion. Examples in the
paper are based on the familiar Supplier-Part

数理解析研究所講究録
第 666巻 1988年 245-254 245

$lq\mathfrak{h}$

database [6]. The paper is organized as follows.
Section 2 gives basic background to this work.
Section 3 presents previous work. Section 4 gives
the basic idea to convert a set query into a non-set
query and also give classification of set queries.
Section 5 gives procedures used to process the
first type of set comparison queries, that is
correlated set comparison queries. Section 6
gives procedures used to process the second type
of set comparison queries, that is uncorrelated set
comparison queries. In Section 7 procedures to
handle set containment queries are given.
Section 8 is the conclusion.
2- Basic Concepts

2-1 Relational Schemas and
Functional Dependencies (FD)

A relation schema \underline{R} is a finite set of attributes
$A_{i},$ $i=1,\ldots,n$, and denoted by $\underline{R}(A_{1},A_{2},\ldots,A_{n})$.
Associated with each attribute A_{i} a domain D_{i}

from which the attribute obtains its values. A
relation R over a relation scheme \underline{R} is a set of
fmite tuples. A tuple is a mapping that assigns
for each attribute A_{i} a certain value from the
associated domain D_{i} . Union of two sets of
attributes X and $Y,$ XUY, is the concatenation of
attributes in X and Y , and denoted XY. A
relational database scheme is a collection of
relation schemas.
A functional dependency (fd) between two sets of
attributes X,Y is denoted $Xarrow Y$, it means that for
any two tuples t_{i} and tj, if $t_{i}[X]=t_{j}[X]$ then
$t_{i}[Y]=t_{j}[Y]$; where $t[X]$ means restricting
attributes of the tuple t to be X.
For a relation scheme $\underline{R}(X)$, where X is the
attributes set of \underline{R}, and attributes $K,$ K is a subset
of X, we say that K is a key of $arrow R$ iff $Karrow X$ and
there is no proper subset $K’$ of K such that $K’arrow X$.
2-2 Group-by Operation

In the procedures given to convert a set query
into another one without a set operation, we
apply an operation called group-by [61 on one or
both relations in the query blocks. The group-by
operation rearranges the relation into groups,

such that within any one group all rows have the
same value for a specified attribute called the
group-by field. The new relation is called the
unnormalized form of the original one.
2-3 Syntax of SQL

In this section we describe the syntax of SQL
that is relevant to our discussions. In SQL the
basic query consists of three clauses: SELECT,
FROM, and WHERE. These three clauses
constitute a query block. The SELECT clause
enumerates output attributes. FROM clause
contains names of relations involved in the
query. The WHERE clause contains condition
that must be satisfied by the query. A condition
may contain one of the comparison operators
$=,\neq,$ $<,\leqq,>,\geqq$. If there is more than one
condition to be satisfied, they may be combined
by logical operations AND, OR, and NOT. Beside
those comparison operators, there are also set
operators. They have the form, IS IN, IS NOT
IN, $=ALL,$ $\neq ALL$, $=ANY$, and $\neq ANY$. In the
WHERE clause, a predicate, relevant to this
work, to be satisfied may be one of the following:
(a) A simple predicate: Attribute $<Comparison$

operator $>$ Constant value.
(b) A join predicate: Attribute 1 $<Comparison$

operator $>Attribute2$.
(c) A nested predicate: Attribute /Constant

$<Comparison$ operator $>Query$ block.
(d) A set predicate: Attribute /Constant

$<Comparison$ operator ALL /Comparison

operator $ANY/ISIN/IS$ NOT $IN>Queryblock/$

A set of constant.
3-Previous Work

As shown in previous sections, a set query in
SQL is written in the nested form. Processing
nested queries was discussed in [10]. Where
nested queries are classified into five types. Four
correspond to whether the inner query block
refers to a relation in the outer block and whether
the SELECT clause of the inner block contains an
aggregate function. A query is of type-N, if the
inner block does not refer to the outer block and
its SELECT clause does not contain an aggregate

