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The Limit of the Application of Runge-Kutta Method
( Runge - Kutta 3% o & &
Hideo Yamagata
(PAKT L i % th )
Introduction. When we solve an initial value problem of

a second order ordinary differential equation numerically, we
rewrite the equation to equivalent two first order simultaneous
differential equations and usually use famous Runge-Kutta-Nystiom
method. But we cannot find the limit of the application of the
method in any articles and books.

Which equation can be solved by the method? It is a
question. Here we would like to introduce two équations in
Examples 1 and 2. These equations satisfy Lipschitz condition.
But when we want to solve the initial value problems of the
equations numerically, it seems to be difficult to apply the
Runge-~Kutta method.

1. Twé examples.
Example 1. Let us consider the second order ordinary nonlinear

differential equation having the solution

y(x)=(1/x) sin{(1/x)+§} , (1)
where § is a constant. Since the relation

x*y '4xy =(1/x) cos{(1/x)+§} , (@)
holds for the solution (1), 1/x* is expressed by

1/x‘=y*%(x’y'+xy)2, (3)
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and second derivative

y"'=(2/x*=1/x* )y +(4/x* )(xy'+¥y) (4)
leads to the equation
y'={y*+(x*y +xy Psxy ' +6y -y -x*y(xy'+y ¥, (5)

The sécond order nonlinear equation (5) can be also expressed
by the eqguivalent two simultaneous equations

{y'=z,

Lz'={y*+(xlz+xyf}{4xz+6yqy’—xy(xz+y)% , (6)
satisfying Iipschitz condition, and Runge-Kutta method can be
formally applied to the system (6).

Let x, be a negative fixed value. When we take

y(xe)=(1/x,) sin{(1/x,)+5} ,

{y'(xo)= -(1/x2) sin{(1/x.)+8} =(1/x2)cos {(1/x,)+8}, (7)
as the initial condition of equation (5), the solution of the
equation is divergent at x=0. Because x=0 is an‘essentially
singular point of the solution (1). We are interested in
the numerical solution of the equation (5) with the initial
value (7) solved by the Runge-Kutta-Nystrom method.

Next we would like to show another example of the second
order ordinary nonlinear autoﬁomous differential equation
having the same property. Thé equation also satisfies the
Lipschitz condition, and Vail nontrivial solutions of the
autonomous equation has an essential singularity similar to
the one in the solution (1).

Example 2. Let us consider the second order autonomous-



equation having the solution

y=(1/x) sin(log. KIxI), \ (8)
where K is a positive constant. Since the relation

xy'+y= (1/x) cos (log.Kix|) (9
holds for the solution (8), 1/x* is expressed by

1/x*= y*+(xy'+y)2 . | (10)
We also have the sécond derivative

y'=(-3/x)y'-(2/x%)y. _ (11)

Settiné 1/%=t in the equation (10), we have an algebraic
equation |

t* -2yt - 2yy't -y'*=0 (10")
with order 4. It is solvable by radicals. We find a root

t=f(y, ¥')<0 of the equation (10')taking the nonpositive

real values. Substituting the root f(y,y') into the second

derivative (11), we have the equation
ye ~3£(y,5' ). y'-2y-£(5,5') . | - (12)
Since two functions f(y,y')-y' and f(y,y')z satisfy the
Lipschitz condition, the equation (12) also satisfy the
Lipschitz condition.
Remark 1. In Example 1, the algebréic equation
éofreéponding (10') is
£t —y*tt- (y'+y5) =0, o (3')
with order 6.
2. ILipschitz Condition.

Here, we would like to show the various Properties of
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the function f(y,y'). Let us denote the function
t*-2y2t*-2yzt-22
by F(t,y,2). That is,
P(t,y,2)= t'-2y*t" -2yzt -z>. (13)
The left hand side of the equation (10') is F(t,y,y').
"Proposition 1. The real root t=f(y,z) of the equation
- F(t,5,2)=0, (14)
is a ¢% -function of (y,z), provided that the condition
(z, yt)%(0,0) holds.
Proof. If two equations |
F(t,y,2)=0, and F,(t,y,z)=4t’-4y>t-2yz =0
hold for a (t,y,z) simultaneously, the equation
t Fo (4,7,2)-4F(t,5,2)= 4y*t" +6yzt +42>=0 (15)
also holds. The equation
3(yt +z)1+(y‘t’+z1)=0 (16)
is derived from the equation (15), and it follows from the
Implicite function theorem and the equation (16) that the
real rdot t=f(y,z) is a C”-function except for the case
z= yt =0. |
Proposition 2. If the condition yzx0 holds, any root
t=f(y,z) of the equation (14) is a 8imple root of the equation.
Proof. If the equation (14) has a double root,’it
satisfies the equgtion (15), and is equal to one of
ty={(-32473)/8} (2/y) . (17)

