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On the Existence Theorems of BDF and
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1. Introduction

The backward differentiation formulas (BDF)

O Ynik T ey Ynyp1 t "7+ Yp = b By fati (1.1)

are the most widely used methods for the solution of stiff differential equations.
These formulas were proved to be stable for k<7 by Cryer (1972) and Hairer &
Wanner (1983). Enright (1974) extended the BDF to the Adams type methods
which evaluate the second derivative of the solution. The Enright’s formulas are

of the form

Ynrk—Yntbo1 = B(BifushtBicrfusrort = +Bofo) + B%6if npr  (1.2)

and were proved to be stiff-stable for k<8 (see Enright (1974) and Jeltsch
(1977)). Although the formulas (1.1) and (1.2) are highly stable, the coefficients
of these formulas have mixed signs except for k=1, implying that these methods

are vulnerable to the cancellation of significant figures.

In this article, we shall be concerned with the BDF and with the Adams
type second derivative BDF (SBDF) having nonnegative coefficients. Ozawa
(1988) proposed some linear multistep methods with nonnegative coefficients, and

proved that the methods are more accurate than Adams-Moulton methods.

2. Preliminary
Let consider the linear multistep method,
k ko1 :
Y O Yy = B B KB £4TY, n=0,1, - - N-k, (2.1)
i=0 i=0 j=1

for solving the initial value problem

yl = f(:z)y)a y(:co) =1 $oS$S$‘N, (22)
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where
9 = fO (),
FO(ayy) = -LpUD(a), jelz2,- -1,
dz .

T; = g5 + th, =0,1,--- ,N.

1

We say that the methods (2.1) are (k,I)-methods if

k
a, >0, 35 |Bal >0. (2.3)
i=0

It is convenient to associate with the (k,/)-methods the following polynomials:
k ) k .
p(C) = Zai Cla a](() = Eﬁz] Cla J=1)27 tee ,l' (24)
1=0 1=0
Moreover, we associate with the (k,l)-methods the difference operator

L y(=); h] = (o(E) - -21 o(E) WD) y(z), (2.5)
j=
where D is the differential operator‘ and F is the shift operator, i.e.,
Dy(z) = =-4(), By(s) = y(z+h)
The order of the methods (2.1) are said to be p if for all y € CP+[zy 2]
L[ y(2); B] = Cpyy WPy 0() + O(R?*?), R0, (2.6)

where CP +1 1s a nonzero constant indepepdent of h. Let y(z)=¢€" and (= eh, then

L[ e bl = [p(Q) = T o(¢) W ]¢°

j=1

Cpp1 BPT1 €® + O(KPY?), h—0. (2.7)

Uéing the variable t = 1 — ¢ 7!, we have from (2.7),

R(%) =

I _ _
~ log(1-1) J=1(—1)]—15j(t)[log(l,-t)]]ﬂ:C”+1tp+o(tp+1)” t—0, (2.8)

where R(t), S;(t) are the polynomials of degree<k and are given by
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R(t) = C_k p(()’ S](t) = C_k Uj(C)a J=12,--,L (29)

In the succeeding sections we will use the eq. (2.8) to determine the coefficients

aj, B;; of the methods (2.1).

3. BDF with nonnegative coefficients

For the formula of the type (1.1), I=1 and
UI(C) = Ck) 5y(8) =1, (3.1)
and consequently eq. (2.8) reduces to

iy 1= G O, o (3.2)
Since R(t) is a polynomial of degree<k, the order attainable with the method is
k. The k-step' BDF derived by Gear (1971) has the maximal order k, but the
coefficients of the formula for k>1 does not satisfy the condition of nonnegative-

ness, i.e.,
>0, —a;>0, j=0,1, - k-1 (3.3)

Now, we find the methods of the.type (1.1) with the condition (3.3), by decreas-
ing the order by one against the maximal order. Putting p=k—1, we have from
(3.2)

tz‘ k—1
Rty=t4+—+ -+
(%) 5 1

+ atF, (3.4)

where a is a free parameter taken to be consistent with the condition (3.3). The

coefficients a’s obtained from (34) are

i = (-1 (%) [ 6= (=) ] =12, k, (3.5)
. | |
Q= 2 7 + a. (36)
j=1 : .

