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Abstract

This paper presents algorithms for $app$roximating a set of $n$ poin $ts$ by a $1i_{J1}$ ear function, or a
line, that $m$inimizes the $L_{1}n$orm of orthogon $aJ$ distances., The algorithms fin $d$ exact solu tions
based upon geom$e$ tric $p$roperties of the proble$ms$ as opposed to approximate $sol$utions based
upon $ex$isting numerical techniques. The algorithmic complexity of these problems appears not
to $ha\gamma e$ been investiga$ted$, altho$ughO(n^{3})$ naive algorithms can be easily obtain$edb$as$ed$ on
$somesimplech$arac teristics of optimal $L_{1}$ solu tions. In th is paper, an $O(n^{1.5}\log^{2}n)$ algori$thm$

is $pr$esented for the unweigh $ted$ orthogon $al$ problem, an $d$ an $O(n^{2})$ algorithm is $p$resented for
$a^{heweightedproblem.An\Omega(n1ogn}tcertainmode1\circ fcomputation.A1_{so,thecomp1exityofsolvingtheo^{1}rthogona1Lprob1emis}^{lowerboundfortheorthog\circ flalLproblemiss_{1}hownunder}$

rela$ted$ to the $cons$ truction of the k-belt of an arrangement of lines.

1. Introduction

Approximating a set of $n$ points in the
plane by a linear function, or a line, called
the line-fitting problem, is a fundamental
problem in scientific computing encoun-
tered in many fields, including statistics,
econometrics, location theory, and signal-
processing. Recently, the line-fitting pro-
blem and its variations have been consid-
ered from an algorithmic point of view
in those areas. However, the algorithms
presented are, for the most part, brute
force and involve enumeration of all possible candidate solutions. Solutions to some of these
$pro$blems, on the other hand, have inherent geometrical properties which have generated interest
from the area of discrete and computational geometry.

The nature of the problem depends on three factors: the distance function used to measure
the distance from a point to a line, the norm of the distance function used, and whether the
distances are weighted by associating a weight to each point. The unweighted case corresponds
to the situation where all weights are equal to one. Vertical, $d_{v}$ , or orthogonal, $d_{o}$ , distances
are commonly used as the distance function (see Figure 1.1), although other measures, such
as the rectangular distance, are also of interest.

The most frequently used norm is the $L_{2}$ norm which may be efficiently solved by the least
squares method for both vertical and horizontal distances. However, the $L_{2}$ norm is not always
the most appropriate criteria for a “best” fit. The two most popular alternatives are the $L_{1}$ and
the $L_{\infty}$ (or Chebyshev) norms; however, their use in practice has been limited due to the lack of
effcient algorithms (see the conclusion for a brief historical note). The full paper provides details
and references concerning the applicability of the above approaches to particular problems.
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Megiddo [10] notes that by ap-
plying his multidimensional search
technique to the vertical $L_{\infty}$ pro-
blem, formulated as a linear pro-
gramming problem, an exact solu-
tion may $b’e$ found in linear time.
Recently, Lee and Wu [9] provide op-
timal and efficient algorithms for the
orthogonal $L_{\infty}$ problem and some of
its variations.

Optimal solutions to both the
vertical and orthogonal $L_{1}$ problems
are known in statistics $as$ robust es-
timators: the solutions are not eas-
ily influenced (relative to solutions
$totheL_{2}andL_{\infty}prob1ems1iers,ornoise,inthedata/seeFig-byout-$

ure 1.2). For that reason, in appli- Figure 1.2. Effect of outliers on optimal solutions.
cations in which the data is subject
to error, for example, signal‘ processing, the $L_{1}$ norms may be much more preferable than the
more popular $L_{2}$ norms. Also, from the viewpoint of location problems, the orthogonal $L_{1}$ norm
measures the total Euclidean distance of the points from the line.

