gooobobobogoo
0 6730 1988 0O0_22-39
2%y

bt

Some Experiments on New ACRITH

- Self-validating SOR Algorithm -

Yoshihiro Tanamachi ($§H] 78A)
Akira OKuda (®E %)
IBM Japan Ltd., Tokyo
Abstract:

The successive overrelaxation method(SOR) is well known as a fundamental
method of iteratively solving a large sparse linear system of equations.
Obviously, however, the method by itself cannot give a guaranteed solution.
Ve have developed a simple and practical self-validating SOR algorithm
which gives a guaranteed interval solution, using nev release of ACRITH,
IB“'s product for high-accuracy computation.

In fhis paper, we will describe our algorithm and programming considera-
tions for its inpleiéntation. and give the results of some numerical
experiments. At the stage_of'interval SOR iteration of our algorithm, we
restrict the acceleration parameter to 1.0 in order to maintain numerical
stability,though at first sight it seems better to do overrelaxation.
Further study and experiment is needed to discover ﬁow to accelerate converg-

ence at this stage.

Contenté: N

1. Introduction

. Self-validating SOR algorithm
Numerical examples

Discussion

o L W N

Concluding remarks

[References]

[Appendix] Overview of ACRITH

1. Introduction

The successive overrelaxation method(SOR) is ieli known as a‘basic, indi-
rect, and iterative method of solving large sbarse linear s&stems such as
those derived from finite difference appfoximations of elliptfc differential
equations. It gives very good approximate solufions for the Iiﬁear systens,
but in general, it is not4known quantitatively how good they are.

In this paper,ve propose a self-validating SOR algoffthm that giQes an
approximate solution in the form of a 'guaranteed interval', an interval
including the exact solution.

V. F. Ames and R. C. Nicklas ([1]) gave numerical examples where all or
nearly all the components of a converged solution by the usual SOR method‘
(point SOR), are not included in the guaran?eed interval solution gained by
the SOR method using interval arithmetic (interval SOR). However, those
examples are not as strange as they appear, because there is no way in witch
the point SOR method can guarantee the exact solution location{

This i§ the reason vhy ve need the self-validating SOR algorithnm.

The above mentioned authors staﬁe that they devéloped the intérval SOR
method with an acceleration factor w=1.0, utilizing IBH'S product ACRITH,
thouth its algorithm description is not shown in the article.

Motivated by this article, we have developed an interval SOR algorithm
using the hewest release of ACRITH (release 3), and did some numerical
experiménts; In section 2, we describe our algorithm andvprogramming
consideratfons. Ngnerical examples are given in section 3, and the interval
SOR acceleratioﬁ is discussed in section 4. The appendix is a very brief

introduction fo ACRITH.

2.

2.1

Self-validating SOR algorithm

Let é system of linear equations below be given.
Ax=b, A=(a;5): n by n séuare‘matrix

Ve use tﬁe following notations:

+ Scalar variable: w, xi, ai;

* Vector variable: b, a, x, ¥, X

* Matrix variable: A, D, I, L, U

+ Interval data type: [e].‘[x]. [Al: interval data are sbecified by
the brackets, and the lower and upper bounds of the interval are

specified by superscripts 1 and u respectively, as [x]=[x', x"].

Aléorithm’description

Our algorithm consists of two stéges:

(1) Point SOR stage (PSOR)
An approximate solution X is obtained by the point SOR method with
a given optimal acceleration factor w. 'Ushélly, starting vector

is zero.

(2) Interval SOR stage (ISOR)
Taking the above X as the initial interval vector, a guaranteed
soiution [X] is obtained using interval arithmetic with an acceler-
ation factor of 1.0 (i.e. of the Gauss-Seidel type).
Figure 1 shows the overall flow, and Figure 2 describes the ISOR

algorithm in pseudo-code form.

A, b
point SOR
[} — Y]

PSOR e

interval SOR
ISOR

|

Figure 1. Overall flow

[el,ev }—

[x®] « [%X, X]
do k=0, kmax
do i=1,n '
[yilJ] e {b-Zai;X [x;%P] —=Fai;X [x;%]}) Sas (%)
i J<i

if ([y:i]C [xi™]) then

[x; D] &« [¥i]
el se’

[x:*] &« [yi] X[e]
endif

enddo (i) ‘
if([y:i]l € [x:i®] for all i) then
if(max(yi®"—y:i') <n) then
i
‘converged’
return ([Rg] & [x®D])
endif
endif
enddo (k)
‘not converged’
return

Figure 2. ISOR algorithm
o -4~

[Notes]
. n is the convergence criterion for both PSOR and ISOR. In PSOR, it

is used as the criterion for the maximum norm of the difference of
two successive iteration vectors. In ISOR, it is used as the
criterion for interval width.

