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A numerical approach to the proof of existence of
solutions for elliptic problems

Part I: for the case of large spectral radius
by

Mitsuhiro T. Nakao

(¢ 2. X))

8§1. Introduction

In the preceding paper [2], we described a method which
verifies, automatically using computers, existenée of weak
solutions for Dirichlet problems of second order based upon
finite element approximations and Schauder's fixed point theorem.
It was, however, difficult to apply the method to the problem of
which associated spectral radius is greater than 1. 1In this
praper, we propose an another approach,‘to overcome such a
difficﬁlty, utilizing Sadovskii's fixXed point theorem instead of
Schauder's theorem. This method can be applicable, at least
theoretically, to general linear elliptic problems without any
limitation of the spectral radius, if certain appropriate
approximatioh spaces are provided. |

In the following seétion, we formulate the Dirichlet problem
as the fixed point equation associated with’the condensing map by
the use of an approximate Green's operator and a small positive
parameter. This is done with a view to.obtaining the equation

with small spectral radius. In §3, as in [2],'we define the
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rounding for ihe set of functions ﬁéing ihe Orthogbnal projection
to the finite elemeﬁt subspace. We aléo’clarify the computer
oriented vérificafibn cbndition based on Sadévskii's)fixed point
theorem for the condensing map. The concrete algorithms of
verification are presented in 84. We describe an iterative method
to obtain the invariant set of functions satisfying the condition.
of the fixed point theorem. Further,‘we prove a theorem which
suggests the conditions for verifiabiiity by the algorithm.
Finally, in §5, we show some numerical examplés which confirm us
that'the‘pfesent method is really applicable to problems having

large speetral radius.

§2. Formulation of the problem

We consider the following linear elliptié boundary value

problem :

n
I
(=

Au + b*Vu + cu in Q,

(2.1)

u 0 on 99,

where Q is a bounded convex domain in R", 1 < n < 3, with

piecewise smooth boundary 92 and b =;(bi), 1 i < n. Assume that
b € Wi(R), c € L”(Q) and f € L2(Q), where WL(Q) implies the usual
L”-Sobolev space of first order on Q. The weak solution u € H§(Q)

of (2.1) satisfies
(2.2) (Vu,vé) = (b-Vu + cu,$) + (£,8), & € H§Q),

where (*,+) denotes L? imner product on and‘Hé(Q) means the



L?2-Sobolev space of first order whosé element;vanishes,on aq. The
inner product on H{(Q) is defined as <¢,¢¥> E‘(V¢,VW) and the

associated norm is denoted. by H¢H§é = <¢,¢>.b Hereafter, we will

usually suppress the symbol Q in H}(Q) and LT @ ete., and simply
denote by H$ and L”, respectively. Notice that (2.1) is

represented as the following operator form

(2.3) : u é Au + F,

where thevgompact operator A : H§ ——ﬂ»Hé is defined by
<Au,$> = (b*Vu + cu,$), | ¢ € H¢,

and F € H} satisfies <F,$> = (f,¢) for arbitrary ¢ € H{.
We now take an appropriate finite element subspace Sh of H}

for 0 < h ¢ 1. Let Ph be the orthogonal projection, i.e.
- s s ; gl = =
H{-projection, from H} into S,- We denote Al = P A and I, = PI,

where I‘implies the identity operator on Hé. Let us suppose that

the following is valid for a fixed h.

. . . ~ -1
Al. The restriction of Ih Ah to Sh has an inverse [I AJh on Sh‘

This assumption means that there exists a unique Galerkin finite

element solution u € Sh to (2.2) for each f in the sense that

(2.4) (Vo _,vv) = (b*Vu,_ + cu

h + f,v), v € S, .

h’ h h
Next,“for a fixed constant g€, 0 < g <1, we define an operator T

H§ — H§ by

(2.5) Tu

1]

-1 ‘ -1
(I -([I—éqh Ph + €)Y(I-A))u + ([I A]h Ph + 8)F,

el.

where €
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Then we have the following result which is the starting point of

arguments in this paper.

~Theorem 1. Let U be a bounded convex and closed subset in H}
If TU € U then there exists a unique solution u for (2.3) in U.

Here, in general, M;C M, implies M; ¢ M, for any sets M;, M.

