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The Kazhdan—Lusztié polynomials arising in the modular

representation theory of reductive algebraic groups
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1. Lusztig's conjecture. A prime objective of the modular

representation theory of reductive algebraic groups is to find a
character formula for their simple modules. All the modules considered

in this survey are rational.

fl.l) Let G be a simply connected simple algebraic'group over an
algebraically closed field K of characteristic p > 0 split over Fp.
Let B be avsplit Borel subgroup of G, T a split maximal torus df B,
and F the Frobenius endomorphism of (G, B, T). We denote by R the
root system of G relative to 7, by R the positive system of R
determined by B, by A the simple system of R+, and put X(I) =
Hom(T, GL;). We write the group operation on X additively:

L+ W) = xHOud) v X, M € X(I>) and t € T,

and define a partial order 2 on X(I) by
. +
A 2upu iff x - u € ZR .

For a T-module M, as T is diagonizable, M admits the weight
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space decomposition:

v

(1) M= L M, with M, = (me€H | tm=2(t)m t € T).

XEX(T) A

We call A € X(T) a weight of M iff M, #o0.
Let ZLX(T>1 be the groub algebra of X(I) over Z with a natural

basis e(x), x € X(I). For a finite dimensional T-module M, we put

(2) ch M =3 dim ", e(x) € ZIX(T)1
XEX(T)

.and call it the (formal) character of M.

For each o € R* 1et o' be its coroot and put X' = { x € X
v v

<X, x° >20 @ € A }. The simple G-modules are parametrized by
X*:
(3) X(ID"3 A — L) the simple G-module of highest weight A.

Y

Thus we are after ch LX) A € X(T)+.

(1.2) Let X, () ={(veXD | <v, " ><p Yaeay. For
each X € X(T) write
i i

(1) A =3 phat, itex, .
i>0

Then
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Steiﬁberg's‘tensor product theorem (ef. [111,(I1.3.17)).

Ly = Labhtel,
i>0

where M[L] for a G-module M is the i-th Frobenius twist of M obtained
from M by composing the i-th power of F : G — G — GL(H), says

we have only to find ch LX) ‘Vl € X, (.

(1.3) For a B-module ¥ define .a sheaf %G/B(M) on G/B by

v =

b e B, z en vy,

(f € Mor(u v, M) | f@Bm) = b f(x)
where m : G — G/B is the natural projcotion. It is a quasi-coherent
G-linearized sheaf, so each i-th cohomology Hi(G/B, ZG/B(M)) comes
equipped with the structure of a G-module. Let U be the unipotent
radical of B. For each A € X(I) we may regard thebl—dimensional
T-module l(',1 with weight X as a B-module through the natural
projection B = T x U — T. We often abbreviate Hi(G/B, ZG/B(KA)) as

HY(x). Put

(2) x(x) =3 (-1 'ch HP L.

120
As usual, the alternating sum of ch Ht(k) is easy to find. Let W =
NG(T)/T the Weyl group of G. With the set S of simple reflections,
(W, S) forms a Coxeter system. Let £ : W — N be the length function

relative to S. We regard W as acting on £ = X(T) ® R/from the right.
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Besides the usual action we introduce the dot action of W on E :

p, U € E, we€eW,

(3) vew = (VU + plw

where p € X(I) with <p, V> =1 o € A
Weyl's character formula (cf. [111,(I1.5.10)). VA € X,
| S DY e
WEW
X)) =
> (-1){(u)e(0-u)
wEW

Moreover, we have

Kempf's vanishing theorem (cf. [111,(I1.4.5)). VA € X(T)+—p and

i20, Hi(x) = 0. In particular,
2_(-1)£(“)e(x-u)
weWw

S D@0
wew

ch Ho ) =

We also know (cf. [113,(II1.2.4)) that " € X",

(4) soc HO) L)

(5) LHO () ¢+ L)1

1]
—
-

where [ : ] denotes the multiplicity of the second -term in a

composition series of the first.



- (1.4) It has long been recognized that nbt the Weyl group W
but the affine Weyl group wp = W X pZR plays a more;importantbrole in
the representation theory of G, where pZR consists of the
translations ty;by_y €. pZR. Under the dot action Wp is generated by

the reflexions s o« € R, n € Z, in the hyperplanes H = {v € E |

o, n? o,n

v , . . i
(y+p, o > = np}. We will abbreviate Sy as sg- Put Sp = S U (Sa b,

,0 0,1

where oy is the highest short root of R*. Then <wp, Sp) forms a
Coxeter system with a subsystem (W, S={Sd]a€A}). We extend the length
function on (W, S) to one on (WP, SP), still denoted by <.

