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Binary duadic codes were first defined in [2]. They generalize quadratic residue codes.

Properties similar to properties of quadratic residue codes are demonstrated in a simple fashion

for this more general class of codes and it turns out that more codes (than just quadratic

residue codes) share these properties. Further, we were able to construct many of these codes

easily. We found many new “good” codes. These were generalized to duadic codes over

GF(q) in [3, 6, 7]. Triadic codes over GF(q) were defined in [4]. From these definitions it

was not so easy to see how to generalize duadic and triadic codes to polyadic codes over

GF(q). However this generalization is now given in [1]. In doing this we also defined m-adic

residue codes. Before only quadratic residue and cubic residue codes were known. We now

have a more general class of cubic residue codes and also m-adic residue codes for all $m$ .
Duadic codes contain quadratic residue codes, Golay codes and many Reed-Muller and

Reed-Solomon codes. These are “algebraically interesting“ and “good” codes. All are cyclic

codes so we will start with a brief introduction to cyclic codes. This is a very important family

of codes so it is nice to know more about them. Our terminology is as in [5].
$C$ is a $\infty\lrcorner gco4\epsilon$ if $(c_{0},c_{1},\cdots, c_{n- 1})$ is in $C$ implies $(c_{n- 1},c_{0},\cdots,c_{n- 2})$ is also in C.

Another way of saying this is that $C$ is invariant under the coordinate permutation $iarrow(i+1)$

(mod n). .

If $F=$ GF(q), $F[x]$ is the set of all polynomials in $x$ with coefficients in F. We let

g.c. $d$ . (q,n) $=1$ . $R_{n}=F[x]/(x^{n}-1)$ is the set of all polynomials in $x$ of degree $<n$ with

coefficients in F. It is known [5] that $R_{n}$ is a principal ideal ring (P.I.R.) with the usual

polynomial addition and multiplication $mod (x^{n}-1)$ . We suppose $n$ is odd. 1

We associate vectors in a cyclic code of length $n$ with polynomials in $R_{n}$ as in the

following example.
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$0$ 1 2 3 4 5 6

$0$ 1 1 $0$ 1 $0$ $0$ – $x+x^{2}+x^{4}$

$0$ $0$ 1 1 $0$ 1 $0$ $rightarrow$ $x^{2}+x^{3}+x^{5}$

In this way a cyclic code is associated to an ideal in $R_{n}$ . We can now multiply vectors. We

identify a cyclic code with an ideal and a vector with a polynomial as above.

Since $R_{n}$ is a P.I.R. every vector in a cyclic code is a multiple of a generator

polynomial (more than one). Two of these are distinguished.

factor of $x^{n}-1$ . To find these polynomials one has to factor $x^{n}-1$ for each $n$ which is

difficult when $n$ is large. The

$e(x)$ . This satisfies $e(x)^{2}=e(x)$ and $e(x)$ is the multiplicative unit of the ideal. For

example, when $n=7$ and $q=2$ , an idempotent generator of a code is $e(x)=x+$ $x^{2}+$

$x^{4}$ , $(x+x^{2}+x^{4})^{2}=x^{2}+x^{4}+x=e(x)$ . The idempotent generators are easy to find in the

binary case but not much is known about the code from them; the generator polynomial gives

the dimension of its code. However idempotents have many nice algebraic properties and we

will show how information about a code can be obtained from its idempotent under certain

circumstances.

If $C$ has $e$ as idempotent generator, we denote this as $K=$

Fact [5]: If $C_{1}=(e_{1})$ and $C_{2}=(e_{2}$ }, then $C_{1}\cap C_{2}=(e_{1}e_{2}$ } and

$C_{1}+C_{2}=\langle e_{1}+e_{2}-e_{1}+e_{2})$ .

Let $h=(1,\cdots,1)$ denote the all-one vector.

The following concepts arose in the study of duadic codes:
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A $\underline{vector}v=(a_{0},\cdots,a_{n- 1})$ is called $\underline{even}$-like if $\sum a_{i}=0$ , otherwise it is called $\underline{odd-}$

$i=0$

$hkg$ .

A $\epsilon\infty g$ is called $\ovalbox{\tt\small REJECT} eve- e$ if all its vectors are even-like, otherwise it is called $\ovalbox{\tt\small REJECT}- e$ .