Proof. We can rewrite (2.5) as

Tu = (1-g)Iu + {(EA - [I-Al_

h + €)F}.

1 _ _ P |
Ph(I A)lu (CI A]h Ph

Heré, the operatof (1-€)I is obviously (l-g)-contractive and
SA—[I—AlglPh(I—A) is compact. Therefore, T becomes a condensing
map and, by Sadovskii's fixed point theorem (e.g.[61), TU c U
implies that T has a fixed point in U. Further we can easily
prove, by quite éimilar techniques in [51, particularly in the
proof of Theorem 2.1, that both operators I-A and [I-A];IPh + gl
are invertible. Since, for a fixed point u € U of T, we have by

(2.5)

...1 _
([I-A]h Ph + €)((I-A)u - F) = 0,

we obtain u = Au + F. The uniqueness result is straightforward by
the non—singulérity of I-A. Thus we have the theorem.

It is expected,‘from the appearance of (2.5), that the
spectral radius of the linear part of the operator T becomes
sufficiently small, particularly less than one, when € is small

1 1

enough and [I~A]; is a good approximation of (I-A)

§3. Rounding and verification conditions



We introduce the concept of rounding which is similar to that
in [2]. First, as one of the approximation properties of Sh’
assume that

A2. For each u € H§ N H?, there exists a positive constant C,,

independent of h, such that

(3.1) inf llu - xli < Cihlul s,
; xes, H§ H

where Jule implies the semi-norm of u on H?(Q) defined by

2 S 8%u
lulge = 2_ I3x.ax L2y
i,j=1 177}

Next, for each ¥ € L?2(Q), let ¢ be a . solution of the following

problem :

!
B
s
n
=

in Q,

(3.2)

¢ 0 on 99Q.

Then, by the well-known result, ¢ € H} n H? and there exists a

positive constant C, such that
(3.3 _ I¢IH2 < CQHWHLQ.

Now we define for each subset U € H{ the rounding R(TU) c Sh

as

(3.4) R(TU) = {uh € Sh Poup= Thu, u € U},

where T, = P, T. Further, for u € H§, set

e(u) = (1-g)Hu - Phu"Hé + Cehllb:vu + cu + f"Lg,

where C = CiCsp.
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Then the rounding error RE(T‘U)'C‘Sh is defined by

(3.5) RE(TU) = (¢ € Sh s H¢HH5 £ e(U) and H¢HL2 < Che(U)},
L
where Sh is the orthogonal complement of Sh and e(lU) = sup e(u).
‘ ’ : ' “u€l-

Then we have following lemma from Theorem 1.

Lemma 1. Let U be a bounded convex'and ciosed‘subset in H}

such that
(3.6) | - R(TU) + RE(TU) € U.

Then, there exists a unique solu{ion u of (2.3) in U.

Proof: By virtue»of Tﬁeoreh 1 it isrsﬁfficient to show the
inclusion TU < R(TU) + RE(TU). Since, for each u € U, Tﬁ is
uniquely decomposed as Tu = g u + (Tu - g u), it is sufficient to
prove\Tu - Thu € RE(TU).

First, observe that

(3.?) ? Tu - Thu = (1-8)(I—Ih)u + €((Au+F) - (Ahﬁ+Fh)),
where Fh = PhF.

Next, we estimate the second term ih fhe right hand side of (3.7).
We now notice that Au + F is a solution of (3.2) for ¥ = b-Vu + cu
+ f and Ahu + Fh is its Hi-projection. Hence, by the use of
estimates (3.1) and (3.3), we obtain

(3.8) fAu+F - (Ahu+Fh)"Hé < Chllb-vu + cu.+ fHLQ.

Thus (3.7), (3.8) vield that

(3.9) ITu - Tyuly, < ew.
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Furthefmore, by the usual duality argument for the error estimates

of the Hé—projection, we can easily get

(3.10? ITu —‘ThuHLg £ ChiiTu - Thu"Hé < Che(u).

‘(3.9) and (3.10) imply Tu - Thu € RE(TU) which proves the lemma.