The unweighted vertical $L_{1}$ problem may be solved by general numerical approximation
methods, such as the method of descent, or it $may$ be formulated as a linear programming pro-
blem in higher dimensions [3]. [8] notes an $O(n^{3})$ naive algorithm for finding an exact solution to
the weighted vertical $L_{1}$ problem based on characteristic properties of optimal solutions. In the
case of the unweighted orthogonal $L_{1}$ problem, [13] presents a numerical algorithm which corre-
sponds to a concave quadratic programming algorithm. [11] presents an $O(n^{3})$ naive algorithm
for finding an exact solution to the weighted orthogonal $L_{1}$ problem based on characteristic
properties of optimal solutions.

The complexity of the vertical and orthogonal $L_{1}$ problems appears not to have been inves-
tigated from an algorithmic point of view before our work in [8]. The problems differ only by
the divisor $\sqrt{a^{2}+1}$ which converts the vertical distance into the orthogonal distance; however,
the divisor is an important factor in determining the complexity of the problems. [8] presents a
linear time algorithm for the unweighted vertical $L_{1}$ problem; however, the results in this paper
indicate that algorithms for the orthogonal $L_{1}$ problems lie in a different complexity class.

This paper is concerned with the unweighted and weighted orthogonal $L_{1}$ linear approxi-
mation problems in the plane. The weighted problem may be stated as follows.

Problem 1.1. The Orthogonal $L_{1}$ Problem. Given a set, $S$ , of $n$ poin $ts,$ $Pi\equiv$

$(x;, y_{i})(i=1, \ldots , n)$ , in the $(x, y)- plaJ1e,$ $wi$ th correspondin$g$ weights, $w;$ , find a pair
of values (a $b$“), for the parameters $a$ an $db,$ $wh$ich solves the followin$gmin$i-sum
problem:

$\min_{a_{l}b}\sum_{1=1}^{n}w;\frac{|y_{i}-(ax_{i}+b)|}{\sqrt{a^{2}+1}}$ .

The unweighted problem corresponds to setting all the weights equal to one.
The algorithms presented in this paper find exact solutions to both the weighted and un-

weighted orthogonal $L_{1}$ problems, as opposed to approximate solutions derived by numerical
approximation techniques. The algorithms represent a significant improvement over the previ-
ous $O(n^{6})$ naive algorithms. The complexities of the orthogonal $L_{1}$ problems are related to the
construction of the k-belts of an arrangement of lines. The unweighted orthogonal $L_{1}$ problem
is solved in $O(n^{1.5}\log^{2}n)$ time based upon an algorithm for constructing k-belts. The weighted
orthogonal $L_{1}$ problem is solved in $O(n^{2})$ time using the topological sweep algorithm of {5].
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$D_{o}(a, b) \equiv\sum_{i=1}^{n}w;\frac{|y_{i}-(ax_{i}+b)|}{\sqrt{a^{2}+1}}$ .
The absolute value signs may be eliminated by considering the value of the function for fixed
values of the parameters $a$ and $b$ . For fixed $a$ and $b$ , define sets $I_{A}(a, b)$ and $I_{B}(a, b)$ of indices
by:

$I_{A}(a, b)=\{i|y;>ax_{i}+b (i=1, \ldots , n)\}$

and
$I_{B}(a, b)=\{i|y;<ax;+b (i=1, \ldots , n)\}$ .

Note that the above notation may be interpreted as $t$ he set of indices of data points $(x;, y;)$

above and below a line defined by $(a, b)$ in the $(x, y)$ -plane, or as tbe corresponding set of indices
of data lines defined by $(-x_{i}, y_{i})$ above and below a point $(a, b)$ in the $(a, b)$ -plane.

$D_{o}(a, b)$ may then be written as follows.