–
\angle –

246

$d41$

function. A query is of type-J, when its inner
block refers to the outer block and its SELECT
clause does not contain an aggregate function. A
query is of type-A, when it is of type-N with
aggregate in the SELECT clause of the inner
block, and is of type-JA, when it is of type-J with
aggregate in the SELECT clause of the inner
block. Processing a nested query is based on
converting the query into its equivalent unnested
one that can be processed efficiently using the
underlying query optimizer. The ffth type of
nested queries is type-D queries, it has the
following form:
SELECT RI.CK
FROM RI
WHERE (SELECT RJ.CH

FROM RJ
WHERE RJ.CN $=RI.CP$)

OP
(SELECT RK.CM FROM RK),

where OP may be a scalar comparison operator,
set comparison operator $(=, =)$, or set
membership operator (IS IN, IS NOT IN). It is
processed by converting the query into type-N
query in the form:
SELECT RI.CK
FROM RI
WHERE RI.CP $=$ (SELECT Cl FROM RT);

where RT(CI) is obtained as
(SELECT RJ.CN
FROM RJ RX
WHERE (SELECT RJ.CH

FROM RJ RY
WHERE RY.CN $=RX.CN$) OP

(SELECT RK.CM FROM RK).

Relation RT is constructed by evaluating a
query, that has a form same as the original one.
It is not discussed how this query is processed.
In our approach to process set queries, we use
functional dependencies to transform, in most of
the cases, a set query into a nested query without
a set operation. Using functional dependencies in
query processing is discussed in [9], to covert a

cyclic query [2] into a tree query that is processed
efficiently [71.

4- Basic Idea and Classification of
Set Queries

4-1 Basic Idea
The basic idea of this work is to convert a set

query into a non-set query that can be processed
efficiently. To do the conversion, semantics of the
query is used. Precisely, set sizes play the main
role to decide if some operation is applicable or
not. For instance, to check two sets for equality,
at first the both should be of same size, otherwise
we can reason that they can never be equal. To
determine these semantics in a query, function
dependencies between attributes in the query are
used. A function dependency between attributes
U and $K(Uarrow K)$ says that the set of K-values
associated with any u value is for sure of size one.
On the other hand, if such dependency does not
exist, it means that the set of K-values associated
with a u value may be of size greater than or
equal to one. By using these semantics we can
convert most of the set queries into non-set
queries.
4-2 Classification of Set Queries

We classify set queries, type-S , into two
subtypes set comparison (type-SCOM) and set
containment (type-SCON) queries. In each
subtype we distinguish between two situations
depending on whether the inner block refers to a
relation in the outer block, or does not. A query in
which the inner block refers to the outer block is
called a correlated query, otherwise is called
uncorrelated query. A correlated set comparison
query is called type-SCOMCQ, an uncorrelated
set comparison query is called type-SCOMUCQ.
A correlated set containment query is called type-
SCONCQ, an uncorrelated set containment
query is called type-SCONUCQ. When the
WHERE clause of the outer block of a correlated
query contains a ”Constant“ the query is called of
type-SCOMCQl in case of set comparison
queries, and type-SCONCQI in case of set
containment queries; when this WHERE clause

$-$?

247

contains an attribute RI. K the query is called of
type-SCOMCQ2 in case of set comparison
queries, and type-SCONCQ2 in case of set
containment queries. In case of uncorrelated
queries when the WHERE clause of the outer

$\ovalbox{\tt\small REJECT} \mathfrak{x}_{\xi 1}\forall$

$d\mathscr{C}\eta$

SELECT RJ.K

FROM RJ
WHERE RJ.$U=RI.V$

In this type of queries, since the outer block
contains a constant in its WHERE clause, we

block contains a constant value instead of an
attribute RI. K, the result is always either true or
false thus such a query has no meaning. We
distinguish between two cases. When the inner
block does not contain a WHERE clause, we call
the query of type-SCOMUCQl in case of set
comparison queries, and type-SCONUCQl in
case of set containment queries and when it
contains a WHERE clause, we call the query of
type-SCOMUCQ2 in case of set comparison
queries, and type-SCONUCQ2 in case of set
containment queries.
5- Processing Set Comparison

