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Abstract

Construction algorithms of optimum and near-optimum decision trees are surveyed
under two optimality criteria: d-cost (e.g. number of the nodes of a tree) and e-cost (e.g.
average time of testing for a decision). Special attentions are paid for: 1) presenting
new selection criteria of a variable for constructing near-optimum trees, 2) exploring
their properties and 3) the comparison of the performance of the criteria. Experimental
results are also mentioned, giving some conclusive remarks about the performance.

For converting a decision table by the variable selection method (VSM) to a near-
optimal decision tree in the sense of the minimal number of nodes of the tree we present
three variable selection criteria from different standpoints: A from combinatorial, H
from entropy and D from discriminant analysis.

In e-cost case, the combinatorial criterion splits into three criteria loss, Q and O.
Thus we have total 5 criteria together with e-cost versions of the criteria D and H.

- Experimental results indicate that the combinatorial criteria show slightly better
performance than others with the expense of auxiliary storage.

1. Introduction

A decision table (hereafter called a table) is a list of rules. A rule consists of a pair
of conditions and an action, representing an “if-then-do” rule such that the action is
to be executed when the conditions are satisfied. Such table is used very widely in
the situation where an “input” object is required to be classified (identified) according
to the values of its properties. This is a structure underlying in many areas including
complexity theory [Bud85,Lov85,Weg84], identification of a specimen, diagnosis [Gar72],
clustering, pattern recognition, programming and database searching [Han77]. One of
the feasible ways to do this is to test each property sequentially one by one until an object
is determined uniquely (sequential test procedure STP). This is usually represented by
a decision tree (hereafter called t'ree).’ In most practical cases the table has many don’t-
care entries and the decision is possible by testing part of the properties. Thus automatic

translation of a table into an optimum or a near-optimum tree under some optimality
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criterion is desirable because there are many such trees (there can be at most [TZ, 77"

equivalent trees for an L-ary table f [ScS76]). The two optimality criteria adopted in
this paper are: d-cost (i.e. number of the nodes of a tree) and an average cost of testing
(an average weighted path length) over the tree.

Section 3 briefly describes the construction of optimum trees. Given an input table in
completely expanded form (hence its size is 2%, where L is the arity of the input table),
the construction algorithm of optimum trees always requires O(L3") operations with
O(3%) storage [Bay73,5¢S76]. The optimal variable theorem accelerates this algorithm
in d-cost case but does not reduce its computation lower than O(3L).

On the other hand, a top-down method employing successive variable selections
(VSM: variable selection method) can construct near-optimum trees in at most and
usually far less than O(L?2%) operations. The VSM is applicable to a more practical
case in which initial table is a partial function.

In Section 4 we propose three VSM criteria: A from combinatorial, H from entropy
and D from discriminant analysis standpoints, for constructing a near optimum tree in
the sense of the minimum number of the nodes of the tree (a special case of d-cost). We
examine their formal properties: nev-free (rejection of nonessential variable) and tev-
or gdv-bound (selection of a totally essential variable or a quasi-decisive variable; tevs
are optimal under both costs and ¢gdvs are also optimal under d-cost). We show that
A is nev-free and tev-bound but not ¢dv-bound, while H and D have just the comple-
mentary property of this. The criteria H and D require at most O(L?2%) operations
(bit comparisons), while the criterion A requires O(L?2%) operations (additions) with
auxiliary storage of O(L?2L). Expérimental results show that the performance of D and
H practically coincides and the optimality attained by A is slightly better than those
by D and H (1.03 vs. 1.05 compared with optimum trees).

