goooboooogn
0 6730 19880 47-61

194

The interval arithmetic for
the i]l-conditioned polynomial equation

Matu-Tarow NODA® ‘and Tateaki SASAKI™®™*

* Department of Computer Science, Faculty of Engineering,

Fhime University, Matsuyama-shi, Ehime 790, Japan

¥ The Institute of Physical and Chemical Research

Wako-shi, Saitama 351-01, Japan

1. Introduction

A polynomial is said to be ill-conditioned if small changes in
its coefficients result‘in large changes in its zeras (Bareiss,
1967, An ill-conditioned’polynnmial equation has at least one
of the following properties:

1) The existence of several roots having ratios’close tm’unity.
2y The existence of multiple faots. |
The prbperty 1) means the existence of close =zeros in a
polynohial equatian. On multiple roots, let the polynomial

equation be

3= n n-1
Poixr=a x"+a, 11X t...ta x+a, ,

and let m; be a multiplicity of a solution X of Pn(n)=0. If a

coefficient, ay is perturbed slightly to ag+ Akak, then the

perturbation in X5 is

i { . m; ! xixkzxak llfmi

(4/ me (X
- d!d’Xk} v Pnhix;?

Where Aap<gag.

Many numerical algorithms have been proposed to obtain zeros of

polynomial equations. Most of them, however, is ndt etfective
for ill-conditioned problems. It is well known that the Newton's
methond and some modified methods <can not calculate roots
accurately if root are multiple. As a result, authors of today's
textbooks on numerical mathematics limit themselves to write "it
is very difficult to compute equations having multiple roots and
close roots" or "it is necessary to use double or dquadruple
precision arithmetics for obtaining accurate solutions".

In this note, two approaches for the ill-conditioned polynomial
equation are discussed. ©One is by using the interval arithmetic
and the other is by the hybrid computation, i.e. a combination of
symbolic and numerical computations. In the way aof the hybrid
computation, algorithms which ére established 1in algebraic

computations are extended to validated or approeximate algorithms.

2. Rough sketches of an algorithm

If the polynomial P{(X) has integer coefficients and integer
roots , multiple roots for the P(x)=0 is easily separated. In
this case, P(x) has not square-free decomposition énd P(x) is
divided by dP(x})/dx exactly. For s-fold multiple roots, P(x} is
divided by d‘®’P(x)/d‘®’x with residual=0. It follows that the
greatest common divisor (GCD) of two polynomials P(x) and its s-
times differentiation by x, d'3’'P(x)/d‘S’x, is not oprimitive.
The GCD of two‘polynomials Py and‘Pg is writfen as GCD(Py,Poy. 1t
is usually obtained by the Euclidean algorithm and is shown as
the algorithm 1. Here, the coefficients of polynomials are
ommited for the simpilicity.

Algorithm 1 Euclidean algorithm for the GCD

o

i
W

input polynomial Pi(x), Pé(x)
output GCD(Pléx),PQ(x))

1. F<-P1’ G("P«)
2. obtain Q and R salisfies
F = QG + R
3. if R = 0 then
GCD(PI,PQE = R
else
F <- G, G <- R
4, goto step 2.
Pl’ P2 and successive Rs construct the polynomial remainder

sequence (PRS). The algorithm is rewritten as
Algorithm 1' Euclidean algorithm for the GCD
input polynomial Py(x), P,(x), deg(P1)>deg(P2)'

output GCD(P;(x),Poix))
calculate a PRS

(P P ..., PL#0, P =0)
la 2’) k [] -
by the formula k+1
Pi-1 = 9Py * Pijyy » 152,000k
if Pgsyy = ¢ then
GCD(Pl.Pg) = Pk
else

repeat the process

where deg(Pi) is the degree of the po;ynomial Pi' The PRS is
computed by the elimination of leading terms({ the highest degree
term) of two polynomials. The GCD4computation is valid only for
two integers or two polynomials whose coefficients and zeros are
limited to integers or rational numbers. Here, we consider an
extension of the GCD~computation to polynomials ‘whose
coefficients or foots are fleoating point. numbers. We call the
GCD in above case as an approximate-GCD. The computation of the
PRS_is'términated by a given parameter € in the approximate-GCD
calculation. The parameter & corfespbnds to the accuracy of the