$D_{o}(a, b)= \sum_{=:1}^{n}w;\frac{|y_{i}-(ax_{i}+b)|}{\sqrt{a^{2}+1}}$

$= \sum_{1\in I_{\wedge}(a,b)}w;\frac{y_{i}-(ax_{i}+b)}{\sqrt{a^{2}+1}}-\sum_{ii\in I_{D}(a,b)}w;\frac{y_{i}-(ax:+b)}{\sqrt{a^{2}+1}}$

$= \frac{a(X_{B}-X_{A})+b(W_{B}-\dagger V_{A})+Y_{A}-Y_{B}}{\sqrt{a^{2}+1}}$

where
$W_{A}= \sum_{:\in I_{A}}w;$

,
$X_{A}= \sum_{i\in l_{\Lambda}}w;x;$

,
$Y_{A}=\sum_{j\in I_{A}}w_{i}y;$

,

$W_{B}= \sum_{:\in I_{D}}w;$
, $X_{B}= \sum_{i\in l_{B}}w;x;$

,
$Y_{B}=\sum_{i\in I_{B}}w;y;$

.

Hence, given the values of $W_{A},$ $X_{A},$ $Y_{A},$ $YV_{B},$ $X_{B}$ and $Y_{B}$ , the value of $D_{o}(a,b)$ can be computed
in constant time.
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Suppose the values of the above variables are computed for some fixed parameter values
$a’$ and $b’$ . If the next computation is for new values, $a”$ and $b^{u}$ , such that the above-below
relationships of the data points and the lines defined by $y=a’x+b’$ and $y=a”x+b”$ do not
change, then the values of those variables also do not change. Hence, the objective function for
the parameters $a”$ and $b”$ can be computed in constant time. The above representation scheme
is used in all the algorithms for maintaining the contribution of the data points to the objective
function.

Morris and Norback [11] present two characteristic properties of an optimal orthogonal $L_{1}$

problem solution.
Lemma 2.1. There is an approximate $line$ to the $p$oint set $S$ which minimizes the
orthogon$alL_{1}$ norm an$d$ which $p$asses thro$ugh$ two points of $S$ .

Lemma 2.1 suggests an $O(n^{3})$ brute force approach to solving the problem. For each of the
possible (:) pairs of points, evaluate the function for a line which passes through the pair.

Lemma 2.2. The sum of the weights on the optimal $app$roximation line is greater
than the difference of the sums of weigh $ts$ on either side of the line.
Both Lemma 2.1 and Lemma 2.2 also hold in d-dimensions and can be solved by an

$O(n^{d})$ -time and $O(n)$-space algorithm. The details will appear in a later paper.
Morris and Norback suggest using both properties to find candidate $sol$ution$s$ , pairs of data

points in the $(x, y)$ -plane (or pairs of lines in the $(a,b)$-plane) which satisfy both properties.
They suggest the brute force approach of inspecting each of the possible (:) pairs to see if the
line defined by the pair satisfies the second property; if so, then compute the $L_{1}$ norm with
respect to the candidate line defined by the pair of points. Clearly, that algorithm is not a great
improvement over computing the $L_{1}$ norm for every possible pair. However, the approach does
raise the question of how many candidate pairs there are and what is the complexity of finding
them. That question can be related to the number of k-sets as described below.

Given a set $S$ of $n$ points, a k-set of $S$ is a subset $S’$ such that $S$ ‘ contains $k$ points and
there exists a line, $l_{k}$ , which separates $S’$ from $S-S’$ . The number of k-sets of a set of $n$ points
$h$as been shown to have complexities of 9 $(n\log k)$ and $O(nk^{1/2})[7]$ . The computation of k-sets
is studied in [6]. In that paper, they introduce the notion of k-belts in the dual plane.