In e-cost case, the combinatorial criterion A splits into the three variable selection
criteria: loss, Q and O. Then we present e-cost versions of H and D. We show that Q
and O are nev-free while the others are not. Experiments show that the “optimality
coefficients” of Q-trees and O-trees are only 1.02 — 1.05 in some general case, while
that of loss-trees is 1.10 — 1.14. The ehtropy criterion H is worse than loss and better
than another simple heuristic mine. Moreover, the average numbers of nodes of the
resulting trees of Q and O are only 1/4 of the corresponding loss-trees, indicating that
the property of nev-free is crucial for a selection criterion. The performance of the three
criteria Q, O and loss is at least not worse than the known heuristics at least on some

example.



287

2. Definitions

Let {1,...,L} and {a1,...,ax} be the sets of L properties and K actions.- Assume that
each property ¢ takes, for simplicity, the binary value z; = 0 or 1, and the determination
of the value incurs some cost. We are given a function f : {0,1}f — {as,...,ax}, called
L-ary-K-action decision table, or simply a table, which maps the values of the properties
into the actions. Let I = {z|z € {0,1}*} be a set of vectors € = z;...z[. A pair
(2, f()) is called a rule. We treat a table f as the set of all 2F rules. We assume that

an a priori distribution function p(@) of its execution probability is given over the set I.

2.1. Subtables and Fixations

Given an initial table f, a subtable is a restriction f|(z;, = s, form = 1,...,h) =
f(z1...81...25...8p...2L) which is an L — h-ary function. The variables z; , m =
1,...,h, 0 < h < L are called fized (to s,,), and the remaining variables are free. A
subtable consists of all rules having vectors with some of their elements equal fixed
constants. The number of free variables is the arity of the table (initial table is with
the highest arity L, and a rule with the lowest arity 0). Since the initial table consists
of 2L rules, we have 22" different subsets, among them 3% subsets are subtables.
Hereafter property ¢ and z; are called variable and its value respectively. The sole
type of restriction f|(z;, = s.) we deal with is called a fization of f and its succession
is denoted by fii'...:5" or simply fa, where a’denotes a concatenation of i3!,... ",
The null fixation A corresponds to the initial table f. We allow to treat fixation also as

a “mask” operator to @, i.e.

QL =T1...L45-181T5 41+ - L5 =1SmTip+1 -+ 5T L.

This enables‘us‘ to write the rules of fa simply al = {az|z € I}.

2.2. Decision Trees and Variable Selection Method (VSM)

Every tree we deal with is an eztended binary tree [Knu73a, p.399]. Each node of a binary
tree has exactly one in-edge (except root R which has no in-edge) and either zero or two
out-edges. External nodes (leaves) are those with no out-edges. The remaining nodes of
the tree are called internal. The path of a node is the set of nodes which are connected

by the edges from the root R to the node.

A decision tree for f is a binary tree associated with each internal node a subtable
and a variable (called test variable), and with each leaf a decision action according to

the following algorithm:
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If f is a constant (f consists of a single action) then the decision tree for f is a
leaf with the decision action. Otherwise it is a tree having a root associated Wlth the
subtable f wand with any its free variable z as the test variable, and having the left
and right subtrees corresponding to the subtables fi® and fi', respectively (the edges
leading to them are labeled by 0 and 1, respectively).

Node which contains a constant (nonconstant) subtable is called simply a constant

" (nonconstant) node. If we have some criterion to choose a test variable from the set of

free variables, then we can construct a tree by repeating “select ¢ from the variables of
the subtable of a node according to the criterion and make its two sons which contain
fi® and fi' respectively” for each nonconstant external node until no such node exists
in the tree. This general algorithm of constructing a tree is called a Variable Selection
Method (VSM) and its basic process consists of dividing a subtable. The number of
non-constant subtables which appear in T is at most 2% — 1.

As we will see in Section 4 our VSM needs in the worst case O(L?2L) computation.
Simple VSM by a random selection of a variable requires in the worst case L2 bit-test
operations. This is easy to see because we have maximum 2 rules at each level and
there are maximum L levels (we need bit-test operations as many as the number of rules

to divide a table).