result. Tﬁe approximate-GCD is computed by the method with
validation and by the combination of symbolic and numerical
computatimns. The former is done by the‘interval arithmetic and

the latter is realized on the hybrid computation system. If the

¢

N

approximate-GCD is obtained, <c¢lose roots of the original
polynomial equation behave like multiple roots. The multiple
root is easily separated from the'equatfon. The ill-conditioned
problem changes to two well-conditioned probliems, one coentains an
approximafe multiple root and the other does not contain it.
Zeros of the equation which does not have approximate multiplej
roots are easily computed by any traditional methods for
numerical computations. There remains a problem to obtain
solutions of the equation having approximate muitipie ronots. The
detailed discussion on the problem is in 3.
2.1 Approximate-GCD by the interval arithmetic

Two types of interval arithmetic have been discussed
extensively. One is the rectangular interval arithmetic and the
other is the circular one (Alefeld and Herzbérger, 1983). The
former 1is well Kknown because it is easy to implement on
computers. The advantage of the circular interval arithmetic |is
that it preserves some mathematical properties of the problem.f

The circular interval arithmetic consists of a center, A, and a-

‘radius, Tr¢(A) of a circle. A and r(A) correspond to a floating

point number and an error, respectively. Because of thef
correspondence, here, the circular interval arithmetic is used tof
obtain the approximate-GCD.

The approximate-GCD of polynomials Pl and P2 with accuracy E:,E
GCD(PI,PZ, €), is an natural extension of usualvGCD computation.g
It is also obtained by the Algorithm 1 , but the relationali
eperator R=0 in the step 3 must be rewritten as iriR)i<= & v

There arises a difficulty on a division by an interval number.

The fact that the denominator must not incliude zerg in the
interval arithmetic, reguires modifications of the Algorithm 1.
[t is important especially for the case of irregular polynomials.
The irregular polynomial is the polynomial .whase leading
coefficient(le) 1is very small in thé process to eliminate the
leading term of polynaomials. If the Ic is nermalized to unity,
the PRS is obtained without difficulty. The Euclidean algorithm
is modified as follows in the interval arithmetic.

Algorithm 2 Euclidean algorithm for the GCD{ interval arithmetic:

input polyncmial Pi(x), Pyixy, deg(P1>>deg(P2§, édtoff value

output GCD(Pl(x),Pzéx)) with accuracy
calculate a PRS

(Py,Pp,...,Py#0(with accuracy €),Pp,;=0(with accuracy €})
by the tormula
Pl"l = QIPI + Pl"'l s i=2,...,k . o
where 1c(P;,y) = interval number corresponds to unity
if ir{RYI <= € then
GCD(PI.P2, €) = Pk
else
repeat the process
Many. studies have been done to implement the interval

arithmetic especially for the rectangular interval arithmetic.
In our computafion, however, the circular interval arithmetic is
adequate to decide whether the result contains zero or not. Here,
the package to compute the circular interval arithmetic is ~ made
and implemented on personal computers. Some results are in §.
2.2 Approximate-GCD by the hybrid computation

The exact GCD is easily obtained by the symbalic computation as
shown above. We try to modify the Algorithm 1 for the case
coefficients or zeros of the polynomial are floating point num—
bers. Computations are done by the combination of the symbolic
computation and the numerical computation. Results by the

symbolic computation are used in the numerical computation and

o

() 1

no

vise versa. We call the symbolic—numérical computatinn as the
hybrid computation. In the hybrid computation, the GCD algarithm
for the symbolic computation is modified. Numbers computed in
the algorithm‘are not the interval but the integer, the rational
number or the floating point number. The decision whether a
number is zero oar not is measured by considering accuracy.
Except for the use of interval numbers, the strategy is similar
toc the method mentioned in 2.1 for the circular interval
arithmetic, The normalization of the remainder R is also
considered and is made some changes. Here, for the purpose of
the normalization, the absolute value of the maximum magnitude
coefficient of - the polynomial P is defined and 1is written as
mmc(Pi. The step 2 of the Euclidean algorithm becomes clearly as
shown below,