+ kmax is the maximum number of iterations permitted, both for PSOR and
ISOR.

+ In ISOR,the calculated intervallyi]lis replaced by the inflated interval
[yilxX[e]l, where [el=[e', €"], €!<1.0, €"> 1.0, in order to reach

a guaranteed interval sooner.

The algorithm is practical in the sense that we simply apply the usual SO@
method with an optimal acceleration factor, and then we can get guaranteed

interval solution with additional interval arithmetic computation. In the

ISOR stage, we always use the acceleration parameter 1.0 to maintain numeric-

al stability. The parameter choice is discussed in section 4.

2.2 Programming considerations

The key to the computation in our algorithm is the statement specified
by symbol (%) in Fig. 2, where high-accuracy arithmetic is needed. Here we
use ACRITH subroutines: DIDOT for the interval inner product, and DIDIV for

the division of interval data by a scalar value.

We have also tried to use the 'interval accumulator', one of the new
functions in release 3, for direct control of interval calculation. Althoughgﬁ
this function works well, we have not implemented it in our final progranm,
because the subroutine DITOT function is enough for our‘purpose.

-5~

Another subroutine for arithmetic expression evaluation, FVAL, seemed
useful at first sight, but it is not appropriate in our case, as it accepts
only point data as input. We would need to enhance FVAL to be able to

specify interval data as input.

3. Numerical examples
For our numerical experiments, we used the same problem as Armes and

Nicklas, the example problem IV in [1].

[Prbblem] Poisson equation with Dirichlet boundary condition.

-(uxx*tuyy) = exp[-(x-1/2)2-(y-1/2)2], 0<x<1l, 0<y<1l, u=0 on boundary

The linear system of equations is derived by five-point difference
approximation, dividing the unit square into NxN subsquares.

Armes and Nicklas showed that the point SOR convergent solution does not
lie in;the guaranteed interval solution gained by their interval SOR method

for all inner mesh points. Part of their results are as follows:

mesh point X y point SOR interval SOR
(lower) (upper)
(1,1) 0.125 | 0.125 | 0.15150487E-1| 0.151518E-1 0.151520E-1
(4,4) 0.500 | 0.500 | 0.67912579E-1| 0.679184E-1 0.679192E-1

(Computational conditions]
« N=8
« acceleration factor in point SOR

+ n=1.0E-4

w=1.0

Our results obtained by the algorithm in Figures 1 and 2 are shown in

Figure 3.

INTERVAL SOR ALGORITHM
FOR MODEL PROBLEM
PARAMETERS :
NUMBER OF INNER GRIDS
RELAXATION FACTOR w
CONVERGENCE CRITERIA
EPSILON INFLATION

3%
] 1] i

7% 7
1.0000

0.10000000D-09

0.99999900D-00 0.10000010D+01

« RESULTS
(1,d) LOVER UPPER
(1) DIRECT
(1,1) (0.151598097445841484D-01 , 0.151598097445841494D-01)
4,4) (0.6795232963680387D-01 , 0.6795232963680390D-01)
(2) ISOR :IT = 47 (w= 1.0000)
1.1 (0.1515980973D-01 , 0.1515980976D-01)
4.4 (0.6795232959D-01 , 0.6795232969D-01)
(3) PSOR :IT = 119 (w= 1.0000)
1,1) 0.151598096233563255D-01
(4,4) 0.679523291220316822D-01
Figure 3. Results for w=1.0

[Output description]

- PARAMETERS
- RELAXATION FACTOR w: the acceleration factor fdr PSOR: this value is
also printed in the '(3) PSOR" line. :
- CONVERGENCE CRITERIA: the value of n described in [Notes] of §2.1.
- EPSILON: the values of €' and € described in [Notes] of §2.1.

« RESULTS | |
- DIRECT: the guaranteed interval obtained by ACRITH subroutine.DSSSB.
a direct solving routine for band linear system, one of new functions of
release 3.
- IT: the number of iterations needed for convergence.

+ The lower and upper bounds of the resultant interval are printed out using
ACRITH subroutine DIOUT. DIOUT gives the minimuﬁ decimal interval that
includes the inner hexadecimal interval, and shows the significant digits
of decimal lower and upper bounds as long as there is a difference between

,them;

. All computations are executed in long precision.