Correlated Queries
In this section, we give procedures to convert

both types of set comparison correlated set
queries into either nested queries or unnested
queries. The naive way to process such a
correlated query is done in two steps. First, the
relation in the inner block is scanned for each V
value from the outer relation to find its
equivalent U value. Second, we need to satisfy
the second condition, that is the set of K values
associated with this U value is $(=/<)$ the set
specified in the WHERE clause of the outer block.
This approach has several disadvantages. First,
the inner relation should be scanned n times,
where n is the number of tuples in the outer
relation. Second, query semantics can help, as we
see later, to simplify the query. Third, as
consequent of second, the query may have a null
answer, however, this cannot be recognized
before executing the query.
5-1 Processing Type-SCOMCQI

Queries
This query is written as follows:

SELECT RI. C

FROM RI
WHERE ”Constant” $\{=|>\}$ ALL

need to ensure that the result of the inner bleckis
also a single element, in case of” $=ALL’$. In case
of” $>ALL’$, we ensure that all values in the set
produced by the inner block are less
than “Constant“. We transform the query into
either a type-N nested query or an unnested
query in some case. It is possible to process the
whole query by only processing the inner block
when the query satisfies the following
assumption: Assumption 1: RI.V is the query
output and RJ.$U\subseteq RI.V$.
We have the following possibilities of function
dependencies between RJ.U and RJ. K :
1) RJ.$U\mu$ RJ.$K,$ 2) RJ.$Uarrow BJ$.K&RJ.$Karrow RJ.U$,
3) BJ.U\rightarrow RI.K&RI.K \star RJ.U.
Case (1): RJ.U $+$ RJ.K: In this case, the query
has the form: Single value $\{=|>\}$ ALL Set of
values. We have the following procedure to
process the query. In case of $”=ALL$’ it rejects
each U-value in relation RJ, such that the set of
K-values associated with this U-value has size
greater than one, and for each retained U-value,
it deletes it, if its associated K-value is not equal
to ”Constant”. In case of $”>ALL’$, it keeps for
each U-value the maximum among values in the
set of K-values associated with it, if that
maximum is greater than ”Constant“, its
associated U-value is rejected.
(1) Project RJ on U,K to get RJ1 and apply the
group-by operation on attribute U of RJI.
(2) In case of $”=ALL’$, delete all groups with
different K-values; retain the other groups by
only one normalized tuple representing the
group. In case of $”>ALL’$, for each group keep
the maximum K-value in the group. Now, we
have a relation, called temp with attributes U,K.
(3) For each tuple t in temp, in case of $”=ALL’$, if
$t[K1=$ ”Constant”, retain the tuple, otherwise
delete it. In case of” $>ALL$“, delete the tuple if

-4-

248

$t[K]$ $>$ “Constant”. The query becomes as
follows:

SELECT RI.C

FROM RI
WHERE RI.$V=SELECT$ temp.U

FROM temp
If assumption 1 is satisfied, output temp[U].

Case (2): RJ.$Uarrow BJ$.K&RJ.K\rightarrow RJ.U: There is
one-to-one correspondence between U and K

values in RJ. In case of” $=ALL$’ the output of the
inner block is at most one value. We process the
query as follows: Search the inner relation RJ for
that tuple t with K value $=$ “Constant“, and
write the query as follows:
SELECT RI.C FROM RI
WHERE RI.$V=t[U]$

FROM temp
If assumption 1 is satisfied, output temp[U].