84. Computing algorithm for verification

In order to construct the set U which satisfies the
verification condition (3.6), we use an iterative method. Let R+

denote the set of nonnegative real numbers.and define for oo € R+

' L o ~
[l = (¢ € sh ; "¢“H5 sAa andxH¢“L2 < Chq}.,

Also let {¢j}j=1 ... g be a basis of S, and denote the set of

linear combinations of {¢i) with interval coefficients by GI.

" Here, we interpret each U € 6i as the same meaning as in [2], -

that is,

M

M
U= Ao, = a.¢. ; a,. € A, 1< j<M
jzl 3% ‘jEI i%i J J ! ’

where Aj are real intervals.

M
Now, for u, = > A.¢. € G. and @ € R, choose p1) .
‘ h j=p 44 I ,
M M
S 812 . ana 8¢ S B$2)s  satisfying
NP j NPl j ~
i=1 j=1
M (1) M
. Ve ., . = .(b*V¢ L, + (f,
(4.1) j§1(v¢3 V8, )B; jglAJw ¢J + ch,,0,) (£,9,)

+ [—1,1]Cha“—v-(b¢k) + c¢kHL2



~and

(4.2)

iIM=

i=1

for 1 £ k < M,

(2)

{(V¢j,7¢k) - (b°V¢j + c¢j,¢k)}B =

J
[—1,1]Cha"—V°(b¢k) + C¢k"L2 + (f.¢k),

respectively. (4.1) and (4.2) imply that 6(1),

1, 2, are determined as the solutions for linear systems of

equations with interval right hand side.

Then we set
(4.3)
Further let

(4.4) o

where IIhlIL"°
Using (4.1)

by

(4.5)

(4.6)

o

u

= eV 2wy + 3,

h h

€ R+ be taken as

Cgh sup Ib-9v + cv + f"L2

vEuh

+ {(1 - g) + Eeh(uanm + Ehnanw)}a,
max{“blHLw, 1 £i £ n}.
(4.4), we define a map ® from & X R" into itself

O(uh.a) = (uh,a).

Then the following property holds.

Lemma 2.

Now for appropriately chosen initial value uéO) € Sh and oy €
R+, we generate an iterative sequence {(uéi),ui)}, for i 21, by
(i) - (i-1)
(uh ,ai) = d)(uh ,qi_l).
For the sequence {(uéi),ai)} defined by (4.6)
(i-1) (i)
R('I'(uh + [ai_ll)) c u

(4.7)

and

~




(i-1)

(4.8) , ' RE(T (u,, + [, . 1)) c [a.],
i-1 i

Proof. We fix v € uéi'l)

calculations taking account of the assumption Al and Ih¢

have

(4.9) T (v + #)

-1
(I ([1 A]h P

h h

+ <[1—A1;1’

1

I, - [I—A]h (I

h h

-1
+ ([1 A]h

-1
8((Ah(v + ¢) + Fh) v) + [I—A]h (Ah¢ + F

— b W

ix1.

and ¢ € [ai_ll.- By some simple

= 0, we

+ 8)(Ih - Ah))(v + ¢)
+ 8)Fh
- Ah))¢ - S(Ih - Ah)(v + ¢)

+ S)Fh

h).

By the similar argument to that in [2], the proof of Lemma 2, we

can show

‘ (1)
(4.10) Ah(v + ¢) + Fh € b ,
where 3(1) is defined by (4.1) for u = uél'l)

Next, integrating by part we have

(4.11) <Ah¢ + Fh.¢k>

and o

(¢,—V~(b¢k) + ¢¢k) +,(f’¢k)

i-1°

€ [-1,11Cho; _,1-9- (b ) + ctll; o + (f,8,),

for 1 < k < M, where we have used l¢ll; > < Ehai-l'

Combining (4.11) with (4.2) we get

(4.12) [1-A1 ' a8 + F) € 320,

h

where 82’ is defined by (4.2) for a = o, -

Thus (4.9), (4.10), (4.12) and (4.3) imply (4.7).