Figure 4 is the result for w=1.4465, the optimal acceleration factor in

the case of N=8 in the mode[problem. The optimal w is given by the formula

below ([4]).

n
Wopt = 2/(1+sin—§~)

paw

3¢

3¢

'RESULTS
(1Y)

(1) DIRECT
(1,1)
(4,4)

(2) ISOR
(1L,
(4,4)

(3) PSOR
(4.,4)

(

(

(1T

(
(

<IT

INTERVAL SOR ALGORITHM
FOR MODEL PROBLEM
PARAMETERS :

NUMBER OF INNER GRIDS
RELAXATION FACTOR w
CONVERGENCE CRITERIA

EPSILON INFLATION

7
465

LOWER
0.151598097445841484D-01 ,
0.6795232963680387D-01 ,
47 (w= 1.0000)
0.1515980973D-01 ,
0.6795232959D-01 ,

32 (w= 1.4465)

7 %
1.4
0.10000000D-09
0.99999900D+00 0.10000010D+01

UPPER

0.151598097445841494D-01)
0.6795232963680390D-01)

0.1515980976D-01)
0.6795232969D-01)

0.151598097180568525D-01
0.679523296184764564D-01

Figure 4. Results for w=1.4465

The relative locations of derived values are depicted.

* (1,1) mesh point: 2 digits *% of 0.015159809 are shown under the line.

ISOR

P

~

N

PSOR w=1.0 PSOR w=1.4465 | DIRECT
° o—o—o o
62 173 T4 76

"« (4,4) mesh point: 2 digits %% of 0.067952329 %% are shown under the line.

ISOR
PSOR
PSOR w=1.0 w=1.4465 DIRECT
® : ® ° o—— ®
12 50 61 63 69

[Observations]

+ In general, PSOR COnverged solutions with the same criterion vary
according to the acceleration parameters. Better approximations are
obtained by overrelaxation.

+ The ISOR interval always includes the exact solution (the guaranteed

interval by the direct method).

In Table 1, we summarize the numbers of iterations for PSOR and ISOR,
and also PSOR converged values at the mesh point (1,1) with varying
parameter w.

Table 1. Numbers of iterations and (1,1) converged values

0w PSOR (1,1) converged value ISOR
0.8 177 0.01515980956 47
0.9 145 59 ”
1.0 119 62 ”
1.2 78 68 ”
1.4 43 70 o
1.4465 32 71 ”
1.5 33 74 ”

-10_

In this example problem, the numbers of ISOR iterations and convergent

intervals are the same for different w's.

4. Discussion
4.1 Overrelaxation and interval SOR

In our ISOR stage, the acceleration factor is always set at 1.0. Using
the optimal acceleration factor w of PSOR in the ISOR stage as well seems
to give faster convergence.

The only modification necessary is to replace the statement(*) in Fig. 2

with the following two statements.

[zl €« {b—ZaisX [x;®V] =Zai; X [x;%]} Sa;
i J<i

[yi] € Q-0)[xi ®]+ wlz:]

With this modification and taking w=1.4, ISOR produces a diverging

vector, as shown in Figure 5.

-11-

* RESULTS

(I,)

(1) DIRECT
(1,1)
(4,4)

(2) ISOR
1,1
(4,4)

(3) PSOR
1,1)
(4,4)

(
(

JIT

(
(

:IT

LOVER

0.151598097445841484D-01

0.6795232963680387D-01

201 (w= 1.4000)

~0.461D+68

~0.438D+70

43 (w= 1.4000)

’

i

UPPER

0.151598097445841494D-01)

0.67952329636380390D-01)

- 0.461D+68)
0.438D+70)

0.151598096877621769D-01

0.679523295482247908D-01

Figure 5. Results for w=1.4, in PSOR and ISOR

On the other hand, the modified ISOR always converges for 0Cw<l. The

overrelaxation technique for accelerating convergence seems to work in the

diverging direction when applied to interval computation. That is, the

coefficients 1-w (K0) and w (1) in the second statement of the preceding

nodification, (1-w) [x: ®]+ w(z:], tend to contribute to the divergence.

4.2 Another nethod for interval SOR

The SOR method with the acceleration parameter @ can be considered as

an iterative improvement process,

12

XD e g R (b-Ax) =Rb+ (I-RA)x X
vhere R=(1/w D+L)"!. Here, A=D+L+U is the splitting of the coeffiéient
matrix A to the matrices of the diagonal D, the lower triangular L, and the
upper triangulaE.U.

Direct method ACRITH subroutines such as DSSSB, for band matrices
ﬁentioned‘in section 2, and DLIN, for general matrixces, are also based on
the ébove iterative improvement process, where a good approximation of A™!
is taken as R. In general,the convergency is essentially determined by the
spectral radius o (I-RA). The key to this procesé is to compute the right
hand s}de with high-accuracy.

Ve have developed a program based on the above method. Its algorithm,

which we call the matrix form interval SOR(MISOR), is as follows.

1) Initialization:

: 1
[R] ¢« (=D+L)"' .
) ,

IA
[s] « (L—[R])(A),m

[P1 « ([R], [S])
[x®] « [0, 0].
k<0

2) Iterations:
[q] « ‘b
, A x]

(x**0] « [P]lal (+)

13

The test of inclusion, & -inflation, and convergence test are the same
as in ISOR.
For high-accuracy computation of the parts (+) above, we use ACRITH

matrix multiplication subroutine DIMAM.