One may think that each rule 2 of a table f is identified as belonging to fi° or fi'
according to z; = 0 or 1 respectively at each internal node, where 7 is a test variable of
the node. A path of the tree represents such successive fixations. Thus a tree can be
considered as a device to determine values of a given function by means of successive
fixations. We call a decision tree simply a tree and denote it by 7. A node of a tree is
represented by (7,7, fa), where r is an identifier, 7 is a test variable and fa is a subtable

of the node. This notation enables us to write a leaf by (r, A, fa).

2.3. Description and Execution Costs of a Tree

Two different costs are associated with each variable 7, 1 < ¢ < L: descriptioﬁ cost
(abbreviated by d-cost) C¢ and execution cost (abbreviated by e-cost) C¢, through

which we define two costs for a tree.

We define d-cost of a tree T by

TI'= > i, (1)

(r,i,x)€T
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where the summation is taken over all internal nodes of the tree. Thus |T'|? is the cost
for representing the whole test procedures of T' and does not depend on its execution.

“Average” cost of an execution of a tree'depends on the execution frequencies of the
rules {(x, f(«))}, which we assume a prior known. The distribution function p(x) is the
normalized execution frequencies of rules, i.e. p(I) = Zaerp(x) =1 and p(x) > 0 for
. each . Then for any subtable fa, its execution probability, i.e, the probability that one
of the rules in the subtable is executed, is computed by p(fa) = p(al) = Y aecqr plaw).
Obviously p(f) = 1. ‘ v '

Along a path to a node (r,7, fa), we test h fixed variables of fa for a total cost
of fizcost(fa) = Xt _, C¢ , which we call fization cost of fa (this corresponds to the
weighted path length of the node).

The e-cost of a tree is defined by the expectation of the fixation cost for all leaves of

the tree, 1.e.

T = ¥ p(fa)fizcost(fa), ()

(r A fa)eT
where the summation is taken over all the leaves (external nodes) of T. Thus |T|°
represents an average cost of testing required for deciding an action through the tree.
An alternative expansion form of the e-cost is [T'|* = 3(,; sa)er P(f@)Cf, where the

summation is taken over all internal nodes of T'.

2.4. Optimum Decision Trees

We call a tree optimum when its cost is a minimum among all trees corresponding to
" the table f.

Example 2.1.
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.2, | action | probability | | IT3 | T
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8(1) Z | Po d-cost Ci+Cyg C; +CY
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11 b |pa=1—(potptp) T IGT (P2 +ps)C; Cf +(p1+ps)Ci

The possible trees are shown in Fig. 2.1. Their respective costs are given in the
table. Note that |T}| < |T3| < variable 1 is optimal.

3. Construction of an Optimum Decision Tree

A construction algorithm of an optimum tree is known [Bay73] which always requires
O(L3%) comparisons where L is the arity of the input table. The quantity O(3") comes
from the number of all subtables.

The algorithm is based on the dynamic programming principle. It computes an
optimum cost (tree) for every subtable by comparing the costs of “quasi-optimum”
trees having the test variable :, where 2 runs all the free variable of the subtable.

We measure the amount of computation needed for the algorithm by the number of

min’s (comparisons of two costs). We have
3L — 2L < computation < (L/3)3".

The lower bound is attained when min is performed once for each subtable except
arity 0 subtables (we don’t know an algorithm which attain this lower bound) and the
upper bound when min is computed for all free variable z of the subtable. Thus the upper
bound is the amount of computation always required by the dynamic programming
algorithm. Since the size of the initial input table is about N = 2L the number
of the operations needed for this algorithm is O(N'%3logN) = O(N'SlogN), where
the log has base 2. The optimal variable theorem (Theorem 4.3) can accelerate this
algorithm in d-cost case (and not in e-cost case) because it enables us to determine
optimal variable without running : for all free variables in some of the subtables. The
amount of this reduced computation lies somewhere between the two bounds. As we
have seen, the computational order cannot be lowered below O(N'°%®) = O(N'€) by
the acceleration. However, it greatly reduces the computation. For example, for 10
variable 4 action tables, where the occurrences of each action obey 80-20 rule [Knu73b,
p-397], the computation decreases to 42 % its value without acceleration, while the total

execution time decreases to about 80 %.
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The dynamic programming approach for constructing optimum decision trees are re-
ported by many authors [ScS76,MiS80]. Another construction algorithm of an optimum
tree by branch-and-bound principle is reported in [ReS66,ReS67].