We say X is strongly linked to u and write x ™ u, x, u € X(I),

iff there is a sequence of reflections Sai,n1’ .oy Sar’nr }n Wp such
that A < A-s < ... £ 28 ...8 = u.
xXy,My xy,Ny ar’nr~ .

Andersen's strong linkage principle (cf. [111,(I1.6.13)). Let

X € X(T)+—p and n € X(T)+. If (H*Q-w) : L{n)l] # 0 for some i 2=

0 ahd w € W, then n T X.

(1.5) In analogy to the Kazhdan-Lusztig conjecture for the
irreducible character formula of the complex simple Lie algebra (cf.

[23] for a survey) G.Lusztig proposed a conjectﬁre expressing ch L)

in terms of various ch HO(w)'s.

His strétegy explbits andther reductiOH of the problem. A

connected“comﬁonent of £E N U Ha n is called an alcove. Let 4 be
0€ER,n€L ? : .

the set of alcoves on E£. The affine Weyl group Wp permutes o simply
and transitively. We will abbreviate its action A-w as Aw for A € d,

w € Wp. Note also that each translation tY by v € pX(I) preserves d.

- 5 -
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Let H; n (v € E | <v+p, V> > np} and define a “distance" function

d : d x4 — Z by

(1) d(A, B) = #{Ha,n separating A and B | Ha,n o> Ay -

#(H, , separating A and B | H;,n > A).

From now on assume p =2 h = <p, dp> + 1 the Coxeter number of G
so that each alcer may contain an element of X(I). Let AT (resp. A )
be the alcove containing 0 (resp. 0-wy = -2p, where Wy is the longest
element of W). For each A € 4 let OA be the image of 0 in A under Wp
and let 4" = (Aed | 0, € XD, 47 = dTug.

It is known (Jantzen's translation principle, c¢f. [11],(I1.7))
that each ch L(X) can be obtained from ch L(OA) for a suitable A € 4,
and we are now ready to state

Lusztig's conjecture ([20], Problem IV). VC € 4 with 0c

satisfying the Jantzen condition
(2) 0p*p, o> < p(p-h+2),

one shoud have

d(A,0)p

= - 0 |
ch L(0p) = 2 (1) A, c(Deh HOw .

Aed

Here PA,C = Py,u with ¥y, w € WP such that A = Ay and C = A w

are Kazhdan-Lusztig polynomials for the Coxeter system (Wp, Sp). It

is known that the coefficients of Py w Yy, w € Wp , account for the

dimensions of the hypercohomology of Deligne's comﬁlex of {-adic

sheaves on a certain variety (Kazhdan-Lusztig [19]), so they are



nonnegative. Also (Kazhdan-Lusztig [181,(2.6))

(3) P U(O) =1 y < uw

(1.6) In this subsection we let W, S) denote an arbitrary
Coxeter system. The Kazhdan-Lusztig polynomials f0r<(w, S)vwere
introduced-in the study of the representations of the Hecke-Iwahori
algebra £ associated to (W, S). |

Let ¢ be an indeterminate. The algebra # is a free Ziq,q !]-

module with a basis Tu’ w € W, and the multiplication given by

v

1}
<

(T +1)((T_-1) s € S,
S S

[}
~

T T, by HE LD L@y = twwh).

There is a ring involution " on % such that
(1) q+ g ! and . +—— T -1 wE W.

€ 20ql by

For ¥y, w € W define Ry,u

-1 2 q_“t(U)R T

(2) T _,

]

Then the Kazhdan-Lusztig polynomials Py v are determined uniquely
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also as the polynomials that are 0 unless ¥ < w, of degree <

%(t(w)-t(y)-l) if ¥ < w, and 1 for ¥ = w, satisfying

-Lw) - ()
(3) q p =2 q R 2 .
YU ey ¥,z ' Z,u

In short, we have

3! %

Theorem ([181,(1.1.¢)). ‘w € W, Cooet
LAk =L (W) Ak
(i) Cu = q Cw ,
(ii) c; =3 p, T,  where P, € 1(q] is 0 unless y < w in the

Bruhat order, has degree < %(t(u)-t(y)—l), and Pu w = 1.

There is also an inductive formula to define the polynomials.

