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2-MULTIGRAPHS

Richard A. Brualdi
Department of Mathematics
University of Wisconsin
Madison, WI 53706 USA

This lecture is based on the two papers [1] and [2] written jointly with T.S.Michael. We
refer to these articles for the references not provided here.

Let G = (V,E) be a multigraph. Thus V = {1,2,...,11}7 is a set of n ngﬁcés and E
is a multiset of unordered pairs of distinct vertices called edges. In a 2-multigraph each edge

occurs at most twice in  E, equivalently at most two edges join each pair of distinct vertices.

(1) Example

Let di equal the number of edges that meet vertex i. Then dy =4, dy =4, d3 = 4,
dy=3, dg =3, and dg = 2. The degree sequence is (4,4,4,3,3,2).

With proper labelling of the vertices we may always assume that the degree sequence
D= (dl,...,dn) of a multigraph satisfies dl > .+« > dp . This assumption is made implicitly
throughout.

Our object of study is the class G4(D) of all 2~multigfaphs with the same degree
sequence D= (dl,...,dn) . The first question that arises is that of the nonemptiness of this

class.



(2) Theorem (Chungphaisan. 1974). ‘There exists a 2-multigraph .WiL.h_ci/egrge.Ase'gugnce

D=(d1,...,dn) if and only if
(3) dl + -+ dn iﬁﬂf}l‘_a

k n_ .
(4) > d; <2k(k—1) + Y min{2k,d} (k=1,....n).
i=1 i=k+1

The above is a special case of a more general theorem of Chungphaisan for r-multigraphs
obtained by repiacing the three 2’s above by r1’s. The case r=1 is then the following well

know result.

() Theorem - (Erdés/Gallai 1960). There exists a graph with degree sequence

D=(dy,...dn) if and only if

(6) d1+"‘+dn is even , .

k n
(M) Y d <k(k—1) + Y min{k,d} (k=1,..,0).
i=1 i=k+1

We now adopt the following color convention for 2-multigraphs. An edge of multiplicity
2 is denoted by one blue edge (designated by a bold edge). An edge of multiplicity 1 is

denoted by one red edge:

P — blue ,
I g P‘-_]
Oy, red
1 A 1 B!



in

 Thus' a - 2-multigraph is a graph in which every edge 'is colored red or blue, where red

counts as 1 and blue counts as 2.

(8) Example. Two 2-multigraphs with the degree sequence D = (4,4,4,4,4,):

The example on the right is parsimonious in the sense that it has the smallest number of
colored edges among all 2-multigraphs in ©4(D).
Let G be a 2-multigraph in ©4(D). Then
B(G) = number of blue edgeskof G,
p(G) = number of red edges of G,
7(G) = number of colored edges of G,
m(G) = number of edges of G. counting multiplicites.

It follows that

(9) 7(G) = B(G) + p(G),

(10) m(G) = (dy + - + dn)/2
= 28(G) + »(G)
= 7(G) + B(G)
= 27(G) — p(G) .



The 2-multigraph G is called parsimonious provided +(G) < r(H) for all 2-
multigraphs H with the same degree sequence D as G. It follows from (10) that each of

the following is équivalent to the parsimony of G:
B(G) > B(H) for all H € ©y(D),

p(G) < p(H) forall H € ©9(D) .

(11) Example. The following two 2-multigraphs with degree sequence (3,3,2,1,1) are

parsimonious:

The red graph of a 2-multigraph is the graph (not the 2-multigraph) determined by its

red edges with isolated vertices deleted.

(12) Theorem. Each connected component of the red graph of a parsimonious 2-multigraph
is either a star (a K; . for some t > 1) or a triangle (a Kg). Furthermore at most one

connected component is a triangle.

(13) Example. The converse of Theorem (12) does not hold. The 2-multigraph
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with degree sequence D = (2,2,1,1,1,1) has a red graph consisting of two stars Kl 9> but

the 2-multigraph with degree sequence D

has fewer colored edges.
A galaxy is a graph each of whose connected components is a star or a triangle with at
most one component equal to a triangle. A stellar galaxy is a galaxy with no triangle. By

Theorem (12) the red graph of a parsimonious 2-multigraph is a galaxy.

(14) Remark. The Erdés/Gallai Theorem gives necessary and sufficient conditions that the
parsimonious 2-multigraphs in a class ©,(D) have empty red graphs (i.e. all blue edges).

These conditions are

(15) - d; iseven (i =1,...,n),
(16) dy + -+ +dp =0 (mod 4),
k , n
(17) Y d < 2k(k—1) + Y min{2kd} (k=1,..,n).
i=1 i=k+1




.

a, #
dew Fed

(The di clearly have to be even. Now apply the Erdés/Gallai Theorem to the degree

sequence (d1/2,...,dn/2) and color all edges of the resulting graph blue.) Condition (17) is

the Chungphaisan condition (4). If we retain the condition (15), the only other possibility for

dy+---+dp is

(18) dy + - +dy =2 (mod 4).