4. Three VSM Criteria in D-Cost Case

Average computation of VSM is expected to be much less than its worst case evaluation
O(L?2%) (“complete tree” is the worst case and most decision trees in practice are far
from being complete). We are going to propose such efficient VSM criteria. At the same
time, we want to claim something formally about the performance of our criteria. For
example, one wants to know which is the best criterion among them or in what situation
each criterion is adequate. For this purpose we first investigate conditions of “optimum”

or “worst” selection, then examine whether our criteria satisfy these conditions or not.

4.1. Optimal Variables and Nonessential Variables

We need a notation to represent a unary subtable also called an i-pair of f. This is a

subtable whose all variables except ¢ are fixed. Let us denote a subtable simply by f.

1. Let f have all h variables denoted by 1,...,h —1 and 7 (¢ # k,k = 1,---,h —1).
Let u = u(1l)---u(h — 1), u(k) = k, k = 1,...,h — 1, denote a sequence (i.e.

concatenation) of 1,...,h — 1.

2. Let z = z(1)...2(h—1), (k) =0o0r 1 for k=1,...,h — 1, denote a bit sequence
of length h — 1.

Denote a fixation u(1)*™ ... u(h — 1)**-1) by u® for simpiicity. Let u®; represent a
vector in which the variables in u are fixed to the values z and only the variable 7 is

free.

Then an i-pair is represented by f(u%) = fu®(u%), which consists of a pair of rules
of f: (u®%, f(u®%)) and (u®!, f(u®i')). If two actions of an i-pair coincide, it is a
constant (inactive) i-pair, otherwise it is a nonconstant (active) i-pair. Each fixation u®
which gives inactive or active :-pair is called inactive or active fixation for 7, respectively

hereafter only z is indicated instead of u” since u is the “complement” sequence of 2).
_ p q

Example 4.1. For z = 00 and u = 23 the fixation u® denotes 2°3°. Then 1-pair
f(2°3°1) = £203°(2°3°1) for f in Table 4.1 is a nonconstant 1-pair, while f(1'2°3) =
f1129(112%3) is a constant 3-pair. Hence the fixation 2°3° is active for 1, while 1!2° is

inactive for 3 in f.
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Now we define some notions about variables. Recall that the probability of each rule
is not 0. A variable ¢ is nonessential if each fixation z for i is inactive, i.e. f(u®i) = a;
for each = (a constant action a; is determined depénding on z). Equivalently 7 is
essential if there is an active i-pair. Again, a variable ¢ is totally essential if each
fixation z for ¢ is active, i.e. f(u®i) # const. for each z. Finally, let us call ¢ quasi-
decisive if fi°® = const. and fi® # const. for strictly either one of s = 0 or 1 [Miy85].
Nonessential, totally essential and quasi-decisive variables are abbreviated to newv, tev
and ¢dv, respeétively. Note that when rules with probabilities 0 are allowed, these
definitions should be modified in an appropriate way.

Let us call a variable i optimal if there is an optimal tree having 7 as a test variable
at the root. This means that we have an optimal tree having optimal left and right

subtrees for fi° and fi', respectively.

Theorem 4.1. Non-essential variables cannot be optimal under both cost. That 1s, a

nonessential variable never appears as a test variable in an optimum tree.
Theorem 4.2. (cf.[GaR73]) Total essential variables are optimal under both costs.