. %(t(u)-t(y)—l)
For ¥y, w € W let u(y, w) be the coefficient of q in
Py g We have for w € W and 8 € S with sw > w
# % Lan-4(y) %(t(“)‘{(y)+1) %
(4) csu = (TS+1)CN + 2 uy,w) (1) q C
yEW, sy<y y
from which we get vy € W ,
1
1-cp <%p s ( )qgctcu)-t(z)+1)P
(5) P = q + - u(z,w
y,su sy,u VW gey gz¢z ¥,z

1 if sy < ¥

where ¢ = { 0 otherwise.

For the properties of the Kazhdan-Lusztig polynomials one can
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also check a concise survey in [22]. We only add a handy remark that

(6) P =P Vy, w € W.

2. Q-polynomials. The study of Kazhdan-Lusztig polynomials in

the representation theory of G started, however, really with
Lusztig's [21], where he considered the inverse problem of his

conjecture.

(2.1) The present representation theory has benefitted much
from regarding G as a group scheme. It allows us to look at the
representations of the Frobenius kernel G; = ker F of G. They are,
equivalently, the right comodules over the Hopf algebra K[G;] =

KIG1/ 2 K[G]fp the coordinate algebra of G; , where [ is the
fel

augmentation ideal of KI[GI].

Let G;T = F-(I'). J.C.Jantzen [10] has exhibitted us a tight
relationship between the representations of G and GiT. The simple
G,T-modules are parametrized by the entire X(7I)

A
(1) X(T)? x —> L{(X) the simple G;T-module of highest weight x.

For x € X,(I') the simple G-module L(X) remains G;T-simple :

A v

(2) : LX) = LX) A € X,
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NN
so we may look for ch Li(x) instead of ch L(X).

Let B;T = FIB‘IT. For a B;T-module M, define a sheaf chT/BlT(”)

on G;T/B,T just as for G/B, and take its cohomology

Hi(GlT/BlT,éwclr/BIT(H)). Unlike the cohomology on G/B, all the

higher cohomologies vanish on G;7/B;T by Serre's theorem as G,T/BT

is affine, so we put

Z - 7o
(3) Z, (M) = H°G,T/B,T, zGlf/Bif(M))'

Its character is given by (cf. [111,(11.9.2))

L ,(1-e(-pa))
0ER

T _(l-e(-0))
0ER

A
(4) ch Z,(M) = ch #

Also vl, n € X(I), we have

A A
(5) Zy(Xx + pn) = Z,(X) ® pn ,
A A A A
(6) soc Z1(x) = LX), so Li(x + pn) = LX) ® pn ,
Va) N
(7) [Zi(x) ¢ L;(xH1 =1,
A~

(8 if [Zy(x) ¢ Ly(nd1 # 0, then n TT X

The Lusztig cohjecture for G;T-modules may be formulated as

_.10..
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d(A,c>3

A ) VA
(9) ch L0y =5 (-1 4.c(lch Z1 (0, VA, C e 4 ,

A€ed

A

where the PA c are generic Kazhdan-Lusztig polynomials introduced by
Kato [17]. We will turn to those later in § 4. Note that by (2) the
formula (9) will be enough (for p = h) to determine all the

irreducible characters of G.

(2.2) Back to Lusztig's work, we call a connected component of

+
E N U H a box. For v € pX(T) let A" = Ait , and we denote by
o, v v
€A, nEZ

nv (resp. n; ) the box containing A: (resp. A; ). In particular, we

i i .o . Ty F
will abbreviate ﬂ_p (resp —p ) as m (resp. T ). Put Wv , t_thv

and w = t_vuotv . In the category of G;T-modules a little bit of
v

maneuvering is possible (cf. [111,(I11.9.13)) : A, B € 4 with B c n;

and w € Wv,

AN

, S A A
@) [Z,(0, ) : Ll(OB)] = [Z,(0,) : L{(O

Au A g’

Also from (2.1.5, 6) vA, B € 4 and v € pX(I),

A A

A N
(2) [Zl(oAtv) : Ll(OBtv)] = [21(0A) : L1(OB)J-
Consequently, the formal Z[gq,q 'l-linear combination of alcoves
A ‘ A -
(3) | ZA cgg A With cp, = [Z,(0,) ¢ L(0p)]1 for B DT,

is invariant under the action of Wv :
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_ V.. .
(4) EA cpafu = ZA cBAA weEW, .