5-2 Processing Type-SCOMCQ2
Queries

The query has the form:
SELECT RI. C

FROM RI
WHERE RI.$K\{=/>\}ALL$

SELECT RJ. K

FROM RJ
WHERE RJ.$U=$ RI.V

In case of type-SCOMCQI, the query has a
form: Single value $(=/>)$ Set of values. The
procedure suggested to process such queries,
checks whether the right-hand side set consists of
only one value or not. In this case, since the

If assumption 1 is satisfied, output the value $t[U]$.
In case of” $>ALL’$, it is possible that there

are more than one tuple with K-value less
than ”Constant”, we have the following step:
Delete from RJ all tuples with K-
value $>$ “Constant“, having new relation temp.
The query becomes as follows:

SELECT RI.C

FROM RI
WHERE RI.$V=SELECT$ temp.U

FROM temp
If assumption 1 is satisfied, output temp[U].

Case (3): RJ.$Uarrow RI$.K&RJ.K k RJ.U: From the
dependency, we conclude that associated with
any U-value at most one K-value. The query is of
form: Single value $\{=|>\}$ Single value. Thus it is
of type-J; the following procedure converts it into
type-N query.
(1) Project RJ on U,K to get RJI and apply the
group-by operation on attribute K of RJ1.
(2) In case of $”=ALL’$, delete groups with K-
value \neq ”Constant” and in case of $”>ALL’$,

delete groups with K-value $>$ “Constant”. The
query becomes:

SELECT RI. C

FROM RI
WHERE RI.$V=$ SELECT temp. U

WHERE clause of the outer block contains an
attribute, instead of a constant, we have the
following possibilities, depending on whether the
outer block and the inner block return a single or
a set of values:
(1) Single value $(=/>)$ Set
(2) Set $(=/>)$ Single value
(3) Single value $(=/>)$ Single value
(4) Set $(=/>)$ Set
These situations are produced depending on $fd’ s$

between attributes in the both relations.
Case (1): Single value $(=/>)$ Set of values: We
have this form in case of the following
dependencies: RI.$Varrow RI$.K&RJ.U k RJ.K. That
is, for each V-value in the inner block, we are
expecting at most one RI. K value. We have the
following procedure, which converts the query
into a type-J query. In case of” $=ALL’$, it keeps
each tuple in RJ, if the set of K-values associated
with the U-value of the tuple is of size one. In case
of $”>ALL’$, it keeps for each U-value the
maximum K-value in the set of K-values
associated with this U-value.
(1) Project RJ on U and K and unnormalize the
projection on U.
(2) Delete groups of different K-values, in case of
$=ALL$. In case of $>ALL$, for each group retain
the maximum K-value, and delete the others.

$-\vee$

249

$\sim\nu u$

(3) Renormalize the relation to be temp(U,K).
(4) The query becomes a type-J query as follows:

SELECT RI.C

FROM RI
WHERE RI.$K\{=/>\}$

SELECT temp.K

FROM temp
WHERE temp.$U=RI.V$

Case (2): Set of values $f=/>$ } Single value: It
happens when the following dependencies are
satisfied: RI.V h RI.K &RJ.$Uarrow BJ.K$. In this
case, we apply the previous procedure on RI
instead ofRJ.
(1) Project RI on V,C, and K and unnormalize the
projection on V.
(2) Delete groups of different K-values, in case of
$=ALL$. In case of $>ALL$, for each group retain
the minimum K-value, and delete the others.
(3) Renormalize the relation to be temp(V,K,C) . If
for some V-value there are more than one
associated C-value, we need to memorize all such
C-values.
(4) The query becomes a type-J query as follows:

SELECT temp.C

FROM temp
WHERE temp.$K\{=/>\}$

SELECT RJ.K

FROM RJ
WHERE RJ.$U=temp.V$

Note that, in this case, even if RJ. U is a
subset of RI.V, we cannot remove the condition in
the WHERE clause of the inner block to convert
the query into a type-N query.
Case (3): Single value $f=/>$ } Single value: This is
true, when RI. $Varrow RI.K$ &RJ.U\rightarrow RJ.K. The
query is of type-J, and is written by replacing
$=ALL$ by $=$, and $>ALL$ by $>$.
Case (4): Set of values $f=/>$ } Set of values: In
case of $=$, there is no procedure to convert this
query into either a nested query without a set
operation or an unnested query. It should be
processed by the naive approach. Before applying
the second step of the naive approach, we can do
preprocess the sets to be compared before actually

$/_{\neg}$

comparing their elements. First, we check that
the two sets of same size. Second, sort the two sets
to discover differences as early as possible.