Since
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Fy (6e ,7,2)= =(2/3)] (~371) (4y* +132% ) /44 (23" +63° )} ,
and since the roots (17) do not satisfy the equation
Fy(t,y,2)=0,
then any root t=f(y,2z) of the equation (14) is a simple root
under the condition yzxO.
We easily obtain the following four results:
(i) When z=0 holds, we have four roots t=1/2y and
t=0 (double root) of the equation (14).
(ii) when y=0 holds, we have four roots t= +.jz| and
t=1fzl i of the equation (14).
(iii) +t=0 leads to z=0. Then z%0 leads to t%O.
(iv) The root t depends continuously to (y,z).
Then if z%0 holds, the equation (14) has a positive root,
a negative root and a pair of conjugate complex roots. The
conjugate complex roots tend -to zero as z tends to zero.
Next we would like to examine the behaviour of the root
t=f(y,2) of the equation (14) in a neighbourhood of (y,z)=(0,0).
Proposition 3. Let t=f(y,z) Dbe a real root of the equation
(14). Then two functions {f(y,z)f' and zf(y,z) satisfy the
local Lipschitz condition at (y,Z)=(0,0),
Proof. Bquation (14) is expressed by the equation
2t* ¢ y . ‘
(y,z)[ ][ ] =t . (18)
t 1 Z

Since the proper equation
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0 | - a9)

2" =2 t
t l—Xl
has two positive roots A= (2t*+1 +fu4t*+1 )/2,
the equation (18) with a fixed t%0 gives a ellipse.
Since (t*/4A, ) =t*-2/(2t*+1+J4t%+1 )

=t*(2¢* +1-/45" 41 )/2
and lim /(6> /)= lim tl/,/t‘(ét*+1-1/4t*+1)/2 =1

hold, the real valued function f(y,z) satisfies local
Iipschitz condition with Lipschitz constant 1+€ ( £€>0) at
(y,z)=(0,0). Since the real root f(y,z) is bounded in a
neighbourhood of (y,z)z(O;O), the function zf(y,z) also
satisfies local Lipschitz condition at (y,z)=(0,0).

3. General solution.

Let y(x;c,K) denote the solution ,
y:{sin(log; K)x-cl )} /(x-¢) (for x<c) (20)
of the second order differential equation (12), x, a fixed real
value and S(x,) the set
f(y(x,5c,K), ¥'(x,3¢,K));5 c>x,, K20} (CRY).

Since the relation

. 2t1 t y ) ‘. .
U {(y,Z); (y,2) [ : J[ J=t*} =R
tzo t 1 ‘z |

given from (18), holds, the relation
s(x.) U{(0,0)} =r*

also holds for any fixed real value X,.

P

Then the solutioms of the second order;differehtial equation

(12) consist of the general solution



y=y(x;c,K) (20)
and a singular solution y=0, where K>0 2and c¢,K are constants.
Thus it is difficult to solve the eqﬁation (12) by Zuler method
or Runge~-Kutta method. To solve the equation (14) it is
required to obtain square root and cube root of positive
numbers.

-4, Other singular solution of the second order equation.
P. Painleve[l] treated the equation
y'=F(x,7,y') | (21)

with the rational function F(x,y,y') of X,y and y'.
The nohlinear second order ordinary differential equation
satisfying Lipschitz condition has also various singular

solutions of other types. For example the eguation

y'=2y"’ (22)
has the solution y=/-X+cC, +c, , and the equation
yu___ygz . (23)

has the solution y= log.|t+c| (2] p.816, where c,, c. and c
are constants.

Conclusion. When we solve an initial value problem of the
second order ordinary differential eguation numerically, we
must confirm the various conditions in [2],[3],(4]and (5]
besides the Iipschitz condition. So far as we solve an
initial value problem of the equation (12), we must use Euler

method and estimate the behaviour of the solution roughly at

~ the first step. It is a conclusion of the discussions with



40

Prof. S. Hitotsumatsu at the sumposium held at Kyoto University
on 30th September 1988. When we calculate the values of the
right hand side of the equation (12), we have accumulations of
round-off errors due to obtaining square roots, cube roots, etc.
Then we also have the following discussions there: whether the
equation (12) must be regarded as an algebraic differential
equation or not? I think that is depends on the size of the
accumulations of errors.
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