Also Vv € pX(T),

(5) ‘ (64 = ¢
BaA Btv,AtV

B

Lusztig's objective was to construct a g-analogue D~ of the element
(3) by replacing the coefficient CBA by certain polynomials in q !,
He poses some simple conditions on this element : ’
(i) it should satisfy a g-analogue of Weyl group invariance
property (4),
(ii) each coefficient must have a certain explicit bound for its
degree, |
(iii) it must enjoy a simple symmetry property with respect to‘
w, o

and proceeds to show that these properties determine the element

DB uniquely. He does that by defining on the free Z{q,q !1-module

(6) # =4 Zrq,q 1A
Aed

with basis corresponding to the alcoves a module structure over the

Hecke-Iwahori algebra X for the affine Weyl group Wp (cf. (1.6)) via

v SA if s ? £(A)
(7) 5 €S,and A€d, TA-= { . )

qsA + (q-1)A if s € Z(A).
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Here we define the left action oflwp on 4 by

(8) w(A ¥) = A wy Vw, y € wp
Also for each A € 4 we set
(9 Z(A) = (s € S, | sA < A.

In order to state Lusztig's result we introduce a partial order

< on o as follows

(10) A< B iff  Ja sequence A = Ay , A, ,..., A_ =B

\ _ 3 . = » =
i € [1,n], ;€ R and n;€ Z : A, = Ai-ls%,n.and d(A,_;» A =

It is easy to show that
(11 A< B iff OA Tt OB .
For v € pX(I) put

(12) e =2 A € 4,

and let ﬂv the #-submodule of X generated by e, -

Theorem (Lusztig [211,(1.8)). Let v € pX(T) and B c H; . Then

3 B .
D™ € L
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(i) DB = ZA QB’A(d'l)A , where QB’A.G Zlql is 0 unless B < A,

AA _

has degree < %(d(B,A)—l) if B <A, and Q 1.

B, Au

-+
(ii) qd(B’Av)QB’A(q‘l) = Q Y@

The fact DB € Kv implies that DB(I) is invariant under Wv :

(13) Paru =080 Vwe W,
thus
(14) B A = QB’AUV(1> Vu € W,
(2.3) We have
(1 EB<—1)4(A’B’5A,BQB’C = 5A’C' YA, C € 4,

so the G;T-Lusztig conjecture (2.1.9) is equivalent to

A A
(2) : [ZI(OA) : LI(OB)] = QB’A(I) vA, B € d.

It is called the generic decomposition pattern conjecture by the
following reason : in [10], Jantzen showed VA, ¢ € X(T)+,
A

N ,
(3) [HOM) L1 = 3 [Zi () @ LimILa®exnt)
: : nexX«ry - : ]

1. ;o1

A

A .
In particular, if [Z,(X) : L;(n)]1 = O vn1 f At (eg. if 4(h-1) <

- 14 -~
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it aV> < p-4(h-1) va € R ), then we get via the strong linkage

principle (1.4) and Steinberg’s tensor product theorem (1.2)

A

Fal
(4) HO(x) ¢ L)l = [Z,(x) ¢« L1,

thus HO(OA) for‘OA in such a region exihibit a decomposition
patterh depending only on the position of A in the box containing it

(cf. (2.2.2)) and we expect “generically”

B,A

0 . =
(5) [H (OA) : L(OB)] Q (;)

(2.4) Let v € pX(T) and define a map ¢, : H — H via

P -1
(1) EA Cy A— ZA cy Auv , cy € Ziq,q 11,

Then ®, is an ¥-antilinear, i.e., ¢v(hm) = zwv(m) Vh € £ and m € X,

xnvolutlon leaving ﬂv invariant. For B ¢ ﬂv put C = Buv. QA,C =

B, Auw

Q v Y

A € 4 and let DC = wv(DB). Then DC = ZA QA,CA , thus we can

restate

Theorem ([213,(2.15)). Let v € pX(I') and C € ﬂv. Then-
a!D .
C e Rv »
(i) DC = ZA QA,CA’ where QA,C € ZLql is 0 unless A < C, has
1 _ . ’ -
degree < E(d(A,C) 1) if A ¢ C, and QC,C =1,
d (A}, 0
. » Y . v’ .

..15_
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Note, in particular,

2) D = e Vv € pX(I)

For a psychological reason we prefer to work with DC whose
coefficients are polynomials in q rather than in q .
We call a function 8 : 4§ — Z a length function iff

(3) d(A, B) = 8(B) - 8(A) VA, B e d.