For each point $p$ in the dual plane, let $b(p),$ $o(p)$ , and $a(p)$ denote the number of lines which
lie below $p$ , on $p$ , and above $p$ , respectively. Clearly $b(p)+o(p)+a(p)=n$ , for all $p$. The
k-belt, for $0\leq k\leq\lceil n/2\rceil$ , of the arrangement of lines in the dual plane is defined as the set
of points $p$ in the dual plane such that $b(p)+o(p)\geq k$ and $a(p)+o(p)\geq k$ . The O-belt is the
whole plane, and for $k\geq 1$ , the k-belt is bounded above and below by an unbounded monotone
polygonal chain. For $n$ odd and $k=\lceil n/2\rceil$ , the two boundaries of the $\lceil n/2\rceil$ -belt, referred to as
the median-belt, coincide. The bold line in Figure 2.2(b) represents the median-belt for the
seven lines shown in Figure 2.2 (a).

In the unweighted problem, Lemma 2.2 is just a cardinality problem: the difference in
the number of points above and below the line must not exceed the number of points on the
line. The number of candidate lines is related to the number of k-sets, or umedian’-sets since
$k=\lceil n/2\rceil$ , of a set of $n$ points in the $(x, y)$ -plane. Similarly, the number of candidate lines in
the weighted problem is related to the number of “weighted” k-sets, or weighted median-sets,
since the line must satisfy the second property which balances the weights equally on each side
of the line.

3. The Unweighted Problem
In the unweighted orthogonal $L_{1}$ problem, the dual transformations of the candidate lines cor-
respond to the vertices of the $\lceil n/2\rceil$ -belt, or median-belt (see Figure 2.2). The algorithm
presented below evaluates the function at each of those vertices in order to determine an op-
timal $va|ue$ (the existence is guaranteed by Lemma 2.2). The function evaluations can be
performed in the same amount of time as it takes to construct the median-belt.

The construction of the k-belt of an arrangement, $H$ , of $n$ lines can be performed in
$O(b_{k}(n)\log^{2}n)$ time and $O(n)$ space, where $b_{k}(n)$ is the maximum number of vertices in the $k-$

belt for all arrangements, $H$ , of $n$ lines [6]. In the unweighted orthogonal $L_{1}$ problem, $k=\lceil n/2\rceil$
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Figure 2.2.(a) Candidates in $t$ he $(x, y)$ -plane.Figure 2..2.(b) Candidates in the $(x, y)$ -plane.

and $b_{\lceil n/2\rceil}(n)=O(n^{1.6})$ .
The algorithm sweeps the arrangement by a vertical line $L$ from left to right. At $a=-\infty$ ,

the data line, $l_{m}$ , with the median slope also has the median intersection with $L$ . Let $H_{A}$ be
a set of data lines above $l_{m}$ an $d$ similarly $II_{D}$ a set of data lines below $l_{m}$ with respect to the
median intersection point. IIence, the sets $I_{A}$ and $I_{B}$ , as defined in Section 2, refer to the
indices of the lines in $H_{A}$ and $H_{B}$ , respectively, and the variables used to maintain $D_{o}(a, b)$ (see
Section 2) can be initialized in linear time.

The algorithm then sweeps the arrangement to find the next vertex on the belt which is
the intersection of $l_{m}$ and another data line $l_{A},$ $w$ here without loss of generality the line $l_{A}$

is assumed to be in the set $H_{A}$ . The value of $D_{o}(a, b)$ may $be$ computed at the new vert$ex$

in constant time as follows. Subtract $x_{A}$ from $X_{A}$ and $y_{A}$ from $Y_{A}$ . Add $x_{m}$ to $X_{A}$ and $y_{m}$

to $Y_{A}$ . Those operations take constant time and $D_{o}(a, b)$ may be computed in constant time
with the updated values. The algorithm keeps a pointer to the swept vertex which minimizes
$D_{o}(a, b)$ ; clearly, such a pointer can be updated in constant time. Thus, each step of the plane
sweep can be done without increasing the complexity of the k-belt construction algorithm. Since
$O(n^{1.5}\log^{2}n)$ time is spent in constructing the median-belt, the following result is obtained.

Theorem 3.1. The $u$ Il weigh $ted$ orthogonal $L_{1}lin$ear approximation problem for $n$

poin $ts$ can be solved in $O(n^{1.6}1og^{2}n)$ time and $O(n)$ space.