Next we derive the interval of a from egs. (3.5) and (3.6) in which the coeffi-

cients a’s satisfy the condition (3.3). Taking into account
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we can easily see that such interval is given by

11 - 11
L=max (—— —)<a< min (—-—)=UT. 3.7
i=odd ( k ) ) - - i=even( k 7 ) ‘ ( ) .
0<i<k 0<i<k

The inequality appeared in (3.7) is valid only for even k, since for odd k we have
L=0, U<0. On the other hand, if £ is an even number>2 then we have another

contradiction

1 1 1 1
U=—-—<——-——=1. ' 3.8
k 2 E k-1 (3.8)

This result suggests that the inequality (3.7) is valid only for k=2. In fact, if
k=2, then L=-1/2, U=0. Thus we have proved the following Theorem:

Theorem 1

The BDF (1.1) satisfy the nonnegative condition (3.3) only for k=2, and the

formulas are
(1+a')yn+2 - (1+2a)yn+1 + ayn = hfn+27 (310)
'—i— .<_ a S 0>
2

1
Co=a— —.
2 2

In the family (3.10) the method corresponding to a=0 is the well-known back-

ward Buler formula, which minimizes the absolute value of the error constant C,.

Next we show that the family (3.10) is A-stable. We can see that the boun-
dary locus of the absolute stability region of the family is given by

Z(0) = (1+a) — (14+2a)e™* + ae™2¥, (3.11)
and it’s real part is given by B | |
~ Re[Z(0)] = (2az-1) (z—-1), o (3.12)
where

z.= cos 8.

The relation (3.12) shows that if ——;— <a<0, then Re[Z(6)]>0 exept for |z|=1.

Consequently Z(6) is a closed locus on the right half-plane, i.e.; the family. (3.10)



130

is A-stable.

We have now obtained a class of 2-step BDF of order 1 with the nonnega-
tive condition (3.3), by decreasing the order by one against the maximal one. It
may be expected that the BDF with nonnegative coefficients have order>2, if we
would decrease the order by two or more against the maximal one. However, the
next Theorem shows that it is quite impossible to have order>2 for the BDF with
nonnegative coefficients. |

Theorem 2

Let the coefficients of the BDF satisfy the condition (3.3), then the BDF must
have order<2.

[Proof] For the BDF, the power series expansion of the operator (2.5) is as fol-
lows (see Lambert (1974)):

k .
Ll y(2); bl = 33 @; y(a+h) = h f(z,9(2)) (3.13)
j=0
= Coy(2) + CryV(z) b + Cyy®(z) B + - - -,
where
Co=ap+ay+  +ay, | (5.14)

Cl=a1+2a2+"'+kak“—1,
1

k
C, = HAa; - kL g>2.
E q! .El ! (q_l)' 7
Using this relation, we can find
K 1 &,
]=

In order that the BDF have order>2, it is necessary that

‘But, if we set Cy = C; = C, = 0 in (3.15), then we have

a; =0, j=01,---k | (3.17)

Cleary this contradicts the condition (3.3). 7 ' Q.E.D.
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4. Adams type SBDF with nonnegative coefficients

In this section, we find the Adams type SBDF with nonnegative coefficients
using the same way as in the preceding section. For the Adams type SBDF
(1.2), I=2 and

p(¢) = ¢F = ¢+, (4.1)
01(Q) = Bl + BnCF T+ + By,
05(¢) = 5kck-

For this case, eq. (2.8) reduces to

B 1ogR(1t—t) = 8y(t) + 8y(t) log (1~t) = Cppyt? + O(#), -0, (4.2)

where

R(t) =t Si(t) =CFo,(0), Syt) = 6
In order to simplify the notation we omit the second index of §’s and put §,=a.
The function —t/log(1—t) has the expansion (see Henrici (1962)),

t

———— =yttt -, 0, 4.3
log (1—f) ° 7 1'T M - (43)
0
= (- [ () ds, =012, -, (44)
-1
and
' £ 8 .
log (1-8) = = (t+ —+ -+ "), 0. (4.5)
Therefore, if we set in (4.2)
‘ a
Sit) =%+ 0 —a)t+ o+ (- ) E (4.6)

then the method (1.2) has order p=k+1 and, moreover, if we set a=(k+1)v;,,
then the order is increased up to p=k+2. The k-step Enright’s method has this

maximal order k+2, but the coefficients have mixed signs for k>1.

Here we have to determine the coefficients 3’s so as to satisfy the nonnega-

tive condition
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IBJZOa j‘_‘O’la'. ©t ak7 (47)

by decreasing the order by one against the maximal one. From (4.6), it can be

seen that the coefficients 3’s are given by

7 * k — .
/Bk——i = (_1) E( .Z)’YJ - ( Z) ? 1 a i, ’l=1,2, T )ka (48)
j=1
k . k 1 :

=X1-e¥ o (4.9)

j=0 =1 J

where the formula
T r+1 o sy _ ¢ s+1

(M + T+ () = (5, e (4.10)

is used. In order that the coefficients of the method to be nonn‘egative, the

parameter a should be contained in the interval

L=max T < ¢ <min T® = 7, (4.11)
i=odd i=even
0<i<k 0<i<k
where
k
T = (511 5 4 (4.12a)
j=1 J j=0
Eoj
- (Fyrig g =12,k (4.12b)
j=1

The quantity Ti(k) satisfies the following Lemma:

Lemma

(a) TEH > 0,

(b) TP <0, fori>0,

(c) T, — T > 0, for i > 0.