Now we observe that, from the definition of e(-) in §3,



. ¥ e
Let

e(v + ¢) = (1 - e)liéll,; + Cehllb-V(v + ¢) + c(v + 8) + £ll.,
HE L2

< (1 - 8)“?"H6 + Cehllb-vv + cv + f"L2

+ CSh(HbHLwH¢HHé + HcHLwH¢HL2)
< Cehllb+-Vv + cv + fHL2

+ {(1 - g) + Eeh(ubuLm + EhucuLw)}a.
(-

1°
Hence it holds that e(v + ¢) < o, for arbitrary v € ul' "’ and ¢
€ [ai_ll which yields (4.8), and we complete the proof.

From the Lemma 2 we also have T(uéi_1)+ e, D < uéi) + Loyl
Thus we can say that the iterative sequence (4.6) is a
computational sequence including the iteration u, = Tui_1 with ug
= ﬁéO),+ $o, where ¢, €’[a0]. |

Now we are ready to present an algorithm for computing an
inclusion of the solution of (2.3) which automatically verifies
the correctness of the computed bounds.

First, we define a stopping criterion for the iteration (4.6). For

. Mo . o )
ugl) = S A% € 6., where aA¢1? = (a1 2y 1< < M,
jop 40 I i j i
define
e’ - w9V = pax (a8 - AU R4 J gDy
h h j j S

1<j<M

1f, for a given &; > 0, we have attained to the state at a number
N such that

(N> g N=D " 50 and Jo, - oy o1 < 84,

(4.13) lu N N-1

h h

(N and o,, as follows

then we extend uh N

- 10 -
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for a‘givenyéz > 0, set

M
(4.14) 8 = o v 3 -1,115,9.
h h . J
i=1
and
- A
(4.15) & o= oy + 62

Further we calculate (uh,a) € GI x R’ as

_ A A
(4.16) . (uh,a) = tb(uh,oz)f

Then we obtain the following result as the direct conclusion of
the above arguments and it implies the completion of automatic

verification.

Theorem 2. If (u_,0) and (Gh,&) satisfies

o A : A
(4.17) U c uh and o < ¢,
where inclusion means that each coefficient interval in uh is
strictly covered by the corresponding interval in ﬁ . Then there

h

exists a unique solution u to (2.3) in u, + [o].

h

Remark 1. The procedures described here to obtain the strict
inclusion relation (4.17) are the same as in [2]. Although this
is a technique to get such a inclusion, there might be another and

more efficient methods. For example,’if'we adopt the iteration,

(1) i-1),
(i-1)
h

coefficient interval, the strict inclusion

S,o0, ,+ &) for

i-1

+ & means d-extension of each

instead of (4.6), such as (u ,ai) = m(ué

appropriate & > 0, where u

e & N and o < o

(4.18) h h N

N-1

_11_
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;
b
s

might be attained at some N step. Then it will be expected to

save the computing time for verification.

Next, we shall provide a condition which enables the iteration
(4.6) to converge independently of the spectral radius of the
operator A and suggests that the verification process is hormally'

completed. We assume the following additional hypotheses.

A3. {¢j}, 1 £ j <M, is an orthogonal basis of Sh‘

A4. There exists a positive constant e, independent of h,

such that Mh" < €.

Here, A4 will be always valid when Sh is the usual piecewise
linear finite element space on quasi-uniform mesh (see e.g. [41).
We now make arguments similar to that in [2] on the assumptions

Al - A4.

(i)

First, we redefine the iterative seqﬁence {(uh

LINE Let

S v
Z'h be the power set of Sh and define its topology by the

following Hausdorff metric D(-,-) based on H-norm on Q. For U

h’
S
h
Vh € 2 .
(4.19) D, ,V,. ) = max{sup d(é,V ), sup d(¥,U )},
h’ h h h
¢€U Yyev
h h
where d(¢,Vh) = inf ¢ - W"Hé'

¢€Vh

Sh + Sh
We now difine a map T, : 2 XR — 2 by

-1
(4.20) Tl(uh,a) = - 8(Ih - Ah)uh + ([IfA]h o+ S)Ah[a]



-1
+ ([1I A]h + S)Fh
Sh .
for each (uh,a) € 2 X R .

S
And T, : 2 ® x R® — R* is defined by

(4.21) Tp(u,,@) = Elehﬂuhﬂl + ((1 - g) + Crehda + Esehufﬂlg,

where Ci’ 1 <i < 3, are positive constants independent of h,

and
(4.22) _HuhH1 = sup "¢"Hé'

de€u

h
= Sh + Sh

Using (4.20) and (4.21) we determine a map ¢ : 2 X R — 2 X
R+ as
(4.23) ¢(uh,a) = (T4(uh,a),T2(uh,a)).