By 8 we will always mean such a function. Let #° be the £-submodule

of # generated by all e, , v € pX(I) :

(4) ' 40 = 3 e, .
vepX(T)

i

We have ([211,(2.12)) an #-antilinear involution ®_ of #° such that

)

_ Y
(5) ma e, = q e v € pXI).

Then the condition (ii) in the above theorem is equivalent (cf. [21],

(2.13)) to

(6) ) DC = c

3
(2.5) Let C c M and w € W with uA;-=‘C. Using (2.4.6) Lusztig

- 16 -




[211, Theqrem 5.2 shows_

(1) Dn = 2 P T e
C ¥ yu ,uw, Yy,
t(yuv)=£(y)+£(uv)
consequently,
(2> QA,C(I) = Pz,uuv(l) if A = ZAv .

Meanwhile, according to [21]1, Jantzen conjectured

d(A,0) v

- - [¢]
(3) ch L(0y) = ZA( 1) QA’C(I)ch H (04 C c .

We see that it is compatible with Lusztig's conjecture (1.5) as

- B / oL 4
(4) Qq o) = Py oD Ccam . Aej

by (2).

" Kato [17] shows, conversely, that
(5) Jantzen's conjecture (3) implies the Lusztigs conjecture.
Again the forﬁula (3) would be enough to determine all the

irreducible characters of G while in Lusztig's conjecture not all

OC’ C c M, may satisfy the Jantzen condition (1.5.2) for small p.

‘;‘. 17 -
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(2.6) For each A let EA = Tuev . where v € pX(T) with A c'nv and
w € Wp with A = uA; . Then the EA ‘s form a basis of #°

(0211,¢6.1))

(1) ' #O0 = 4 Z[q,q‘IJEA .
A€d ‘

Let ﬂ be the set of formal Z[q q l1- linear combxnatlons > ¢ A
A€d

of alcoves such that (A | CA # 0} is bounded above. It forms an

X-module in a natural way, containing A as a subnodule. Moreover,
. : .

each element of # can be written uniquely in the form 2 c¢oE, , Cp €
B™B B
B<A,
Ztq,q '1. We extend the #-antilinear involution ¢5 on #° to a map
A A A
¢6 : H — H via
(2) S cpE,—— 3 ¢, 0. (E),
BSAO B"8B BSAO B 8 B

and write

A _ =3 (M) ,_, \d(A,B) ' _
(3) ¢ (A = q Zg(-1) Rp 4B+ Rp 4 € 1la,q7'1.

Then the QA C are uniquely determined also as the polynomiéls that
are 0 unless A < C, of degree < %(d(A,C)-l) if A < C, and QC c = 1,

satisfying

- o L d(A,B) 4B, ¥, A
(4) QA’C = ZB(—1> mA B QB c 9 A, C € 4.

- 18 -~




In short,

v 3! "

Theorem ([211,(7.3)). DC € ﬂ :

. I~ PR X(
(i) 05 DC = q DC ’

(ii) DC = ZA QA,CA , where QA,C € ZIql is O unless A< C,

C € 4,

has degree < %(d(A,C)-l) if A < C, and QC c = 1.

It follows that

(5) D t, = Dgy Yc € 4 and v € pX(T)

(2.7) We have noted in (1.5) that the coefficients of Py v are

all nonnegative, from which one can also show that

(1) +<.the coefficients of QA c are all nonnegative vA, C e d .
Define u : 4 x 4 — N by
1
(2) u(A, C) = the coefficient of q ‘ in QA c

so u(A,C) = 0 unless A < C and d(A,C) is odd. Lusztig [21],Theorem

v

8.2 shows C € 4 and s € Sb )

qDC if's € .2(C)
(3) T, Dy = { %(d(A,C)ﬂ)
-Dp + DSC + 2 u(A,C)q

DA otherwise.

_-19_
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It follows that

(4)

#° =4 Zrq,q 11D

v

C .

A€ d,

Ced
Also VA, C € A and s € 2(C),
(5) Qic =
(6) W(A,C) = 0

For v € pX(I) define a new right action of Wp

(7 Ab— Alv

y W

There is also an #-linear right action of Wp

(8)

We have (I[211,(8.7))

1
=d (CI
— 42 -pp,w’
(9 DC Gu = q
consequently,
(10) uCA, &) = ”(Al-pp,u’ cI

= Al

(n-vw-(n-v)

if s ¢ £(A) and A = sC .

on 4 by

v

w € Wp if Ac H;

on #° defined by

)

D v

CI

Ce€d and w € W_ ,
-pp,u p

- v '
—pp,u ) A, C € 4 and w € wp .