Algorithm 3 Euclidean algorithm for the GCD (hybrid computation?
input polynomial PI(X), Pzéx), deg(P1)>deg(P2), cutoff value
output GCD(P;(x),Po{(x)) with accuracy g
calculate a PRS

(Pl,Pz,...,Pk#D(with accuracy &),Pk+l=0(with accuracy €))
by the tormula
Pi-y = QP + max(1, mmc(Q;)P

: i+1
if all coefficients of Py, <= € %hen
GCD{Py,Py, £ = Pk

, i=2,...,k

else
repeat the process

The detailed discussion on the algorithm and the approximate-

GCD by the hybrid computation is in ref.2. Hybrid computation

systems used here are briefly mentioned in 4,

3. Root-finding algorithm.
The root-finding process for well conditioned equations is

performed -easily. If ill-conditioned parts are separated out

e

from the given equation, the residual becomes the well
conditioned equation. There is no trouble to obtain numerical
solutions of the residual equation. Then, we must solve the
extracted equation that contains multiple or close roots. 1f
multiple roots are contained in the extracted egquation, it 1is
easy to find the solution by computing the GCD. - There remains a
problem on the equation having close multiple roots. The position
of an approximate multiple root which is obtained by . an
aprroximate-GCD is on the center of close multiple roots (Sasaki
and Noda ». The result is important for the following
discussion.

The root-finding algorithm for the equation having close roots
is constructed both by the interval arithmetic and by the hybrid
computation. In the interval arithmetic, the basis of the
algorithm is the Krawczyk operator {(Alefeld and Herzberger) and
the Moore-Jones method on existence region of a solution. It
requires the great number of operations to find out the uniquely
existence region of a solution. Though it is possible to obtain
satisfactory results, it takes too much CPU times. It seems new
idea should be introduced to overcome the difficulty.

- On the other hand, the root finding algorithm for the close
root part in the hybrid computation is as follows. It gives
satisfactory results both in the accuracy and in the CPU times.

The notation
P (uw) = d™Px)/dxM] 4oy

is used in the algorithm. The input of the algorithm is P(x)

which 1is a regular polynomial having m close roots around Xx=u.

7

CA1

|

Qutputs of the algorithm are m close roots Uj,...,u around X=u.

m

Following three steps caonsist of the algorithm as follaws:

Step 1: Construct the following equation in variabie §

(€1 Py 8"mt o+ ...+ P2y S/1t ¢ Py = 0

Step 2: Solve equation [C) w.r.t. | by regularizing the 1.h.s.
and let the roots obtained be Sl' cee S'm

Step 3: For each ‘Si' i=l,...,m, solve P(x)=0 by Newton's method
with initial approximation x, = u+ Si'

The regularization in the step 2 corresponds to the normalization
in the algorithm 3. Even if the input polynomial is regular, an
irregular polynomial appears, sometimes, in the elimination
process of the algorithm. The regularizafion process is then
important to complete the algorithm. It is done by an operation
multiplying constant to the variable. Small coefficients in the

polynmmial‘are changed to coefficients having usual magnitude.

4, Hybrid computation systems.

The hybrid Qomputation system is essential to obtain the
approximate-GCD by the Algorithm 3. The second author of this
note /uses the hybrid computation system GAL(Sasaki et al. 3.
The system GAL is written in LISP and is designed for big
computers, On the other hand, the first author uses the
pertable hybrid computation system SYNC. It is written mainly in
PROLOG and parfially in C. As a hybrid compufation system, it is
a nev comer but it is capable to compute hybrid computations on
personal. computers. Details on SYNC is written in another
article(Noda and Iwashita). Here we will limit ourselves to

give an outline of the SYNC. Special features of SYNC are as

B E

Wy

follows:

a) A variable occurs in a mathematical expression is assigned to
a prime number.

b) The data structure is adequate to a portablie system.