Then @ is essentially the same as the map ® defined by (4.16),
although ® is slightly overestimated in comparison with 3. We now
consider about the convergence property fbr the sequence

{(uéi),ai)) which is given by the following iteration

(i) - X i-1)
(4.24) , (uh o) = (D(uh b0 1)
0 . .
when (uh o) is appropriately chosen.

Theorem 3. On the assumptions Al - A4, vwhen (I—A)i1 exists

and € is taken as appropriately small, for sufficiently small h,
él),ai)} defined by (4.24) converges to

a unique limit (uh,a),‘with an arbitrary initial value (uéO),ao),

the iterative sequence {(u

which is also a unique fixed point of 5.
Proof. As there are many arguments analogous to that in [21],

- 13 -



Theorem 2, we will omit details of the similar discussions. We

. S
show that {(uél),ai)} is the Cauchy sequence in 2 h X R+. In the
1
below, Ci’ i=1, 2, +++ denote positive constants which are
independent of h.
First, observe that from (4.20)
(4.25) sup d(é,ull"1)) < sup inf dlecr, - a )@ (=20,
. h . . h h h h H&
" (i) (i-1)({i-2)
euh

-1
+ ICEI-A10 + £)A @, - éi_z)uﬂé>,

where (i-1) and (i-2) imply that

ACi=1) Gi-1) | ACI-2) (i-2)
(uh € uh uh € uh

(i - 1) = and (i - 2) = .
8. _, € o, _ 1 Q. _, € fa,_,I

respectively.

Also we can deduce that, by the result of error estimates, for
sufficiently small h,

1

-1
ﬂ[I—A]h Ph i,

o , _
a-m 7 < cilaa-a
where Il-++l means the operator norm associated with H§-norm.
Therefore, using the triangle inequality, we have

(4.26) ucx-Alglphu < Collcr-m "1y,

Furthermore, we_get by arguments similar to that in [2]

. A A L] ‘
(4.27) sup inf A (&, . - d. ), < Cghla, . - a. ,1/M.
(i-1)(i-2) h 7i-1 i-2° "Hg , i-1 i-2
Thus, from (4.25) - (4.27), it holds that
(i) _(i-1) e (i-1)  (i-2) ' _
(4.28) D(u. "’ ,uy ) < C4€DCu, " 7,0y ) + Csh/Mle, o _ols

- 14 -




where we have used the fact that II, - A Il is bounded by C;

h
independently of h.
On the other hand, from (4.21)
‘ _ Y ' (i-1) (i-2)
(4.29) Iozi ai—l' < CsahD(uh LN )
‘+ (1 - g + Czeh)lai_l - ai_zi.

We now rewrite (4.28) and (4.29) as the following matrix form.

r . 7 i 1T 1
e (1) Cim1) ' ' i-1)  (i-2
DICASRIRTA R C4€  CghM Deug T it
(4.30) , < |
loe, - o, | Cegh 1-8+Cogh | | lo, | - o, ,|
L ) 4L

Let P denote the sguare matr;x of the right hand side of (4.36).
Then it is not difficult to show that, when we choose € as 1 - § >
SCQ, for sufficiently small h, the spectral radius of P is léSS
than 1.  This fact implies that {(uéi),ai)} becomes the Cauchy
sequence. Uniqueness of the limit independent of the initial
value also follows by the same arguments as in [2].

Furthermore, it will be also expected that we can discuss,

similarly in [2], about the attainability(of the verification

condition (4.17) on the same assumptions as in Theorem 3.

§5. Numerical examples

We now illustrate some examples which confirm that the
verification method described here is available independently of

the spectral radius of the operator A.

(i) One dimensional case



1

€y
o

We considered the folowing simple two point boundary value

problem with constant coefficients

- u'' - Ku (n - K/7m)sinnx, x € 1 = (0,1),

(5.1)

u(0) u(l) = 0,

where K'is a positive parameter. Notice that (5.1) has a solutiop

u(x) = %sinnx independently of K.