In case of $”>$, the query has the following
semantics; any element e_{i} in the left-hand side set
is greater than any element e_{j} in the right-hand
side set. From this interpretation of the query, we
can convert it into a type-J query by applying the
following procedure:
(1) Project relation RI on attributes V,K,C , and
applying the group-by operation on attribute V.
(2) For each group, keep the minimum K-value
among all K-values in the group.
(3) Renormalize the relation, to have a new
relation called templ(C,V,K).
(4) Project relation RJ on attributes U,K, and
applying the group-by operation on attribute U.
(5) For each group, keep the maximum K-value
among all K-values in the group.
(6) Renormalize the relation, to have a new
relation called temp2(U,K).
(7) Rewrite the query using relations templ and
temp2 as follows:

SELECT templ.C

FROM templ
WHERE templ.$K>$

SELECT $temp2.K$

FROM temp2
WHERE $temp2.U=templ.V$

6- Processing Set Comparison
Uncorrelated Queries

The query has the form:
SELECT RI. C

FROM RI
WHERE RI.$K\{=/>\}$ ALL

SELECT RJ.K

FROM RJ
IWHERE RJ.U $=\prime\prime c_{onst.]}$

’

6-1 Processing Type-SCOMUCQI
Queries

The case when the inner block does not
contain a WHERE clause. This query has the
following semantics: Output C values in RI, if the
set of RI. K values (value) associated with this C

\wedge

s

$\ovalbox{\tt\small REJECT}^{\nu}|$

250

$\sim v\perp$

value is equivalent to the set of values in RJ.K.
We have the following cases:
$Case\sim(1$: RI. $Carrow RI.K$ &RJ.K\rightarrow RJ-(i.e. RJ. K is
the key of \underline{RJ}): We know that with each RI. C

value there is only one associated RI. K value.
Also the set of values returned by the inner block
is of size greater than one (assuming that RJ has
more than one tuple). Thus in case of $=ALL$ the
query has a null answer.
Case (2): RI. $Carrow RI$.K&RJ. $K\neq*$ RJ: $Weneed$
to ensure that all the RJ.K values are similar.
Process the inner block and if the result is a
single value, substitute this value in the original
block and replace $=ALL$ by $=$. The query
becomes an unnested. Otherwise the query has a
null answer.

In both cases (1) and (2), if the operation
is $>ALL$, it is replaced by the following type-A
query:
SELECT RI. C

FROM RI
WHERE RI.K $>$ SELECTMAX(RJ.K)

FROM RJ
Case (3): RI.C A RI.K&RJ. $Karrow RJ$: In this case,
if the number of tuples in relation RJ is n , then
the set resulted from the inner block is of size n .
in case of $=ALL$ apply the following procedure:
(1) Project RI on C and K to get RI’ and
unnormalize RI’ on C.
(2) Delete all groups with the number of K-values
not equal n.
(3) Sort each group on K-values.
(4) Compare each group with the output of the
inner block.

In case of $>ALL$, we process the query as
follows:
(1) Replace the inner block by the query:

SELECT MAX(RJ.K) FROM RJ
(2) Process this query to have MAXRJK.
(3) Project RI on C and K to get RI“ and
unnormalize RI’ on C.
(4) For each group keep the minimum k-value,

and delete all the others. Now, a normalized
relation called temp is generated.