¢) The format of functions of SYNC's symbolic manipulation parts
is similar to that of usual symbolic computation system.

d) SYNC has a powerful interface between symbolic computations
and numerical computations;

e) Symbolic results in SYNC are easily translated to FORTRAN
program and numerical FORTRAN results are used in SYNC.

f> SYNC has its own programming language. The programming
language is similar to Pascal and is easy .to program.

Among above features, e) is mainly described in the followiﬁg.
In SYNC, the result in symbolic computation (symbolic result
is wused in the numerical FORTRAN computation. The numerical
resul t ié used in the next symboalic computation. The process is
done automatically 1in SYNC. The process is divided into five
stages as follows: 1) the symbolic computation is done, 2) a
program written in an intermediate language receivés the symbnlic
result as its input, 3) the program is translated td a FORTRAN
source program, 4) the FORTRAN compiler runs and the numerical
result is generated and 5) the numerfcal result is used in the
next symbolic computation. Stages 2) to 4) are managed by the
SYNC's predicéte fortran. The intermediate language in the stage
2) is a small extension to usual FORTRAN. It has a new statement
JOINT which is similar to the block COMMON statement. JOINT

statement has two blocks. One is called IN and the other is OUT.

In IN block, symbolic results are stored and in OUT block,
numerical outputs are stored. The intermediate language whose
file-attribute 1is syn is translated usual FORTRAN iﬁ the stage
3). An example of stages are shown as follows:

<Q> f:=X74-10,4%X"3-70,96%x"2+29.6%x-3.
CA> X~ 4 - 10,4 % x 7 3 - 70.96 x x "~ 2 + 29.6 % X - 3.
<Q> df:=dif(f,x},.
CA> 4 * x 73 - 31.2 %*x x " 2 - 141.92 % x + 29.6.
<Q> xX0:=20. , :
<A> 20,
{Q> eps:=1.0e-5,
<A> 0.00001.
<Q> fortran newton(f,df,x0,eps,out).
*%% compiler & linker messages %%x

approxXimate sol. = 14.99999965778487
<Q> g:=x-out.
<A> X - 14.99999966.
<Q> poldiv(f,g}.

residual = -0.00149918

quotient Xx"3 + 4.59999966%x"2 -1.96000671%x + 0.19990006
<A> done.

In above, a line with <Q> accepts user's input statement and a
line with <A> feturns results of evaluation by SYNC. An input
statement must terminate a symbol ".". in the first input line, a
pblynomial is defined. The derivative of it with the variable x
is computed symbolically in the next <Q> line. The initial value
and the stopping criterion of the Newton iteration are defined in
the following two inputs. User must prepare a program for - the
hybrid Newton's method in the intermediate language and store it
in the file with the name "newton.hyb". The program "newton.hyb"
is the same as usual ﬁORTRAN program except for one statement.
In the program, a statement

_JOINT /IN/ F,DF,x0,eps /OUT/ ¥y
"must be added. The order of these pafameters_and the name of ;he‘
program correspond to arguments of the predicate fortran. . The

program in the intermediate language, "newton.hyb", is

10

e

automatically translated to the program in_ usual FORTRAN,
"newton.f77", by the predicate fortran in SYNC. The FORTRAN
program generated here is stored in file and ‘'is accepted‘ by
FORTRAN compiler. Results of the numerical computation is put on
/OUT/ block. As shown in the figure, the numerical result is
easily used in the next symbolic computation. The user defined
predicate "poldiv'" in the final input line divide a leynomial f
by the \other g. The residual and the quotient are shown
symbolically.

Some studies have been proposed on the connection of symbolic
computations and numerical computations by using FORTRAN. In
famous symbolic computation systems REDUCE and MACSYMA, the
FORTRAN source program is also generated automatically. In these
systems, however, the symbolic computation must be terminated and
the FORTRAN processor must be started as a different computation.
Symbonlic and Numerical results are, then, exchanged through files

and two systems run independenfly.