The above algorithm, although eMcient, is still an exhaustive search of all the candidate
solutions. Note that the algorithm is for constructing the general k-belt; for at least one value
of $k,$ $k=1$ , a more $e$ Mcient algorithm, $O(n\log n)$ time, can be obtained by considering the
particular problem. IIence, the authors conjecture that a more efficient algorithm may be
obtained by considering the particular properties of the median-belt.

4. The Weighted Problem

In the dual plane, the candidate solutions to $t$ he weighted orthogonal $L_{1}$ problem lie on the
boundary of the weighted median-belt of the arrangement, the set of points which are the dual
transformations of the weighted median lines in the $(x, y)$ -plane. IIence, the complexity of
finding a solution can be related to the number of vertices (due to Lemma 2.2), $n_{w}$ , on the
boundary of the weighted median-belt.
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Figure 4.1.(a) $\Omega(n^{2})$ Degenerate vertices. Figure 4.1.(b) $\Omega(n^{1.6})$ Non-degenerate vertices.

The complexity of $n_{w}$ depends on how a vertex of the median-belt is defined. A vertex
can $be$ described as either any point on the boundary of the weighted median-belt which is
incident to $mo$re than one line of the arrangement. (called degenerate vertices), or any point on
the boundary of the weighted median-belt whose lncident boundary edges are distinct (nonde-
genera$te$ vertices) (see Figure $4.1(a),(b)$ ). Note that the nondegenerate vertices are a subset
of the degenerate vertices.

Since the weighted median-belt is an x-monotone chain, the number of vertices can be
bounded by results for monotone chains. The number of degenerate vertices is $\Omega(n^{2})[14]$ (see
Figure $4.1(a))$ . The number of non-degenerate vertices is $\Omega(n^{1.6})[12]$ (see Figure 4.1(b), $n=$
$\sqrt{k}$, shaded area has $k^{2}$ vertices); although an (unknown at the time of printing) improvement
to this lower bound has been reportedly made by R. Cole and J. $Mat_{ou}g_{ek}[4]$ .

Note, however, that not all x-monotone chains are weighted median-belts. In the case of the
example for the degenerate bound, legal weight $as$signments (bold numbers) can be given to the
lines, however, the particular example given for the nondegenerate bound cannot be assigned
weights such that the chain becomes a weighted belt.

The geometry of the (unweighted) median-belt and of the weighted median-belt can be quite
different. In the unweighted case, the median-belt only has nondegenerate vertices since the belt
switches lines at every intersection. In the weighted case, however, the weighted median-belt
may not switch at an intersection if the current edge has a relatively large weight.

An algorithm based only on the properties given by Lemma 2.1 and Lemma 2.2 must
check the objective function at all degenerate vertices. Hence, the complexity of applying the
k-belt construction algorithm, mentioned above, to the weighted problem is in $O(n^{2}\log^{2}n)$ .
However, the weighted orthogonal $L_{1}$ problem can be solved in $O(n^{2})$ time by the following
“efficient” brute force algorithm.

An optimal solution is found by performing an $O(n^{2})$ time, $O(n)$ spac $e$ plane sweep as
described in [5]. Note that this plane sweep differs from the plane sweep algorithm used for the
unweighted case; the plane sweep used above only computes points of interest in order from left
to right, whereas the plane sweep used here reports all $O(n^{2})$ vertices of the arrangement in an
order defined by a topological sweep from left to right.
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Figure 5.1. Uniform gap problem on Figure 5.2. Transformed input.
the half unit circle.

First, note that the leftmost edge of the weighted median-belt can be determined in linear
time. Second, the plane sweep algorithm insures that, theoretically, each vertex is incident to
only two lines; hence, determ.ining whether a switch to a new line should take place at a vertex
of the belt can be decided in constant time by maintaining $D_{o}(a, b)$ as described in Section 2.
Third, since the next event vertex in the sweep is identified by its incident edges (lines), the
vertex can $be$ tested to see if it is on the belt by simply comparing the current edge of the belt
to the incident lines in constant time.