- 20 -
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(2.8) We will now describe an inductive algorithm to compute DC
. _ + _ +
For C c "v write C = uAv , W € Wp , and put ne = d(Av’ C). The
induction will be on nc . If nC = 0, then Dc = ev , SO assume nC > 0
and that the elements DC’ with nC’ < nC have already been constructed.

In particular, u(A, C’) are known for such C  and all A € 4 . Choose

g8 € Z(C) with sC c "v : Then nsC = nC -1 and we have from (2.7.3)

5 %d(A,C)
(1) D~ = (T_ +1)OD - u(A,sCHq D
¢ s sC  geeca) A

Here Lusztig [21]1,Corollary 10.6 shows

(2 my <o VA € d with s € £(A) and p(A,sC) = 0 ,

consequently, the DA 's appearing on the right hand side of (1) are
already known. Thus (1) provides a desired inductive formula, from
which we also get

1 N

=d(8B,C)

1-c 2

- ~C S
(3) QA,C = q QsA,sC +q QA,SC > u(B,sCrq

Q y
S€EZL(B) A,B

vhere ¢ = (1 if S § £
lo i1 seewm

'(2.9) Basic properties of %—polynomials introduced in (2.6.3)
can be found in. [ 1,811 (see aISOvAndersen—Kanedak[4],(4.2)),

Using those Lusztig [21], Corollary 11.14 shows that the function

- 21 -
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(—l)d(B’C)QB C(O) is the Mobius function of the partially ordered setj

(4, <) :
, ' . d(B,0) - 4
(1) % -1) QB,C(O) = 5A,c A, C € 4
A<B<C -
Also for v € pX(T) we have ([211,(11.15))
(2) Q = P vy weEW
yA; ,uA; Y, u ’ v

(2.10) One finds in [21], 8§12 beautiful pictures of DC for the
groups of type A, , A; , B, , and Gy .

For C c L define
(1) supp DC = (A€ d | QA,C Z 0}
We have noted in (2.7.1) that
(2) supp Dy = (A € A l QA,c‘l’ = 0} ,
so’it is invariant under the action of Wp by (2.2.14), consequently
(3) supp DC c (A€ d | Cuv <A<C ) .

One observes, moreover, that the pictures of DC in £211,§812 have no

holes, that is indeed a general fact (Kaneda [121) :

_22_




(4) supp D, = (Aem | A< C) W, Ccm,.

This was proved in response to

Ye's theorem [25]. Let v € pX(T) and C c W . 1f p 2 2(h-1),

A

then {A € 4 | [Z,€0) ¢+ L (0T # 0} = (Ac , | A>=C v, .

~There is: yet another symmetry in the pattern DC . It was
discovered (Andersen-Kaneda [4]) in the process of studying the
A\
structure of the injective hull of L;(C). Let v, n € pX(TI) and

v ,
Ac ﬂv , C c "n . Then wE W,

n. . (v-n) '
S (B _ W S(B)

() 254 Qg 4 QBtg,C = q 2p 4 Q 4%

- - —(y= - =1 - -
where § = (v-nw-(v ﬁ) and n,(v-n) Ed(A , A t(v—n)-(v—n)w)"ln
particular,

5B Py s (B)
_B g) _B ]
B3v B3v
3. Inverse Kazhdan-Lusztig polynomials Q; c - By the

equation

S (c1ydAB v

e Pauo,Buolc,8 = Sac A C €
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we can define polynomials‘Q; c € Zlql, A, C € 47, called the inverse

Kazhdan-Lusztig polynomials for the affine Weyl group (Wp, Sp). Much

alike characterization of the Q'-polynomials as for Lusztig's

Q-polynomials are available by Andersen [11].
(3.1) Lusztig [21],Corollary 11.9 showed

(1) QA c = Qo if A, C € 4 are sufficiently far from the

hyperplanes Ha o € A,

, 0

thus Lusztig's Q-polynomials are sometimes called the generic inverse
Kazhdan-Luztig polynomials. More precisely, we have (Kaneda

[131,(2.2))

1
t(u)qid(CIpp 2 v

u’
’ Q
A,CIpp

(2) QA’C =2 (-1) A, C e d .

weW s W

In characteristic 0 the Borel-Weil-Bott theorem (cf. [111],

(I1.5.5)) brings complete information about all Ht(l) : VA €

X -p, we W, and i 2 0,

HO) if a2 € XY and i = L)

(3) i) = { o

otherwise.