[Observations]
* In the case of w=1.2, MISOR does not diverge. However, the inclusion
cirteria:
[xi <07 C [x: ¥]

holds for only about a half of the components in every iteration cycle.
» In the case of w=1.4, MISOR eventually diverges.

Numerical examples show that MISOR is slightly better than ISOR
in terms of non-divergence property, but cannot be a numerically stable
“method. In terms of computational work, MISOR has a much heavier load than
ISOR.

S.M.Rump proposed the following iterative improvement method ([5]),which
aims to get a guaranteed interval [d] of the error, the difference between t
he exact solution and the approximation X.

1 1
[d] ¢ (—=D+L)"! {b-Ax - (U+D--D)[d]}
: w w

We did try it during this study, but this method is also likely to

diversge.

-14-

4.3 Spectral radius of interval SOR iteration matrix

The iteration operator matrix of PSOR is given by (I-RA) where R=(-}D-L)"1.
Those for interval ISOR and MISOR are considered as follows ([6]).
- | |
w
MISOR: |I-R*Al

ISOR: R*(

D+1U1)

1
Here, R*=(—D-|LI) .
w

In our example problem, R*® coincides with R. Table 2 shows the spectral
radii of PSOR, ISOR and MISOR,with the parameter @ varying from 0.8 to 1.44.

The values of the spectral radii correspond closely to the results of

numerical experiments, except the case of w=1.2 in MISOR.

Table 2. Spectral radius (for N=8)

w PSOR ISOR |[MISOR
0.8 0.902 | 0.902 |0.902
0.9 0.880 | 0.880 |0.880

.0 0.854 | 0.854 [0. 854
1. 2 0.778 | 1.604 |[0.850
1. 4 0.611 | 2.407 |{1.236
1. 44 0.511 | 2.575 |1.340

5. Concluding remarks
We have developed a simple and practical self—validating SOR algorithm.
In this paper, ve gave details of our algorithm, programming considerations,

and numerical examples.

15

In.order to accelerate convergence in the interval SOR stage,
overrelaxation iteration seems promising, as in the case of the point SOR
stage. However, numerical experiments show a tendency to diverge in the ISOR
stage. Further study, especially of this divergence problem, is needed in

order to build up a truly practical self-validating SOR method.

[References]
(1] Ames,V.F.and Nicklas,R.C.,Accurate Elliptic Differential Equation
Solver, in Miranker,¥W.L.and Toupin,R.A., edited by, Accurate Scientific

Computations, Lecture Notes in Computer Science, Springer-Verlag,‘iQSB.

[2] IBM High-Accuracy Arithmetic Subroutine Library Program Description and

User's Guide, Third Edition, 1986. (Order number: SC33-6164-02)

(3] Okuda,A. and Tanamachi,Y., High-Accuracy Subroutine Library ACRfTH.i

'A New Direction in Scientific Computation Technologies' Workshop, at

Ehime Univ., 1986.
(4] Varga, R.S., Matrix Iterative Analysis, Prentice Hall, 1962.

(5] Rump, S.M., Solving Algebraic Problems with High Accuracy, in Kulisch,
U.¥.and Miranker, W.L., edited by, A New Approach to Scientific

Computation, Academic Press, 1983.

[6] Alefeld,G. and Herzberger,J., Introduction to Interval Computations,

Academic Press, 1983.

- -16-

[Appendix] Overview of ACRITH ([2],[3])

ACRITH, IBM High-Accuracy Arithmetic Subrdutine Library, is designed
for high accuracy computation with aﬁtomatic verification,using interval
arithmetic. Its aim is to provide quality assurance in numerical
conputation; The library is built up hierachically: it consists of full
Precision primitives, basic arithmetic routines, and problem solving
routines.

ACRITH implements new methods such as the following. "

. inner product computation treated as basic arithmetic.

+ accumulator(s) for full precision computation.

+ four types of rounding

ACRITH consists of 3 hierachical levels.

* Level 1: Problen Solviné Routines

Polynomials

- Dense systems of linear equations and matrix inversion

Sparse linear systenms

Linear Programming

Eigenvalues and Eigenvectors

Nonlinear equations
- Standard mathematical functions

« Level 2: Basic Arithmetic Routines

Scalar operations

- Vector operations

Scalar product

Matirix product

_17..

* Level 3: Full Precision Primitives
- Accumulator preparation
- Accumulator arithmetic operations

- Store from accumulator

4, New functions in release 3

+ Extension to complex number

Accumulator arithmetic

- Basic arithmetic

Polynomials

- Dense systems of linear equations and matrix inversion
» Interval accumulator (reél and complex)
-+ Sparse linear systems (real)

+ Nonlinear system of equations (real, long) .

18