Since the plane sweep is performed in $O(n^{2})$ time and the extra cost to maintain the
weighted median-belt and the function $D_{o}(a, b)$ is $O(1)$ time for each vertex, an optimal solution
may be found in $O(n^{2})$ time. The algorithm is called an efficient brute force algorithm since the
computations are performed efIiciently, reducing $t$ he complexity of a pure brute force search by
a factor of $O(n)$ . Also note that the above algorithm implies that the algorithm for constructing
k-belts used in the unweighted problem is not, at least in one case, the most efficient algorithm
for computing weighted k-belts.

5. $\Omega(n\log n)$ Lower Bound

This section provides an $\Omega(n\log n)$ lower bound for the orthogonal $L_{1}$ problem under the al-
gebraic computation tree model [2]. (Due to $sp$ace limitations not all the proofs are included
in this paper). First, the lower bound of the complexity of a certain uniform gap problem of
$n$ points on a circle is shown to $be$ in 9 $(n\log n)$ under the algebraic computation tree model.
Second, that uniform gap problem is reduced to the unweighted orthogonal $L_{1}$ problem in linear
time, thus proving an $\Omega(n\log n)$ lower bound for the orthogonal $L_{1}$ problem.

The uniform gap problem on the unit circle is defined as:
Problem 5.1. Uniform Gap Problem on the (Half) Unit Circle. Given
$m+1$ poin $tsp_{1},p_{2},$

$\ldots,$ $p_{m},p_{m+1}$ on the unit circle $x^{2}+y^{2}=1$ such that $p_{1}=(1,0)$ ,
$p_{m+1}=(-1,0)$ and the y-coordinates of points $p;(i=2, \ldots , m)$ are positive (see
Figure 5.1), the uniform gap problem on the unit circle answers whether the $d$istances
of every consec $u$ tive pair of poin $ts$ are equ $al$ when these $m+1$ poin $ts$ are arranged in
increasing order of their polar angles.

Denote the $(x, y)$ -coordinates of point $p$ : by $(x;, y;)$ , where $x_{1}=1,$ $x_{m+1}=-1$ and $y:\geq 0$ .
For a permutation $\sigma$ on $\{$ 2, $\ldots$ , $m\}$ , define $W_{\sigma}\subset Il^{m-1}$ by

$W_{\sigma}=,$ $\{(x_{2}, \ldots, x_{m})\in It^{m-1}|1=x_{1}>x_{\sigma(2)}>x_{\sigma(3)}>\cdots>x_{\sigma\langle m)}>x_{m+1}=-1$,

$(x_{\sigma(i+1)}-x_{\sigma(i)})^{2}+(\sqrt{1-x_{\sigma(:+1)}^{2}}-\sqrt{1-x_{\sigma(:)}^{2}})^{2}=\epsilon^{2}\}$ ,

where $\sigma(1)=1$ and $\sigma(m+1)=m+1$ . Define $W\subset R^{m-1}$ by $W= \bigcup_{\sigma}W_{\sigma}$ where the union is

7
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taken over all permutations $\sigma$ on $\{$ 2, $\ldots$ , $m\}$ . Then the answer for the uniform gap problem for
points $p_{1},$ $p_{2},$ $\ldots,$ $p_{m+1}$ is yes if and only if $(x_{2}, \ldots, x_{m})\in W$ , which implies that, by Ben-Or’s
theorem [2], a $10$wer bound for the complexity of the uniform gap problem under the algebraic
computation tree is 9 $(\log\# W)$ where $\# W$ is the number of connected components of W. $\# W$

can be shown to be equal to $(m-1)!$ , hence, the following result holds under the algebraic
computationaI $mo$del of Ben-Or.