5. Examples for the approximate-GCD.
5.1 Multiple root(double root >

We consider the polynomial treated in 4,

P(x) = x* - 10.4 x% - 70.96 %% + 29.6 x - 3
The equation P(x) = 0 has roots x = -5, 15 and double root at
X=0.2. It is an ill-conditioned polynomial equation because of

its double roots. Two methods described in 2 are applied to the
equation. In the circular interval number with the value A and
the radius r(A) is represented as < A, r(A) >. We show the PRS

generated by the algorithm 2 as follows.

11

~,

]

58

< 1.0 , 2.2E-16> x* + ¢-10.4, 1.8E-15> x5

Fqy =
' + <-70.96, 1.4E-14> x° + < 29.6, 3.6E-15> x
+ < -3.0 , 4.4E-16>
Fp = < 4.0E 00, 1.8E-15> x5 + <-3.1E 01, 8.9B-15> x°
+ <-1.4E 02, 5.7E-04> x + < 3.0E 01, 7.1E-15)>
Fg = <-8.9E 02, 3.8E-12> x° + <-1.1E 03, 9.3E-12> x
+ < 2.6E 02, 1.8E-12>
Fy = <-4.7E 06, 1.1E-07> x + < 9.5E 05, 2.2E-08>
Fg = < 1.3E-06, 7.8E-04> 3> 0

Starting r(A)s in F1 are automatically cOmputed according to the

floating point format in the computation. Above computations are

performed on the IBM-PC with the Intel's 8087 flcating point cm-k
processor, The IEEE format is used in the computation. Then,

the GCD of P(x) and its derivative is f,. 1t means the = equation

P(x)=0 has the double root. 1f we put the lc of the GCD to
unity, we obtain the GCD as

GCD(P(x), dP(x)/dx) = X - < 0.2, 4.7E-10 >.
.On the other hand, the hybrid computation gives the following

PRS by the algorithm 3.

F, = x"4 - 10.4 x°3 - 70.96 x"2 + 29.6 x - 3
F2 = - 4 x™3 - 31.2 x72 - 141.92 x + 29.6

F3 = - 85.78 X72 - 107.76614385 x + 24.98461538
F4 = - (,46563934 x + 0.09312787

F5 = 2.77556706E-17

Then, we obtain the GCD = x - 0.2, because the Fg is approxi-
mately zero. Above results for the double root show that two
algorithms are also valid for .the ill-conditioned -polynomial
equation with close roots,

5.2 Close roots

We consider an equation with close root such as
P(X) = (X+ 5)(x-15)C%x=-0.2)(x-¢0.,2~-")),

The .algorithm 2 generates the PRS for several‘? . Finalsts ot

the PRS are shown in the Table 1. When ’7);10_6, the absolute

12

sl

value of A is greater than r{(A} and the obtained interval does
not contain zero. On the other hand, 75; 19_7, the interval
contains zero and F4 should be taken as the approximate-GCD. If

we make r{(A) large, then Fy with greater 7 will be zero in the

interval arithmetic. An example of the PRS for '7= 107 and a

starting r(A)= 10712 44 computed as

Fy = < 1.0, 1.0E-10> x} + <-10.4 , 1.0E-10> x°
+ <=70.96 , 1.0E-10> x* + < 29.6 1.0E-10> x
+ < -3.0 , 1.OE-10>)

Fy = < 4.0E 00, 4.0E-10> x” + <-3.1E 01, 3.0E-10> x~°
+ < -1.4E 02, 2.0E-10> x_, + < 3.0E 01, 1.0E-10>

Fg = < -8.9E 02, 4.8E-07> x° + <(-1.1E 03, 1.2E-06> x
+ < 2.6E 02, 2.3E-07)>

Fy = < -4.7E 06, 1.3E-02> x + < 9.5E 05, 2.6E-03>

Fg = < 1.4E 00, 9.3E 00> 0

Then the approximate-GCD is obtained from F, as

appraoximate-GCD = < 1.0, 5.3E-09 > x + <-0.200005, 1.1E-09 >.
It 1is possible to extract the approximate GCD from a given ill-
conditioned polynomial equation with close roots. The starting
r(A) behaves like a cutoff value & in the algorithm 3.