Fact: A cyclic code $C$ is odd-like iff $h$ is in C.

Fact: If $v$ is even-like, vh $=0$ . If $v$ is odd-like, vh $=$ ah where $\alpha\neq 0$ .

Some examples of cyclic codes.

1) The whole space V $=\langle 1$ ).

2) The n-l dimensional space, $E$ , of all even-like vectors. $E=(1-\frac{1}{n}h\rangle$ .

3) The one dimensional space, \langle - h).

Let g.c. $d$ . (a,n) $=1$ . Then the coordinate permutation (which is like multiplication)

$\mu_{a}$ : $iarrow ai$ (mod n) is important for our studies.

Fact [5]: If $C=\langle e\rangle$ is a cyclic code, then $\mu_{a}(C)$ is a cyclic code and $\mu_{a}(C)=(\mu_{a}(e)\rangle$.

Duadic codes are an infinite family of cyclic codes over GF(q) defined in terms of their

generating idempotents.

Def: If $C_{1}=(e_{1}\rangle$ and $C_{2}=(e_{2})$ are even-like cyclic codes, then they are $\underline{duadic}\underline{codes}$ if

1) There is a $\mu_{a}$ with $\mu_{a}(C_{i})=C_{j}i\neq j$ , and

2) $e_{1}+e_{2}=1-\frac{1}{n}h$ .

Then ($1-e_{1}$ } and $(1-e_{2})$ are $\ovalbox{\tt\small REJECT}_{-}edAa4i\epsilon f\Omega d\epsilon\S$ .

Many properties of these codes can be demonstrated. Among these are the following
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1) $\dim C_{i}=\frac{n-1}{2}$

2) $C_{i}$ exist iff $q$ is a square (mod n).

3) Every self-orthogonal cyclic code of $\dim\frac{n-1}{2}$ is duadic.

Property 3) is useful for studying some combinatorial designs with a cyclic group as they

often generate a self-orthogonal cyclic $co$de of $\dim\frac{n-1}{2}$ Then 2) gives one criterion for

existence. There are others as the duadic codes must be interchanged by $\mu_{-1}$ in this

situation.

We computed idempotents for binary duadic codes of prime lengths up to 241 and found

many new, good codes.

Triadic codes are also an infinite family of cyclic codes over GF(q) defined in terms of

their generating idempotents.

1) There is a $\mu_{a}$ with $\mu_{a}(C_{i})=C_{i+1}(mod 3)$ and

2) $e_{0}+e_{1}+e_{2}-2e_{0}e_{1}e_{2}=1-\frac{1}{n}h$ .

Then triadic codes exist iff $q$ is a cubic residue (mod n) [4].

Polyadic codes generalize duadic codes. M-adic residue codes are polyadic codes which

generalize quadratic residue codes. We will start with m-adic residue codes. These are new

for $m>2$ . All codes are cyclic codes over GF(q).

It is known [5] that the whole space V is a direct sum of its minimal ideals one of which

is $M_{0}=\langle\frac{1}{n}h\rangle$ denoted by ( $h’\rangle$ . This decomposition is unique and leads to the following

facts. If $C$ and $D$ are cyclic codes and $C\subseteqq D$ , then there is a unique cyclic code $C’$ so

that $D=C+C’$ and cn $C^{/}=0$ . We call If
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For example, V $=M_{0}+(M_{1}+\cdots+M_{r})$ , where the $M_{i}$ are the minimal ideals not equal

to $M_{0}$ . Then $M_{0}=(h’\rangle$ and $(M_{1}+\cdots+M_{r})=E$ are complements of each other.

If the length is a prime $p$ , then all $M_{\dot{k}}$ have the $sameA^{i}mension$ fi and there is an $r$

with

rs $=(p-1)$ .

It is easy to compute $r$ and $s$ from the cyclotomic cosets [5]. $r$ is the number of non-zero

cyclotomic cosets and $s$ is their size. Further cyclotomic cosets are easy to compute. Here

are some examples.