Lemma 5.1. . The complexity of the uniform gap problem on the unit $c$ircle is $\Omega(m$

$\log m)$ .
Next, the input for the uniform gap problem on a circle is transformed, in linear time, to an

input for the orthogonal linear $L_{1}$ approximation of points. Given the points $p_{1},p_{2},$ $\ldots,$ $p_{m+1}$

of the uniform gap problem, assume that, without loss of generality, $0=\theta_{1}<\theta_{2}<\cdot\cdot:<\theta_{m}<$

$\theta_{m+1}=\pi$ , where $\theta_{:}$ denotes the polar angle of $Pi$ . For each $Pi$ $(i=2, \ldots , m),$ $co$nstruct the
point $Pi+m$ on the unit circle whose polar angle $\theta_{i+m}$ is $e$qual to $\theta_{j}-\vdash\pi$ (see Figure 5.2). The
set, $S$ , of $n=2m$ points $p_{1},p_{2},$ $\ldots,p_{n}$ is then used as the input for the orthogonal $L_{1}$ problem.
The transformation is then completed by showing the following result.

Lemma 5.2. The minimum objective function value of the orthogonal $L_{1}$ linear
approximation for the set $S$ of poin $ts$ is at most 2 $\cot\frac{\pi}{n}$ , and is 2 $\cot\frac{\pi}{n}$ if an $d$ only if
the answer for the uniform. gap problem of $po$in $tsp_{1},$ $p_{2_{1}}\ldots,p_{m},p_{m+1}$ is yes,
The proof is developed as follows. For the orthogonal linear $L_{1}$ approximation problem, it

is known that there is an optimal approximation line such that the line passes two points among
the given points and $|N_{A}-N_{B}|<N_{O}$ whe$reN_{A},$ $N_{B}$ and $N_{O}$ are the numbers of points above,
below, and on the line [11]. By the definition of the transformed problem, there is an optimal
approximation line among the $m$ lines $l$ ; connecting points $p$: and $p_{1^{\}}+m}(i=1, \ldots, m)$ . The
function value of $\iota_{:}$ , the summation of $t$he orthogonal distances from points $Pj$ $(j=1, \ldots , n)$ to
$l_{i}$ , is given by

$\sum_{j=1}^{n}|sin(\theta_{j}-\theta_{i})|$ . (1)

Hence, the minimum function value of the orthogonal linear $L_{1}$ approximation for $S$ is given by

$\min_{i=1,\ldots.m}\sum_{j=1}^{n}|\sin(\theta_{j}-\theta_{i})|$ . (2)

We are considering to maximize (2) for $0=\theta_{1}<\theta_{2}<\cdots<\theta_{m}<\pi$ and $\theta_{i+m}=\theta_{:}(i=$

$1,$ $\ldots$ , $m$). However, this is an optimization problem of maximin type, and rather difficult to
handle directly. Instead, we will consider to maximize

$\sum_{:=1}^{m}\sum_{j=1}^{n}|\sin(\theta_{j}-\theta_{i})|$ . (3)

Here, observe that the function values for lines $l$ ; are the same when the set $S$ of points are
uniformly placed on the circle. Hence, if (3) is maximized when and only when the set $S$ of
points are uniformly placed, then (2) is maximized only in the same uniform case.

Let us prove that (3) is maximized when and only when the set $S$ of points are uniformly
placed. (3) is further expressed as

$\sum_{1=1}^{m}\sum_{j=1}^{n}|\sin(\theta_{j}-\theta_{i})|=2\sum_{1=1}^{m}\sum_{j=i+1}^{:+m}\sin(\theta-\theta)=2\sum_{k=1}^{m}(sin(\theta-\theta_{j}))$

For any $k=1,$ $\ldots$ , $m$ , we have

$0<\theta_{i+k}-\theta:<\pi,$ $\sum_{=:1}^{m}(\theta_{i+k}-\theta:)=k\pi$ .