A similar result holds in our situation generically (cf.

[111,(¢11.9.14)), but fails badly when X is close to an H , Ot € A.

«,0
Andersen [1] asks how the cancellation on the right hand side of (3)

_24—



153

is related to the failure of the Borel-Weil-Bott theorem in positive

characteristic.

(3.3) With the Q -polynomials we can invert the Lusztig
conjecture : vA, C e 4" with 00 satisfying the Jantzen condition

(1.5.2),

0 . - 0
(1 0+ LT = Qg gy (1)

On the other hand, we have (Humphreys (8], Jantzen,
Doty-Sullivan [61) vA, C € 47 with OC satisfying the
Jantzen condition,

A

2) HO0) : Lol =S DY@ 7 0y 1 Lo
¢l A 100p) 2 Ly

)1,
wewW AIO,u

so the inversion formula (1) for the G-module would follow from the

inversion formula for the GiT-modules via (3.1.3), i.e.,

(3) the G;T-Lusztig cinjecture (2.1.9) implies the Lusztig

conjecture (1.5).

For p >> 0 this was known before (Kato'[17]); The converse is also

known to hold if p is large enough that 0 _ should satisfy the
A

Jantzen condition (Kaneda [141).
Can we show Jantzen's conjecture (2.5.3) is equivalent to the

GiT-Lusztig conjecture : vvC € 47 with OA € X, (I,
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2 (—l)c(”)e(OA-u)
_l)ch,C)PA (D) wEW
’ S (-1)

wew

(4) >«

Aedt £ (w)

e(0-w)

A _ m _(l1-e(-po))
dA,0) oER ’ '
> (-1) PA’C(I)e(OA)

A€d : T, (1-e(-0))
xER

; A
4. Generic Kazhdan-Lusztig polynomials PA c There are several

ways to define the generic Kazhdan-Lusztig polynomials for (Wp, Sp),.

due to.Kato [17], one of which is already given at (2.3.1).

(4.1) For y € pIR choose £ € pZR n X(I)>"' such that y + £ € X"

and set

. ~ ) i
(1) TY - TY+€TE 9

which can be shown to be well-defined. For w € Wp write w = mt? with

T € W and Yy € pZR, and set

(2) Tu = Tx TY .

Kato [17]1, Proposition 1.10 shows

(3) £ = Z[q,q‘IJTu ,
mewp

- 26 -
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L gwb
It
) |

~

(4) Ao~ R as #-modules via A wh— T, -

. A A
Using the isomorphism he transfers the map ¢5 of (2.6) on # to define

A
an X-antilinear involution ¥ on # via

Y Ay, Aw y
A y<A u :

.

(5) W(TN ) =

Then the generic Kazhdan-Lusztig polynomials PA c are uniquely

determined as the polynomials that are 0 unless A < C, of degree <

A
%(d(A,C)-l) if A < C, and PC c = 1, satisfying

A

YV Y YT} p—
q Pac =289 RBuo, Auo TB,C

3

(6)

~ A A
In short, if we define an #-antilinear involution @5 : X — X via

‘ -8(B)
7 Ar— 2pa Awg,Buo®
'/ 3 _ 4 ~
then 'C € d, Ec =3 PyphA € &
r~ Y0
(8) o, En = q Es s

A
where PA c € 7Z{ql is 0 unless A < C, has degree < %(d(A,C)—l) if
’ A
A < C, and PC,C =1 .

It follows that
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A v -
(9) PA,C = PA,C if A, C € 47 are sufficiently far from Ha v

o x €A,

/\ N
suggesting the name “generic" Kazhdan-Lusztig polynomial for PA c

’

More precisely, Kato [17],Corollary 4.3 shows

(10) P

(4.2) We now turn to the extension problem in the G;T-module
category following Vogan [24] and Andersen [11.

The automorphism ¢ of &G corresponding to the root system
automorphism o« — - o Va € R leaves GiT invariant, so we may define
the contravariant dual D& of each G{7-module # by the composition
C,T -2 ¢,T — GL(™). We have (cf. [111,(I11.11.1)) "o, n € X(I) and
i20,

A

(1) ExtGIT(Zl(A). DZ,(n)) ExtclrcDZI(x), Z,(n))

R

K if 2 =n and ¢ =0

~ {

otherwise,

from which we get Vl € X,

A i,. i 7 -~ AN
(2) ch Liy(x) =2 2 (-1)“dim Extn p(L1(x), Zi()dch Zy(m),
n€X(T) i=0 1

so we can reformulate the G;T-Lusztig conjecture (2.1.9) as

A

= iaim Bxt: (L 2 0.
A1 = 3 D Fim Extg pcLiop), 7,0

(3) (-1) A))

A, C € 4.
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It is even equivalent (cf. Kaneda [141, (4.12)) for p > h to

A i d(A,C)-21 7~ 2 v

120

A, C € 4.