Theorem 4.3. [Miy85] Optimal Variable Theorem. Qdvs are optimal under d-cost.

Conversely, if there are gdvs, then only they are optimal under d-cost.

Note that a ¢gdv is not an optimal variable in general with respect to e-cost.

Therefore it is desirable for a good criterion to reject nevs and select a tev or. ¢qdv.
Let us call a criterion nev-free if it doesn’t select an nevs. Again, let us call a criterion
tev-bound or gdv-bound if it selects a tev or gdv whenever they exist. Now we present
three criteria A, H and D for selecting a variable to construct an efficient trees in
the sense of minimal number of the nodes of the tree and see that they satisfy these

properties in a complementary way.

Our basic strategy is “to make constant tables as fast as possible” since no more
dividing is necessary for constant tables. Hence our criteria should reflect both distances

between fi° and a constant function and fi! and a constant function.

4.2. Activity Criterion A

Define A; := the number of active ¢-pairs of f. An active i-pair is a logical unit to be
sepafa‘ted by dividing a table. Then A = 3% | A; represents the total number of active
pairs of rules to be separated. Since A; is lost by dividing f by i, we select a variable
i which have a maximum number of A; among all variables (cf. [Spr66,MiO82]). This

activity criterion we distinguish by A.
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Proposition 4.1. Activity ranges 0 < A; < 2171, The best value A; = 2871 is attained

iof and only if i is a tev, and the worst value A; = 0 is attained if and only if i is a nev.

4.3. Entropy Criterion H

The VSM proced{lre can be “viewed” as a process of perpetual increase of the determi-
nacy (equivalently, decrease of the ambiguity) of actions until finally we get all tables
completely determined [HVMG82,Mi082,Mor82]. To describe determinacy we first give
some notations.

We denote by N; the number of the occurrence of the action a; in f, and let

N := the number of rules (@, f(2)) such that f(z) = a; and z; = 0, and similarly
N;l := the number of rules (@, f(«)) such that f(x) =a; and z; = 1.

We have the following equations:

1) N’ + N = N,
2) L, N =N"=2"1=N/2, s =0,1,
4) p, = Ny/N (%;p; = 1),
5) pi' = Ni'/N* = 2N¥'/N.
The actions a; in a table f can be considered to occur with the probabilities p;, j =
1,..., K. Therefore the nondeterminacy (ambiguity) can be measured by the entropy

defined by
K
H(f) = —3_pjlog p;- (3)
i=1
This gives the following entropy criterion [MiO82]: select a variable ¢ which has the

least value of

K S -3
Hi:=-1/2 3 3 p; log pj, | (4)

$=0,1 7=1

where p!’ is the probability of a; in fi* (s =0,1).

Proposition 4.2. The entropy H; ranges 0 < H; < log K. The best value H; = 0 1s
attained if and only if either f is a constant or i is a unique essential variable of f, and
the worst value H; = log K 1s attained if and only if each action a; occurs equiprobably
for 5 =1,...,K in both subtables fi* for s =0 and 1.

4.4, Discriminant Criterion D

Each variable z; (z; = 0 or 1) contributes to discriminate different actions and this

can be measured by “discriminating power” of a variable z; from the standpoint of
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the discriminant analysis [Fis36], which presents the following ratio of variances as its
measure [Wil62]:

i = 05/ Tl (5)
where 0%, and o}, represent the between-action (interclass) and the within-action (in-

traclass) variances of the variable z;, respectively. They are given by
ohi= Yl —up), (6)
J .

o= wi(1/N;) 3o (zi—pp),

z€class(j)
where ,uj- and p¥ denote the mean values of z; with respect to the action a; and f,
respectively. We have:

6) uj = Ea; 2 = T, %/ N; = N /N,
N uy=Ez;=Ye/N=3;N{/N=N/2-1/N =1/2.