Since the d.1 are even, the red graph of a parsimonious 2-multigraph .cannot contain any
stars. It follows that (15), (17), and (18) are necessary and sufficient conditiops in order thét

the parsimonious Q-mulfigraphs in (552(D) have red graphs consisting only of a red triangle.

For the two cases discussed in Remark (14) there are algorithms to construct a
parsimonious 2-multigraph in a nonempty class ©4(D). In the case that (15), (16), and (17)
are satisfied it suffices to apply the well-known algorithm of Havel #nd Hakimi to the degree
sequence (d1/2,...,dn/2) and then to éolor all edges of the r.e‘sulting; graph blue. In the case
that (15), (17), and (18) are satisfied the algorithm of Havel and Hakimi can be refined to
produce a parsimonious 2-multigraph (the problem is to decide where the red edges of the

triangle go).

(19) Problem. Find an algorithm to construct a parsimonious 2-multigraph 1n a nonempty
class ©q(D). |

We now consider the question: What kinds of red graphs [galaxies] can occur in the
parsimonious 2-multigraphs in one class ®,(D)?

A collection § of galaxies is class-compatible provided there is a class @2(D) such that
for each He€G there is a parsimonious = 2-multigraph Gp€®,(D) whose red graph is

isomorphic to H.
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(20) Remark. The galaxies of a class-compatible collection § of galaxies contain
(21) The same number p of edges (by parsimony),
(22) The same number u of vertices of odd degree (the number of odd components of the

degree sequence D).

If we denote by A (= 0 or 1) the number of triangles in a galaxy, then the number of odd
stars [stars whose center has odd degree] equals p—p+3A. But we do not know whether the
galaxies in a class-compatible collection all have the same value of A (thus we do not know

whether they have the same number of odd stars). We do however have the following result.

(23) Theorem. Let § be a collection of stellar galaxies having the same number p of edges
and the same number u of vertices of odd degree (equivalently the same number of odd

stars). Then § is class-compatible.

(24) Example. The three galaxies below (with p=7 and p=8) are class-compatible:

(25) Question. Are the following two galaxies (one of which has a triangle and the other of

which does not) class compatible?
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The preceding theory has an analogue for bipartite 2-multigraphs with prescribed degree
sequence.” The vertices of a bipartite - 2-multigraph are partitionéd into.two:sets. X and Y
with each edge joining vertices from different sets. ~We let R= (ry;...,rm) and
S=(sy,...,8n) be the degree sequences of the vertices in the two parts. Let B5(R,S) denote
the class of bipartite 2-multigraphs with these degree sequences R and S. The class
B9(R,S) corresponds to the class U5(R,S) of all (0,1,2)-matrices with row sum vector R

and column sum vector S (use the reduced adjacency matrix).

(26) Example.
X1 Y1 ' ‘
y Y1 Yo Y3
X, 2 0 2
Xg 1 2 2
X3 Y3

R = (4,1,5), S = (3,3,4)

The notion of parsimony carries over to the class ‘332(R,'S). In terms of AH(R,S) we
obtain that a matrix A in ‘AIQ(R,,S) is. parsimonious provided it has the largest number of
0’s (equivalently the smallest number of 1’s, equivalently the largest number of 2’%) among
all matrices in ‘Uo(R;S). - -

Arguments analogous to those for (52(D) allow one to conclude that the red graphs of
parsimonious bipartite = 2-multigraphs have their connected components equal to stars.
Because of the bipartite assumption there can be no triangle, however a different difficulty

arises. Some stars Kj ;(t>1) have their center in X (corresponding in the matrix
2
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formulation to 1’s in the same row) while other stars K, ; (t > 1) have their center in Y

(corresponding to 1’s in the same column). The former are called row stars while the latter

are called column stars. Then there are the ambiguous (or unoriented) stars K1 1
2

(corresponding to a- 1 which is the only 1 in its row and the only 1 in its column.

(27) Example.
K (rowstar) : S -
1,2 1 1
1
1

K3,1 (column star) - =

— Kl,l(ambiguous star)

We use the concepts of a galaxy and of class-compatibility of galaxies in an analogous
way to that used above. If a collection of galaxies is class-compatible then they have
(28) the same number p of 1’s (edges),
(29) the same number A of rows with an odd number of 1’s,
(30) the same number » of columns with an odd number of 1’s .
In addition since A4v—p equals the number of odd stars (includes ambiguous stars), they
have

(31) the same number A of odd stars.



(32) Theorem. A collection of glaxies with the same p, A, and v s class-compatible-
provided it is possible to assign an orientation (row or column) to each ambiguous star of each

galaxy so galaxy has the same number of odd row stars and the same number of odd
column stars.

The preceding theorem may be true without the orientation assumption.

(33) Example. The following three galaxies have p=5, A=3 and »=3 but do not satisfy

the orientation assumption in Theorem (3.2).

> S

-

AV

T~

1 odd . 1odd 1 odd star
column star row star (row or column?)

Are these galaxies class-compatible?
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