Since $\sin x$ is strictly concave on the interval $[0, \pi]$ , we have

$\sum_{:=1}^{m}sin(\theta_{i+k}-\theta_{i})\leq m\sin\frac{k\pi}{m}$
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and the equality holds if and only if all $\theta;+k-\theta$; $(i=1, \ldots , m)$ are equal. All $\theta_{i+k}-\theta$;
$(i=1, \ldots , m)$ are equal for any $k=1,$ $\ldots$ , $m$ if and only if all $\theta_{i+1}-\theta;(i=1, \ldots , m)$ are equal.
Hence, (3) is maximized when and only when the set $S$ of points are located uniformly on the
circle.

When the set $S$ of points are placed uniformly, the function value of the orthogonal linear
$L_{1}$ approximation is expressed by

$\sum_{j=1}^{n}|\sin\frac{j\pi}{m}|=2\sum_{j=1}^{m}\sin\frac{j\pi}{m}=2\cot\frac{\pi}{2m}=2\cot\frac{\pi}{n}$ .

Thus, we $h$ave shown Lemma 5.2.

Using the above lemmas, the following result provides a lower bound for the orthogonal $L_{1}$

problem.

Theorem 5.1. Under the algebraic computation tree model, the complexity of the
orthogonal $L_{1}$ linear approximation of $n$ points is $\Omega(n\log n)$ .

This result is mainly of interest to the unweighted orthogonal problem since the actual
bound for the algorithm presented above is in $O(b_{k}(n)\log^{2}n)$ , where $b_{k}(n)$ is the number of
k-sets of $n$ points $(k=\lceil n/2\rceil)$ . As mentioned abov$e$ , the bounds for $b_{k}(n)$ are in $\Omega(n\log k)$ and

$S(o\Omega t(r(nank_{1^{1}og}uss^{6})_{n}[7|_{fork=\lceil n/2\rceil)^{O(n^{2}),respectively,fork=\lceil n/2\rceil),butErd\overline{o}s,Lov\acute{a}sz,Simmons,and}}^{\Omega(n\log n)and}conjecturethat.theupperboundisactuallyc1osertothelowerboundof\Omega\{n\log k)$

6. Conclusion

Several results were given concerning the computation and analysis of the unweighted and
weighted orthogonal $L_{1}$ linear approximation problems. The results are significant from theo-
retical, practical, and historical viewpoints.

The results are of interest from a theoretical viewpoint since th$ey$ relate the complexities
of the problems to k-sets and k-belts. The complexities of those problems is an open problem
in combinatorial geometry. The results presented here motivate further improvements on the
bounds for the number of vertices in a k-belt. Another open problem is an improved algorithm
for constructing the median belt.

The results are of practical interest since the algorithms $p$ rovide efficient algorithms for
solving the most popular forms of the $L_{1}$ approximation problem. The results are of particular
interest for the linear facility problem and the linear regression problem since the algorithms
provide practical and efficient alternatives to the currently used methods (for example, the $L_{2}$

and $L_{\infty}$ approximations).

The results presented here, and also in [8], are of historical interest since this is the last
of the three most popular $L_{p}$ approximation problems $(p=1,2, \infty)$ to succumb to efficient
algorithms. [3] notes that alternative criteria to the $L_{2}$ norm have been investigated since the
mid-1750s when R.J. Boscovitch proposed a geometric method for solving a special case of
the $L_{1}$ approximation problem. Interestingly enough, the efficient algorithms for both the $L_{1}$

and the $L_{\infty}$ problems have been derived from applying basic paradigms used in computational
geometry.

’

Continuing research includes the $L_{1}$ problem in higher dimensions, which is of particular
interest to econometricians since they often consider the linear and non-linear $L_{p}$ problems in
higher dimensions [ $1|$ . Solutions to those problems under parallel processing models is also
being considered. Furthermore, the paper has raised some questions about the complexity of
computing median-belts and weighted median-belts.
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