’ 7,

(5) The query becomes an unnested query
written as follows:
SELECT temp. C

FROM temp
WHERE temp.$K>$ ”MAXRJK”
Case (4): RI. $Crightarrow$ RUK&BJ.K $7\triangleright BJ$: In this case
the query will be processed by the naive
approach.
6-2 Processing Type-SCOMUCQ2

Queries
It is the case when the inner block contains a

WHERE clause.We have the following cases:
Case (1): Single value $=/>$ Set of value and
Single value $=/>$ Single value: It happens in
case of the fd RI. $Carrow RI.K$. We process the inner
block and if it returns only one K-value as a
result,we replace that block by this value and
also replace $=ALL$ by $=$. The query is an
unnested query. If it does not, the answer is null.
In case of $>ALL$, we can replace it by type-A
query as in cases (1) and (2) above.
Case (2): Set ofvalues $=/>Single$ value: I t

happens in case of the dependencies RI.$C\neq*$ RI.K
&RJ.$Uarrow RI.K$ are satisfied. In this case the
output of the inner block is a single value, while
the set corresponds to the outer block may be of
size greater than one. We apply the following
procedure:
(1) Process the inner block whose result is a
single value, say, $\prime\prime KJ’’$.
(2) Project RI on attributes C and K to get RI’ and
unnormalize RI’ on C.
(3) Delete all groups with different K-values.
(4) Output C-values of groups with K-value $=$

$\prime KJ’’$.
In case of $>ALL$, we keep for each C-value in

relatien RI’ the minimam among all k-values
associated with this C-value. The query is
converted to the following unnested query:

SELECT Rr. C

FROM RI’
WHERE RI’.K $>X\Gamma’$.

Case (3)$;RI$.C+*RI.K&RJ.U $\#\div BJ.K:Inthis$

case the query is processed by the naive way.

251

7- Processing Set Containment
Queries
A set containment query has the general

form: Set 1 IS IN (IS NOT IN) Set 2. Set
containment queries are classified into two main
classes. Correlated and uncorrelated. Each class
is, again, divided into two subclasses. The next
section discusses processing correlated queries.
Section 7-2 discusses processing uncorrelated
queries.

7-1 Processing Set Containment
Correlated Queries

A set containment correlated query in SQL is
written as follows:
SELECT RI.C

FROM RI
WHERE $\{’’Constant’/RI.K\}$ IS IN/IS NOT IN

SELECT RJ. K

FROM RJ
WHERE RJ.$U=RI.V$

7-1-1 Processing Type-SCONCQI
Queries

This the case when the WHERE clause of the
outer block contains a constant. In this case Set 1
consists of only one element and its value is
specified explicitly by the user. Hence, IS IN can
be replaced by $=$, and the query becomes of type-
J , the following procedure, however, converts the
query into type-N nested query:
(1) Project RJ on attributes K and U to get a new
relation RJ1, and apply Group-by (RJI,U).

(2) Delete each group consists of only one K-
value but not equal to ”Constant”.
(3) For groups consist of more than one K-value,
sort the K-values, and if there is some k-value
which is equal to ”Constant” keep the group;
otherwise delete it. The new relation is RJ2.
(4) Project RJ2 on U to have temp.
(5) The query then can be written in the following
form:

SELECT RI.C

FROM RI
WHERE RI.$V=$ SELECT temp.U

FROM temp.
If assumption 1 is satisfied, then output temp.U.

In case of IS NOT IN, we apply a similar
procedure. We keep a group if it contains only one
K-value such that that value is not equal
to ”Constant”, or if it consists of more than one K-
value and there is no k-value $=$ ”Constant”.

Note that, if RJ.$Uarrow RI.K$, we are sure that
Set 2 is of size one, so we can replace IS IN and IS
NOT IN by $=$ and \neq , respectively. The query
becomes of type-J. We can convert the query into
type-N by selecting tuples from relation RJ with
K-value equal (not equal) ”Constant” in case of IS
IN (IS NOT IN) to have relation temp, and write
the query as in step 6 above. Note that, if the
dependency RJ.$Karrow RI.U$ is satisfied, the query
can be written as an unnested query.
7-1-2 Processing Type-SCONCQ2

Queries
This case happens when the WHERE clause

of the outer block contains an attribute. In this
case, the query is ofform, Set 1 IS IN/IS NOT IN
Set 2. We have similar four possibilities.
(1) Single (IS IN/IS NOT IN) Set
(2) Set (IS IN/IS NOT IN)Single
(3) $Single$ (IS IN/IS NOT IN)Single
(4) Set (IS IN/IS NOT IN) Set
Case (1): Happens when RI.$Varrow RI$.K&RJ.U μ