We now take the finite element subspace Sh of Hy(I) as the same as

in [2]. Let 3 : 0 =% ¢ Xy ¢+ < x =1 be a uniform

partition of the interval I = (0,1). Set Ii = (xi-l’xi) and h =
1/L. Also let Px(Ii) denote the set of linear polynomials on Ii

and define Sh by

(5.2) S, = Hy(x) = {v € C() ; v

b [ €PiID, 1<i<L,

i
v(0) = v(1) = 0}.

‘Then, M =dim Sh =L - 1 and we can take as C = 1 in previous

sections. We define the basis (8,3, § =1, *+ , Mof S by the

set of hat functions as in [2]. Further we choose € = 10_1, &y =

"3 and 5, = 1071 in (2.5), (4.13) and (4.14), respectively.

10
Table 1 shows the iteration numbers, for various meshes, required
to attain the condition (4.13). Also note that the corresbonding
spectral radius r(A) to (5.1) becomes r(A) = K/n?. Hence, we have

r(A) > 1 for each case in Table 1.




Table 1. Iteration numbers for verification

L K = 15 K = 30 K = 45
10 X X X
20 70 X X
40 32 76 x
80 21 35 233

Here, in Table-1, X means that iteration was divergent.

Remark 2. Since in the present examples each spectral radius
is not less than 1, we cannot use the previous scheme proposéd in
[2]. In case of r(A) < 1; however, the former will be more
efficient than the present scheme. For example, when K = ® in
(56.1), i.e. r(A) = 1/t < 1, we needed 26 times of iterations to
verify by the present method, while only 7 times were requiréd for

the scheme in [2] under the same conditions.

(ii) Two dimensional case

Consider the following problem with interval coefficient.

-Au + [c;,co]u [f,,f5] in Q,
(5.3)

u=20 on 989,



where Q

(0,1) X (0,1) € R? and [c

1,¢21, [f,,f2]1 are intervals

which mean the‘sets of Lw-functions whose ranges are included in

[cy,c2] and [fl,fgj,krespectivély.

arguments in [2], we can easily extend the

preceding sections to the case of interval

(5.3).

the tensor product of one dimensional case

)
y

Also,

and

as

The

verified

Problem

Conditions

Results :

Here,

A.
J

coefficient intervals for ¢j in u

Further we take the finite element

S, KE(x) x #5(y). The

described in [2], we can also choose ¢

numerical results for the

are as follows
-Au = [-21,51]u
(5.4)
u =0

g =101, &5, = 1072,
Mesh size h = 0.025
Initial values uéO)
Iterations N = 11
L2 error bound o =

Coefficient intervals

and Kj are the infimum and

h

Acoording to the'similar

techniques in the.

coefficients such as

subspace S, of H(Q) as

v h
as in [2], that is, SX

= (L - 1)2.

n dim Sh

1.

concrete problem which is
+ [0,1] in Q,
on 99Q.
52=10—1
(L = 40) , dim Sh = 1521
= 0, oo = 0
0.3123
min A, = - 0.7061.
1<j<M J
max A, = + 0.7951.
1<j<M ?
supremum; respectively, of the

which appears in Theorem 2.‘

Note that (5.4) inéludes the problgm with r(A) =2 1, for it

contains the equation of the form - Au

18

Ku + [0,1], where K is a




constant such that - 21 < K £ - 2n2, which has the associated

spectral radius r(A) = |KI/2n2 2 1. 1In case of h > 0.025, the

iteration (4.16) diverged and we cbuld not verify the problem.
This fact suggests that the assumption for the smallness of the

mesh size must be crucial similarly in the one dimensional case.

Remark 3. ‘Owing to the limitation of our computer facility,
in two dimensional problem, we had to use the iterative method for
thg solution of linear equations arised in the verification
proceés. We used the SOR method with stopping parameter 10_7.
Hence, it may be not sureithat, by the truncatidn'errors for
iteration, the verification condition (4.17) is strictly satisfied.
As we also éalculatedkall numerical cdmputation by the usual
double precision computer arithmetic, there may be some round off
errors in each step. The author believes, however, the above

example is really significant as an numerical experiment to show

that the present technique is applicable for the case r(A) = 1.
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