One may wonder that the values 0 and 1 assumed by a variable z; are “nominal”
entities only to be used to distinguish two different things. However, we can use 0 and 1
in place of any two different real numbers. This is because the 7; so defined by a ratio of
two variances is invariant under an affine transformation of coordinate z to y = b(z +a),
i.e. shift a and scale factor b; in other words from z = 0,1 to y = ab, b(1 + a).

Since 0%;+ 0%,; = 0%, and 0%, = 1/4 (from p¥. = E z; = 1/2), the interclass variance
0%, alone represents the degree of separafion of the classes, giving a criterion [MiO82]:

select a variable z which has the greatest value of

ok = (1/N) (NS /N - 1/4 (7)

Proposition 4.3. The 0%; ranges 0 < 0%; < 1/4. The best value o%; = 1/4 is attained
if and only if i divides the action set into two disjoint sets, i.e. the actions of fi° and
fil have no action in common, and the worst value o%; = 0 is attained if and only if i

divides each action class into two halves.

In Table 4.1 we give the values of the above variable selection criteria for the function
given there. All the criteria select 1 or 3 as a first test variable and can give a minimum

tree.

10
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Table 4.1.

variable | 1 2 3

» A; 3 2 3
f(123) w | 3/4 2;4 1;4

_ e |12 1/2 1/2

123 | action [ 0o 1/2 1
88‘1) b ok, |3/32 0 3/32
010 Z p;z 1/4 2/4 3/4
ol . P, 1/4 1/4 1/4

100! @ P 2/4 1/4 0

101 a a

101 4 Pl 3/4 2/4 1/4
111 b p;?l 1/4 1/4 1/4
pi | 0 1/4 2/4
H, 1.16 1.50 1.16

Theorem 4.4. A is nev-free and tev-bound but not qdv-bound, while H and D have

just the complementary properties.

The results are summarized in the following table.

criterion | I nev-free | tev-bound l gdv-bound
A max A; O o X
H " | min H; X X I O
D max og; X X O
optimum O O I O

4.5. Amount of computation of the criteria

Dividing a table f by a variable i is done by testing i-th bit of each rule and then
transferring the rule into the corresponding subtree (either fi° or fi') according to its
value 0 or 1, respectively. Thus we need bit-test operations as many as the number of
rules of a table for dividing a table (we also need the same number of transfer of a rule).
Thus a VSM need at least O(L2%) amount of computation for simply constructing a
tree whatever criterion is used for the variable selection (in the worst case). We addi-
tionally need computation for choosing a test variable, which usually requires amount
of computation larger than proportional to the number of the rules. So this part is
dominant in the computation.

The most time-consuming part is to calculate N}O and N ;l For this we need two
operations: another bit-test and an operation of table look-up which returns an action
class j for a given @ such that f(x) = a;. This is done for each of L — [ free variables
at each level I. Thus we need 2L Y FY(L — 1) = L(L 4 1)2L~" bit-test operations for the

11
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whole tree. We need table look-up operations exactly a half amount of that for bit-test
operation, since N ;0 = N;—-N ;1 and N; may be assumed to be known beforehand.
However, note that in a sense D is more advantageous than H because it is represented
only by Nf (and Nj).

For the computation of activity of : we take another approach. We initially generate
all active ¢-pairs of an initial table f for all ¢ = 1,..., L and store them in an array
ALIST(¢),z = 1,..., L. Then each subtable inherit pointers to ALIST(%) for its active
i-pairs from its “mother” table. The computation for this pointer manipulation is
evaluated in the worst case to the number of L(L — 1)2572. The storage necessary for
the pointers to ALIST is given in the worst case by L(L + 1)2L~% [MiO87].