RJ.K: We can replace the query by a type-J
query in case of IS IN by replacing IS IN with $=$.
In case of IS NOT IN the query is processed by the
naive way, since RI. K value is not a constant.
Case (2): Happens when RI.V \star RI.K &RJ. $Uarrow$

RJ. K : In case of IS IN, apply the following
procedure which converts the query into type-J
query:
(1) Project RI on attributes C,V, and K to get a
new relation RI1.
(2) Apply Group-by (RII,V), to have relation RI2.
(3) Delete each group consists of diferent K-
values. The new relation is RI3.
(4) Renormalize RI3 to have temp.
(5) The query becomes a type-J, and is written as
follows:

252

253

SELECT temp.C

FROM temp
WHERE temp.$K=SELECT$ RJ.K

FROM RJ
WHERE RJ.$U=temp.V$

Note that, we cannot apply assumption 1.
In case of IS NOT IN, apply the above

procedure with modifying step 3 to be:
Divide relation RI2 horizontally into two parts:
l-temp relation as step 3 in the above procedure,
and
2- temp2 relation as the rest of relation RI2. That
is, temp2 consists of tuples having V-values
associated with different K-values.
The output C is obtained as the union of results of
two queries:
SELECT temp.C

FROM temp
WHERE temp.$K\neq SELECT$ RJ.K

FROM RJ
WHERE RJ.$U=temp.V$

and
SELECT $temp2.C$

FROM temp2
WHERE $temp2.V=SELECT$ RJ.U FROM RJ
Case (3): Hannens when RI.$Varrow RI$.K&RJ.U\rightarrow

RJ. K : It is replaced by a type-J query. IS IN is
replaced by $=$, and IS NOT 1N by \neq .
Case (4): Hanpens when RI.$V\star$ RI.K&RJ.U k

RJ.K: We cannot convert the query into a non-
set query. We can do two preprocessing steps
before actually comparing the sets for
containment. (1) Check sizes of the sets. If size of
set 1 is greater than size of set 2, set 1 cannot be
in set 2. (2) Sort the two sets to minimize
comparison time.

7-2 Processing Set Containment
Uncorrelated Queries

The query has the form:
SELECT RI.C

FROM RI
WHERE RI.K IS IN/IS NOT IN

SELECT RJ.K

FROM RJ
[WHERE RJ.$U=$ ”Constant”]

7-2-1 Processing Type-SCONUCQI
Queries

When the inner block does not contain a
.WHERE dause. There are four possibilities as
before.
Case (1): Single value (IS IN/IS NOT IN) Set of
values: It arises when functional dependencies
RI.$Carrow RI.K$ is satisfied and the projection of
relation RJ on attribute K consists of more than
one value. In case of IS IN the query is of type-N
and IS IN is replaced by $=$. In case of IS NOT IN,
we cannot convert the query into a non-set query.
Case (2): Set of values (IS IN/IS NOT IN) Single

value: It arises when the projection of relation RJ
on K consists of only one value and the fd RI.$C\wedge$

RI. K is satisfied. We apply the following
procedure:
(1) Project RI on attributes C and K to get a new
relation RI1, and apply Group-by (RII,C).
(2) Delete groups consist of more than one K-
value, in case ofIS IN. The new relation is temp.
(3) The query becomes:

SELECT temp. C

FROM temp
WHERE temp.$K=SELECT$ RJ.K FROM RJ

In case of IS NOT IN, we need to memorize C

values with more than one K-value. The result
consists of these C values union the result of
query similar to the one in step 3 with
$\neq replacing=$.
Case (3): Sin le value (IS IN $/IS$ NOT IN)