The conjecture (3) has been verified for C = AT by

Andersen-Jantzen (cf. Kaneda [14],(4.6)) :

A ; Y
5) P =5 qlaim gtA A2 rv

+ A€d,
AA i20

(By, OA)

putting together Kato [161,(1.8) with the determination of the

Bl-cohomOIOgy by Andersen-Jantzen [31,(2.3) and (2.9) : for p > h

R

(6) H (B,, K> S/(u*)tll as graded B-algebras,

v

(7 X € X(T) and i € N, as B-modules
i-Luw)
;o s 2 wH™e py it a = 0-w+py for some
H (By, x) = { w € W and v € X(I) with {-{(w) even
0 otherwise,

where u is the Lie algebra of U and S'(u*) is the symmetric algebra
on u* with each Si(u*) given the degree 21i.

The cohomology of higher Frobenius kernel Br = ker(FlB)?, r>1,
is unknown. As usual, their alternating sum is easy to find, however

(Kaneda-Shimada-Tezuka-Yagita [151,(2.5)) : for p > h
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8) Yn € X(I) and v >0, I -Dim AB, LK) . =
120 D n
S S (-1)%im HL(Br, Ko
weW 120 D (O-wu+tp(n-1x))
XEX(T)

S -»7aim IR k)
J=0

DX

One suspects if H.(Br, K) for r > 1 may also be described using
the generic Kazhdan-Lusztig polynomials. If r = 2, ch H'(Bz, K) is
available for SL, (Andersen-Jantzen [3]1,(2.4.2)) and for SlLj

(Kaneda-Shimada-Tezuka-Yagita [15],(5.11) for p > 3).

5. Some consequences of the Lusztig-conjecture. In this section
assume the G ;7-Lusztig conjecture. We will state some consequences.

A i
(5.1) As already suggested in (4.2.4), the P-polynomials seem tm

A
carry information on the structure of Z;(x), X € X(I'). Indeed,
following Andersen [1], Gaber-Joseph [7] and Irving [9], it was

proved (Andersen-Kaneda [41,(6.3)) that the socle series and the

A
radical series of each 21(00) coincide and that vC c nv,
1 A
'é-(d(A,C)-J) A A
(1) QA,C = Ej q [rad; 2100, LI(OCuv)],
A j A j+1/\
where radj Z1(0A) = rad ZI(OA)/ rad Z1(OA) is the j-th level in

A
the radical series of Zl(OA).

(56.2) From (5.1.1) it follows ([4]1,(6.5)) that
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A A

A . A
1 - 1 v
(1 ExtCIT(LI(OC), Zi(OA)) EXtGIT(Ll(OC)’ LI(OA)) Ax<C.

On the other hand, from (4.2.4) one expects

A

A
(2) u(A, C) = dim ExtéIT(Ll(OC), Z,(0,)),

A

consequently,

A A
. v
(3) u(A, C) = dim ExtélT(Ll(OC), Ll(oA)) A<C.

For A, C € 4 set

n(A, &> if A< C

~
(4) WA, © = { u(C, A) otherwise,

and put'H(A) = (B € d | Z(A, B) # 0)}. Doty-Sullivan [5] conjectures

(5) for A C ﬂ;, ﬂ(A) should be the union of Iv -orbits of

W,

(A% | «c €e A}y, (B€d4 | B is adjacent to A},
Bed't, | B<CA £ c LB, dB,A odd}, and
(B € d'tv | A < B, 2(B) ¢ £(A), d(A,B) o0dd },

where A% = Asa n if pn < <OA, V> < p(n+l1). It has been verified in

[5]1 (cf. also Kaneda [14]1) that ﬁ(A) is [ -invariant and is

v,wv

contained in the union of the prescribed orbits. Conversely, it is
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easy to see that the first two sets in the list are contained in u(A)

For G of rank < 2 one observes also

Y

(6) T(A, B) = W(Aug, Bug) A, B € 4.

Does it hold in general ¢
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