The above worst-case evaluations of the amount of computation for the criteria are
summarized in the following table. In our implementation A requires O(L?2F) auxiliary
storage to save active pairs. We also give average time for constructing a tree, where
L =10, K = 4 and average is taken over 1000 tables. This experiment was performed
on a FACOM M380 computer executing 12 MIPS, with 8M bytes of available main

mermory.
criterion computation average time (second)
random O(L2%) ' 1.02
H O(L?2%) 2.01
D O(L%2%L) 2.03
A O(L%2%) 2.59
with additional storage O(L22L)
optimum (DP) O(L3%) 16.60

4.6. Experimental Observations

We investigated the performance experimentally on random tables for K = 2-32 and
L = 4,6,8,10, where the occurrence of actions is artificially weighted. Experimental
results show that the performance of H and D practically coincides and is slightly worse
than A (more precisely, 1.05 vs. 1.03 in terms of “optimality coefficient”, i.e. average

of optimum trees is taken as 1.0).

5. Five VSM Criteria in E-Cost Case

In e-cost case, the criterion A splits into the three criteria: Q, loss and O.

5.1. A Criterion Loss

The relative probability of the nonconstant i-pairs contained in f, i.e.

12
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af(i) = (1/p(f) 2° p(f(u™)) (8)

active =

+ is called activity of ¢ with respect to f; where p(f) denotes the sum of the probabilities .
of the rules in f.

A nonconstant :-pair can be separated only by the test variable ;. Hence, a}t(i)
represents a degree of “essentiality” of dividing f by 7. On the other hand, ay () :=
1—af(2) representé a ratio of separating constant :-pairs by dividing by ¢, and hence

this may include some “potentially inessential” portion. Thus

loss;(i) := Ci(1 — a}(s)) | (9)
is called loss of testing the variable i with respect to f. A near-optimum tree might be

constructed if we choose 7 which has a minimum value of losss(¢) among all variables

of f [MTG80]. We distinguish this criterion by loss.

We note that another simple VSM is to select a variable : which has a minimum cost

C; among all free variables. We distinguish this criterion by minc.

5.2. A Criterion Q Based on a Potential

In [Miy87] we have introduced the notion of a “potential” of a table and have formulated
a simple but intuitive scheme for deriving a criteria from it. A potential represents a
certain measure of “complexity” of a table. It is shown that, for a subtable f having all

free variables 1,2,...,h,
h
q(f) =3 af(i). | (10)
=1

is a potential (called activity potential). Then the following activity potential criterion
is derived from the standpoint of maximizing the decrease of the potential of the tree
caused by the splitting of the node (per unit cost). A VSM Q [Miy87] selects a variable

¢ which has a maximum value of
Q,(i) = a} (5)/C; (1)
among all variables of f.

5.3. A Combined Criterion O

Combining the two criteria loss and Q, let the third criterion O [Miy87] be: select a

variable ¢ that has a maximum value of

.13
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O4(i) = a} (1)/CH(1 — a} (). (12)

We immediately see that if C; = const. for all 7, then all the three criteria select the
same variable, since each criterion is a monotone function of a (i). It is known that the
criterion loss always selects an optimal variable when (and only when) L = 2 [Mor82],

while Q and O do not always select an optimal variable even when L =2 .

5.4. Entropy Criterion

In e-cost case the entropy criterion H reduces to selecting ¢ which gives a minimum of
: K
H;:= ) (=D_rj logry + p(fi*)log p(fi*)), (13)
5=0,1 7=1 .
where r;'-’ denotes the sum of the probabilities of the rules of the class j in the subtable

fie.

\

5.5. Discriminant Analysis Criterion

The discriminant analysis criterion D reduces to selecting i which gives a maximum of
ni = (3o (r§ Y /rs = p(F)2[p())/ (p(fi) = p(Fi)/p(S)), (14)
J

where r; denotes the sum of the probabilities of the rules of the class j in the table f.
Note that we have no ¢%; = 1/4 for all 7, so we need the full computation of n; in

contrast to the d-cost case (where the computation of ¢%; is sufficient).