Single value: It happens when the projection of
relation RJ on attribute K consists of only one
value and the dependency RI. $Carrow RI.K$ is
satisfied. We process the inner query, and then
replace it by the only k-value generated. The
query becomes unnested, IS IN is replaced by $=$,
and IS NOT IN by \neq .
Case (4): Set ofvalues (IS IN/IS NOT IN) Set of
values: The query is processed by the naive way.
7-2-2 Processing Type-SCONUCQ2

Queries

$arrow\varphi_{-}$

253

$l54$

When the inner block contains a WHERE
clause. There are the following cases:
Case (1): Single value IS INAS NOT IN Set of
values: It happens in case of the function
dependencies RI.$Carrow RI$.K&RJ.U \neq’ RJ.K. Since
Set 1 is of size one and Set 2 is of size greater than
one, we can replace IS IN by $=$. IS NOT IN
cannot be replaced by \neq , and the query will be
processed frst by processing the inner block and
check that RI.K is not in the generated set.
Case (2): Single value IS IN/IS NOT IN Single

value: It happens in case of the function
dependencies RI.$Carrow RI$.K&RJ.U\rightarrow RJ.K.We

can replace IS IN by $=and$ IS NOT IN by \neq . The
query can be converted into an unnested query,
by substituting the inner block with its result.
Case (3): Set of values IS IN/IS NOT IN Single

value: It happens in case of the function
dependencies RI.$C\neq*$ RI.K &RJ.$Uarrow RI.K.We$

apply the following procedure in case of IS IN:
(1) Process the inner block to obtain its result, say
RJK.
(2) Project relation RI on attributes C and K, and
apply group-by on attribute C.
(3) Delete all groups with different K-values. For
retained tuples, delete any one with $K\neq RJK$.
(4) Output the remaining C-values.

In case of IS NOT IN, apply the frst three steps,
and then delete all groups with a K-value $=$

RJK. Output the retained C-values.
Case (4): Set of values IS IN/IS NOT IN Set of
values: It happens in case of the function
dependencies RI.$C\#$ RI.K&RJ.U $\#$ RJ.K. In
this case we apply the naive approach.

8- Conclusion
In this paper, we studied optimizing set

oriented SQL queries. That is queries that
compare between sets of values. We optimize such
queries, by converting the query into a non-set

query. Almost all set queries, except only one
type, can be converted into either type-N, type-J,
type-A nested or in some cases into an unnested
query.
References
[11 Astrahan,M.M, et al., ”System R:

Relational Approach to Database
Management“, ACM TODS, Vol.1, No.2,
June 1976, pp.97-137.

[21 Bernstein,P., Chiu,$W.,uUs\dot{m}g$ Semi-Joins
to Solve Relational Queries“, J. ACM,
Vol.28, No. 1, pp.25-40.

[31 Chamberlin,D.D., et al., “SEQUEL2: A
Unified Approach to Data Definition,
Manipulation, and Control“, IBM J. Res.
Dev. Nov.1976, pp.560-575.

[41 Codd,E.F. “A Relational Model for Large
Shared Data Banks“, Comm. ACM,
Vol.13, No.6, pp.377-387.

[51 Date,C.J. An Introduction to
Database Svstems, 3rd ed., Addison-
Wesely, 1981.

[6] Goodman,N., Shmueli,O. “Tree Queries:
A Simple Class of Relational Queries“,
ACM TODS, Vol.7, No.4, Dec.1982,
pp.653-677.

[71 Jark,M., Koch,J., “Query optimization in
Database Systems“, ACM Comp.
Surveys, Vol.16, No.2, June 1984, pp.111-
151.

[81 Kambayashi,Y., Yoshikawa,M.,
Yajima,S. “ Query Processing Utilizing
Dependencies and Horizontal
Decomposition“, ACM SIGMOD, May
1983, pp.55-67.

[9] Kim,W. “On optimizing an SQL-like
Nested Query“, ACM TODS, Vol.7, No.3,
pp.443-469.

[101 Ullman,D.J., $Princi_{D}1es$ of Database
Svstems, 2ed edition, Computer Science
Press, 1982.

$-/0-$

254