The hybrid ‘computatiOn by using algorithm 3 is also easy to
extréct the approximate-GCD. The computation is performed' with
no trouble. ' The normalization process is important in whole

computation, Results for any ’75 are shown in Table 2.

7 Fs | 710 Fy | B,
10711¢ 1.4 08, 7.1E-04 >| |10711-0.00945431%x-0.23943771
10721¢ 1.4E 06, 5.9E-04 > 10721-0.00011671x-0.20487204
10°31< 1.4E 04, 5.8E-04 >| [10731-0.00000121x-0.20049869
10"41< 1.4E 02, 5.8E-04 >| |10741-1.0E-09 [1x-0.20004999
10791¢ 1.4E 00, 5.8E-04 >| [10721-1.197E-101%-0.20000499
10°81¢ 1.4E-02, 5.8E-04 >| 10781 0.0 [X-0.20000000
10771< 1.4E-04, 5.8E-04 > L .
10°81< 0.0E 00, 5.8E-04 >

Table 1 Table 2

13

| S

¥ oo
(G S

60

6. Conclusions.

A method fo solvé the ill-conditioned polynomial equations are
considered.(I11-conditioned parts, multiple or close roots, are
extracted from the givén equation; The method of the extraction
is baséd on the Euclidean algorithm that is defined as the
'exact'-algebfaic method. The algorithm is extended to be able
to treat floating point coefficients and =zeros, The first
extension is done by using the interval arithmetic and the second
is by the hybrid computation. Examples by both methods are shown
and results are satisfiable.

Extracted parts which contain close foots’are also computed
very carefully. In the hybrid computation, the Taylor series

'expaﬁsion is effectively used. In the intefval arithmetic,
accurate roeot finding methods are based on a modified Newton's
method but it takes too many CPU times. An efficient method for
the root finding should be necessary.

The hybrid computation discussed here should be extended to new
and ultimate hybrid computation. In the 'ultimate' computation,
it is expected the ‘combination of vsymbolic and validated
numerical computations . To better use of the ‘'ultimate'-hybrid
computation, the hybrid computation system which allows both the
validated numerical computation and the symBolic computation
seems to be important. The portable hybrid computation system
SYNC and 'the wvalidated ‘PASCAL—SC { Rall, 1985) will be
candidates for the system.

Computations repofted here were done by M .Ochi, Ehime Uni#., (

hybrid computation) and by Y. Nishio, Ehime Univ., { :circularz

14

interval arithmetic . H. Asagawa, Ehime Univ., read the

manuscript carefully.

References

Alefeld,G. and Herzberger,J. : ‘Introduction to Intervai
Computation', Academic Press, 1983.

Baréiss,E.H.: The numerical solution Qf'p01Ynmmial equa;inns and

the resultant procedure , in 'Mathematical Méthod for Digital
Computers Vol.2', John Wiley, 1967.

Moere,R.E. and Jones,S.T. : Self starting regions for iterative
methods, SIAM J. Numer. Anal., 14, 1977,4pp.1Q51—1ﬁ65.

Noda,M.T. and Iwashita,H. : Portable hybrid computation system
SYNC, J. Inf. Proc. Japan, to be subm;tted(in‘Japanese .

Rall,L.B. ! An introduction to the scientific éomputing 1anguage
Pascal-SC, trans. Second Coni. on Applied Math. and Cnmputihg,
U.S. Army Research Office, Research Triangle Park, NC, 1985,
pp.117-148..

Sasaki,T., Fukui,Y), Suzuki,M. and Sato,M.(1988:: Proposal of.a
scheme for linking different compﬁter languages, Jour. Inf.
Proc., submitted.

Sasaki,T. and Noda,M.T., Approximate square-free decomposition
and root-finding of ill-conditioned algebraic egquations", Jour.

Inf. Proc., submitted.

15