[Proof] The constant y; has the following properties (see Henrici (1962)):

7P<0, G=12,---, | (4.13)
zo 7; = (-»1)’"{ (,,) ds>0. o (419)
)= .
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From these properties the first two assertions are clear. For the proof of (c), we

first show that Tz(k) is given by

0
. k
T = %f II (s+0) ds, =12, - k. (4.15)
S Y £73) :
2o

To prove this we substitute (4.4) into (4.12b), then we have

I~ e
I = (9% [0 (D) ds
Jj=t —1
k Dk s+j—1
= (DT IB () ds
-1 j=i
TN = koostj—
- e p G
: -1 1=0 j=1
—ii il s
='£k_knyH(s+l)(sf;)ds’ - (4.16)
: -1 =0

where the formula (4.10) is used. Thus (4.15) is obtained. Using (4.15), we have

0
1 k .
T®) — Tk = I [ s II-Il (s+1) ds, i>0. (4.17)

I#i,i+1
Since in this expression the integrand is positive on (-1,0), the assertion is fol-

lowed. Q.E.D.

From this Lemma, the following results are derived:

L o _ | TE) s bmodd, (418
- gﬁfi i T,gi)l ; k=even, 18)
0<i<k
U= min 70 T k22, | (4.19)
= min T}% = .
i=even ’ Ték) ;k=1.
0<i<k - ,
Using this result, for k>3, we have a contradiction

U=TP <1® <L, " o (4.20)

while for k<3, we have
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k= 1: L=TM <0< T® =1, (4.21)
k=2  L=T®<TP® =1

Thus we have proved the next Theorem:

Theorem 8

The k-step Adams type SBDF of order k+1 have nonnegative coefficients only
for k=1,2, and the families of the formulas are as follows: -
(A1) 1-step method

1 1 ,
Ynt1 — Yn = h [ (;—-a) fap1 t (3""‘1) fo| +Raf (4.22)
——1- <aX< L,
2 T2
1 a
Cym—— - =
3 12 2
(A2) 2-step method
5 3 2 1 a
Yn+2 = Ynt1 = (_1_2—_—2-0') fn+2 + (—é-'*'za) fn+1 - (-E'+—2—) fn]
Ty (4.23)
Lol L
3~ — 6
1 a
Ch=———-—
i 24 3

In each of the formulas (4.22) and (4.23) if we set the parameter a so as to
make the error constant 0, then the method becomes the Enright’s method; 1-
step Enright’s method is included in the family A1 while 2-step Enright’s method is
not included in the family A2.

We have obtained the Adams type SBDF of orders 2 and 3 with nonnega-

~ tive coefficients. On the other hand, formulas of higher-order are more desirable

" than those of middle or low order, if higher accuracy is required. However, the

next Theorem shows that it is impossible to have order>4 for the Adams type

SBDF withlnonnegative coefficients, even if we would decrease the order by two



or more against the maximal one.
Theorem 4
The Adams type SBDF (1.2) with nonnegative coefficients must have
order<4.
[Proof] As before we first give the power series expansion of the operator (2.5) for

the formula (1.2). The power series is

L] y(z); h] = Coy(z) + C1yM(z) b + CoyP(z) B2+ -+,  (4.24)
where
-k
=0
kq—(k—l)q i 1 k '.—1 a —9
C = — ]q ﬁ - kq b qzz
R P T A Y

Consider the series {g,} defined by

k
9, =3 6 1, (4.26)
j=0
where we define 0°=1. If ﬂjZO, the series { 9q } have the monotonicity

99 Ggry 922 (4.27)

After tedious calculations, we find the relation

gl = 1 - Cl’ ’
gs = ; + a — kCl + 02, ‘ (428)
1 g -1 —1,
9q = ; + 2 ("'1)1 (l"l)! ( ?_1 ) ke 101) q>3.
I=1 ' .

In order that the method has order>4 then it is necessary that

Substituting this into (4.28), we have

“ 1 1 1
g1=1 9= '2' t+a, g3= 3_3 94 = ':1' (4.30)

- 10 -
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However, this result contradicts the monotonicity (4.27). Thus the assertion is

proved. Q.E.D.

5. Conclusion

We have derived the following formulas with nonnegative coefficients: |
(i) BDF of order 1, ‘ .
(ii))Adams type SBDF (second derivative BDF) of orders 2 and 3.
Moreover, we have shown that the attainable order with these methods are 1 and

3, respectively.
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