5.6. Properties of the Criteria

Similar analysis as the d-cost case has been done over these five criteria. Their properties
about nev-free and tev-bound are given in the following table. It is rather hard to
conclude that some criterion is superior to the others from their formal properties (note
that O doesn’t have a property called “monotonicity” which Q, loss and optimum

criterion have) [Miy87].

criterion nev-free | tev-bound
minc min C; X X
loss min loss; X O
Q max Q; O X
O max O; O O
H min H; X X
D max 1; X X
optimum O O

14
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5.7. Amount of Computation and Implementation

To compute Y gcsive - P(f(u®])) we need sum operations at most proportional to the
~ number of rules of the subtable f (the value p(f) is computed once when it is generated
and kept). This is done for each free variable of f. Hence the amount of computations
and storage required for the algorithm are O(L2%) and O(L?*2L). Similarly as we have

seen before we need O(L?2L) extra storage for the list of non-constant pairs of rules.

5.8. Experimental Observations and Performance

The performance of the three criteria Q, O and loss are tested on two classes of ar-
tificial data q-d tables and 8-2 tables for L = 4 — 12, and compared to optimum trees
(constructed by DP for L = 4— 10) and minc trees in [Miy87]. A g-d tables consists of
all q-d variables (its tree is a chain) and an 8-2 table consists of two actions occurring
~ with 8:2 ratio. Further both the costs of the variables and execution probabilities are
weighted according to the well-known 80-20 rules [Knu73a, p.397].

In g-d table loss shows the best result. This is because nev selection does not occur
in q-d tables. On the contrary, for a more general 8-2 tables, loss showed 7—10 % worse
performance compared to Q and O because of nev-selections (% is with respect to the
average cost of optimal trees). Of more significance is that its nev-selection invokes 4
times bigger trees compared to Q and O (constructing the tree required twice as much
time). This shows that nev-free property is extremely important for a selection criterion.
The performance of Q and O are 2 — 3 % worse than optimal and O is slightly better
than Q in all the cases. The performance of entropy criterion is worse than loss and

better than minc.

As for the worst case of the criteria, a case constructed on uniform variable cost
[MTGS80] shows an asymptotically L — 1 optimality coefficient when an appropriate
probability distribution is assumed for the uniform cost case. Any of loss, O and Q
are not worse than other known heuristics on the real practical table from the business

data processing area given in [Ver72].

6. Discussions and Conclusions

Tables (functions) and trees (its implementations) appear in many applications. They
are basic tools for controlling information. Tree also provides an alternative way
to compute values of a function. Then optimal tree represents an optimal compu-

tation of a function. In this paper we have surveyed the construction algorithms
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- of optimum or near-optimum trees along the lines presented or to be presented in

[Miy85,Miy87,Mi0O87]. The problem treated here may be too simple to be applied
to many applications in “knowledge engineering” where “if-then-do” rules play an im-
portant role. In practical case, the given initial table is a partial function, i.e. the rules
are not exhaustive. An extension of the criteria to this case is given in [Miy87]. In
reality, actions are given usually as a set of vectors of actions, and there given a set
of initial tables instead of a single table. Some applications of the optimization can be
seen in [Bar79,Cha86,Sas85].

The optimization problems are NP-complete when input tables are not expanded
form [HyR76,MiS80,MTG81]. The input size 2L for a completely expanded table makes
the DP algorithm superficially polynomial order of computation. Hence various algo-
rithms constructing near-optimum trees and their performance studies are of signifi-
cance. Especially, a good framework (not ad hoc one) is most desirable for treating
tables represented in reduced form (using “don’t-cares”). Although their performance
is inferior to combinatorial ones, statistical approach (discriminant analysis) deserves
to be studied more carefully, because it involves less computation. Some bottom-up
heuristics for constructing near-optimum trees could be devised. It is an open problem
whether O(3%) is the best possible for constructing an optimum tree. It is also an open

problem to find another “optimal variable theorem” or its refinement.
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