1) $q=2,$ $p=7$ : cyclotomic cosets: (1,2,4), (3,6,5) $r=2,$ $s=3$

2) $q=2,$ $p=3$

cyclotomic cosets: (1,2,4,8,16), (3,6,12,24,17), (5,10,20,9,18), (7,14,28,25,19), (11,22,13,26,21),

(15,30,29,27,23)

$r=6,$ $s=5$

3) $q=3,$ $p=13$

Cyclotomic cosets: (1,3,9), (2,6,5), (4,12,10), (7,8,11)

$r=4,$ $s=3$

As we will see, m-adic residue codes exist when $m$ divides $r$ . So quadratic residue codes

exist for examples 1,2,3. Cubic residue codes exist for example 2. 4-adic residue codes exist

for example 3 and 6-adic residue codes exist for example 2.

If $e=\sum$
$x^{i}$ is a binary idempotent, then $S$ is a union of cyclotomic cosets.

$i\in S$

Idempotents of many m-adic residue codes can be easily computed in this situation. For

example

$012345$ $0123456$and$(010100)$ $(0001011)$
are idempotents of odd-like quadratic residue codes in example 1.

$\zeta$



It is not difficult to compute idempotents from cyclotomic cosets for codes over $GF(4)$

and GF(8) and for other GF(q) information about the existence, number, and dimension of

m-adic residue codes can be gotten from the cyclotomic cosets.

In order to define m-adic residue codes we need some further terminology. Let $p$ be a

prime. Let $\Omega=GF(p)^{*}$ , the cyclic multiplicative group of non-zero elements in GF(p). Let

A be the cyclic subgroup of $G$ generated by $q$ . Then $|H|=s$ and there is an a so that

$\mu_{a}$ cyclically permutes the $M_{i}$ .

Let $\Omega=\{\alpha^{m}:\alpha\in G\}$ . These are the $R^{-}di\epsilon$ esme.

M-adic residue codes are only defined of prime length $p$ and only when $q$ is an m-adic

residue (mod p). It can be shown that $q$ is an m-adic residue (mod p) iff $m$ divides $r$ .

We have 3 equivalent definitions of m-adic residue codes in terms of 1) ideals, 2)

generating idempotents, and 3) generating polynomials [1].

We give the definitions in terms of ideals and generating idempotents here as these are

the simplest.

Take an a so that Ha generates $G/H$ . Let $C_{i}=(e_{i}),$ $i=0,\cdots,n-1$ be a set of even-

like cyclic codes. Then the $C_{i}$ are even-like $[be]- g4\llcorner c\underline{residue}\underline{codes}$ Of $\Omega\lrcorner\infty$ I if

ideal definition idempotent definition

1) $\mu_{a}(C_{i})=C_{i+1}$ 1’) $\mu_{a}(e_{i})=e_{i+1}$

2) $C_{i}\cap C_{j}=\{0\}$ 2’) $e_{i}e_{j}=0$

3) $C_{0}+\cdots+C_{n- 1}=E$ 3’) $e_{0}+\cdots+e_{n- 1}=1-h’$

We can show that $\dim(C_{i})=\frac{p-1}{m}$ [1].

The complements of the even-like m-adic residue codes of Class I are the $\ovalbox{\tt\small REJECT}_{- m-\Delta}dig$

$-4ngf\Omega dg\S$ Of $\Omega mI,$ $de1_{-}.\circ ted$ by $\hat{C}_{i}=\langle e_{i}’$), $i=0,\cdots,m-1\cdot e_{i}^{/}=1-e_{i}$ .
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The following properties of these codes can be deduced from the properties of the even-

like m-adic residue codes of Class I.

ideal properties idempotent properties

1) $\mu_{a}(\hat{C}_{i})=\hat{C}_{i+1}$ 1’) $\mu_{a}(e_{i}’)=e_{i+1}’$

2) $\hat{C}_{i}+\hat{C}_{j}=V$ 2’) $e_{i}’+e_{j’}-e_{i}^{/}e_{j’}=1$

$3)$ $\hat{C}_{0}\cap\cdots\cap\hat{C}$n-l $=M_{0}$ 3’) $e_{0}’$ ... $e_{n- 1}’=h’$

We can show that $\dim(\hat{C}_{i})=p-\frac{(p-1)}{m}$

The complement of the even-like m-adic residue codes of Class I with respect to $E$ are

the $\underline{ev}\underline{en}\lrcorner k\S\S m- 2dc\frac{es}{}4_{L^{e}}$ codes $g\Omega 1a\Phi^{\underline{II}}$ .

We denote these by $D_{i}=(f_{i}\rangle$ , $i=0,\ldots,m-1$ . $f_{i}=1-h’-e_{i}$ . Their properties follow

from those of the even-like codes of Class I.

ideal properties idempotent properties

1) $\mu_{a}(D_{i})=D_{i+1}$ 1’) $\mu_{a}(f_{i})=f_{i+1}$

2) $D_{i}+D_{j}=E$ 2’) $f_{i}+f_{j}-f_{i}f_{j}=1-h’$

$3)$ $D_{0}\cap\cdots\cap D_{n- 1}=\{0\}$ 3’) $f_{0}f_{1}\cdots f_{n- 1}=0$

We can show that $\dim(D_{i})=p-1-\frac{(p-1)}{m}$ .

The complements of the even-like m-adic residue codes of Class II are the $\ovalbox{\tt\small REJECT}-$ m-$4ig$

$-\mathbb{A}g\infty 4gS\Omega f\Omega 1a\S\S n$ denoted by $\hat{D}_{i}=(f_{i}^{t}\rangle$ , $i=$ O,...,m-l, $t_{i}=1-f_{i}=h’+e_{i}$ . Their

properties can be deduced as above

ideal properties idempotent properties

1) $\mu_{a}(\hat{D}_{i})=\hat{D}_{i+1}$ 1’) $\mu_{a}(f_{i}’)=f_{i+1}^{/}$

2) $\hat{D}_{i}\cap\hat{D}_{j}=M_{0}$ 2’) $\#_{i}F_{j}=h^{/}$

3) $\hat{D}_{0}+\dot{D}_{1}+\cdots+\hat{D}$ n-l $=V$ 3’) $\oint_{0}+\cdots+f_{n- 1}’=1+(n-1)h’$
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.

We can show that $\dim(\hat{D}_{i})=1+\frac{(p-1)}{m}$

If $n=2$ (quadratic residue codes), the 2 families coincide: $C_{0}=D_{1},$ $C_{1}=D_{0}$ .

Over GF(2) we can compute the idempotents easily (given the cyclotomic cosets) for

quadratic residue codes and cubic residue codes. We have partial knowledge for the other m-

adic residue codes.

Vanessa Job has computed the minimum weights of all binary m-adic residue codes of

length $\leqq^{127}$ . These are usually the largest possible weights as given in Verhoeff’s recent table.

We will only define even-like polyadic codes of class I (the other 3 families can be defined

in terms of these as for m-adic residue codes).

Let $C_{i}=(e_{i}),$ $i=$ O,...,m-l be a set of even-like codes of length $n$ . Let a be such

that g.c. $d$ . (a,n) $=1$ . The $C_{i}$ areRoic $\Omega f\Omega lgs\S$ I if

ideal definition idempotent definition

1) $\mu_{a}(C_{i})=C_{i+1}$ 1’) $\mu_{a}(e_{i})=e_{i+1}$

2) $C_{i}\cap C_{j}=$ F-a fixed cyclic code 2’) the
$e_{i}e_{j}$

are all equal

3) $C_{0}+C_{1}+\cdots+C_{m- 1}=E$ 3’) $e_{0}+e_{1}+\ldots+e_{m- 1}-(m-1)e_{0}\cdots e_{m-1}=1-h^{/}$

M-adic residue codes are (polyadic) m-adic codes of prime length with $F=\{0\}$ and A a

generator of $G/H$ . The next theorem is about general even-like m-adic codes of prime length.

Theorem [lj. Let $p$ be a prime and $s=ord_{P}q$ . Then p-l $=rs$ . Let $m\geqq 2$ be an integer.

Then there exists a family $\{C_{i}\}$ , $i=0,\ldots,m-1$ of even-like m-adic codes of length $p$ over

GF(q) with $\dim C_{i}=k$ and $\dim(C_{0}\cap C_{1}\cap\ldots\cap C_{n-1})=\ell$ iff

$m|(p-1)$ ,

$q$ is an m-adic residue (mod p) (iff $m|r$ )

$k>\ell,$ $s|k,$ $s|\ell$ and p-l $=mk-(n-1)P$ .
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