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1. Introduction
We consider the following nonlinear least sgquares problem:

(1.1) Minimize F(x) = (1/2) 2321 (fj(x))z, x € R", mZ n,

vhere each fj: Rn—* R is twice continuously differentiable. This problem is

extremely important in many fields of mathematical programming applications,
e.g. maximum likelifood estimations, nonlinear data fitting or parameter
estimation, respectively.

Most iterative methods for the above problem are variants of Newton’s
method. At the k-th iteration of Newton’s method, the search direction
dk is computed by

(1.2) V() d, = —VF(x),

and the new point is generated by
(1.3 X+l = Xk + dk.

Here X is the current estimate of the minimum point x*,and Y7F,§72F are the
gradient vector and the Hessian matrix of F, respectively, and are given by
(1.)  VFGx) = JOOTHX),

‘ 2 T m 2
(1.5) V F(x) = J(x) J(x) + 23j=1 fj(x)Y7 fj(x),
where
(1.8)  f(x) = (F,(0, .ov, F,00T,

and J is the m x n Jacobian matrix of f, and the symbol ”T” denotes the
transpose of a vector or a matrix.

Since the cost of providing the complete Hessian matrix is often
expensive, some methods have been derived which use only the first
derivative information. For example, the Gauss-Newton method and the
Levenberg-Marquardt method are well known. These methods neglect the second
part of the Hessian matrix of F, so they can be expected to perform well

¥

when the residuals at x* are small or each fj is close to linear. However,



they can be much less efficient when the neglected part of Y72F(x) is not

small compared with J(x)TJ(x) in the sense of Meyer’s result [9].

On the other hand, quasi-Newton approximations to the second part of
the Hessian matrix have been considered [7]. Recently, two robust algori-
thms have been proposed by Bartholomew-Biggs[1] and Dennis, Gay and Welsch
[8]. These methods are shown in Section 2. Our approach is based on the
idea of structured quasi-Newton updating which utilizes the structure of the
Hessian matrix of F. The main purpose of this paper is to obtain descent
search directions for the objective function, which may’enable us to estab-
1ish global convergence property under suitable conditions. Subsequently,
to accomplish the above desirable property, we propose factorized versions
of the structured qguasi-Newton methods and derive various types of factoriz-
ed quasi-Newton updating formulae in Section 3. Consequently, in Section 4,
we prove the local and q-super!inear convergence of our algorithms. Finally,
some computational experiments are given in order to show that our methods
are comparable to other effective methods.

Throughout this paper, the norm Il + Il denotes the 2-norm for vectors
and matrices. For any matrix Q and a‘nonsingular M, llQllF and II(,IIIF,M

denote the Frobenius and the weighted‘Frobenius norms of Q, respeétive!y,
and are defined by

(1.7 Qi = (Trace(@a™)!/2 and Qg y = Tam i

For a symmetric positiVe definite matrix Q, Qllz denotés the symmetric

matrix which satisfies (0172 )2 = q.

2. Structured Quasi-Newton Methods for Nonlinear Least Squares Problems

A straightforward application of general quasi-Newton methods to the
nonlinear least squares problem is not desirable, because these methods
approximate all of the Hessian matrix. Since the nonlinear least squares
algorithms usually calculate the Jacobian matrix J(x) analytically or numer-

ically, the portion J(x)TJ(x) of Y72F(x) is always readily available, so we

only have to approximate the second part of V2F(x). Therefore, for the
nonlinear least squares problem, it has been considered that the search
direction can be computed by

@1 b+ A = =T,
where f, = f(xk), Ji = J(xk), and the ﬁatrix'Ak is the k-th appfoximation to
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the second part of the Hessian matrix of F [7]. The matrix Ak is updated

such that the new matrix Ak+l satisfies thé secant condition

' _ 4 T
(2'2) | Ak+l Sk = uk’ uk yk Jk+1Jk+lsk

or ,

‘ ‘ - - AT
23 Ay s Vi Vi ® Ui =0 fiar
where '
(2.8) Sk = xk'l'l - xk’ yk = VFk+1—VFk, ka = VF(xk)-
The first is proposed by Broyden and Dennis (BD) [4], and the second is
proposed by Bartholomew-Biggs(Biggs)[1] and Dennis, Gay and Welsch (DGW)[8].
We call these strategies structured quasi-Newton methods.

Structured quasi-Newton updates are usually of rank one or of rank two.

Broyden and Dennis gave the following update:
(i)the BD update

- _ T _ TN, T
(2-5) Ak+1 = Ak + ((uk Aksk)sk + Sk(uk Aksk) )/sksk

| ~ (o, ~ A 5,0 T8, /(85,08 5T
Recently, by using sizing techniques, Bartholomew-Biggs and Dennis et al.
have proposed the robust algorithms for the both cases of large and small
residual problems. When the residuals are large, their algorithms perform
as well as the Broyden and Dennis method does. On the other hand, for the
very small residual problems, their algorithms perform almost as well as the

Gauss-Newton method does. Their updates are as follows:
(ii)the Biggs update
- _ _ T _ T
(2.6)  Agy = A+ U= BASI = Bidsi ) /e Bihsi) sy
v D T T
(iii)the DGW update

N _ T _ Ty, T
(2.9) B = minC 1slv, /stAs, 1 5 1), |

where ﬂ|<is a sizing factor.

3. Factopiggd Versions of Structured Quasi-Néwton Methoq§
In order to obtain a descent search direction, it is desirable that the




coefficient matrix in (2,1) is positive definite. However, it is not clear
how to construct updating formulae of A, such that the matrix JEJk A is

positive definite. To overcomeJthis,difficulty, several strategies have
been proposed,for example, the modified Cholesky decomposition of the matrix

Jle+ Ak’ the Levenberg-Marquardt modification (the model/trust region

strategy)[8] or switching to the Gauss-Newton method [2].

In this section, a direct approach is proposed in order to maintain
positive definiteness of the coefficient matrix in (2.1). We try to compute
the search direction by solving the linear system of equations

T T
(3.1 Ly + 0 Wy + 4 dy = = J f,
where the matrix Lk is anm x n correction matrix to the Jacobian matrix
such that L{L, + L{J, + JIL, is the k-th approximation to the second part of

the Hessian matrix of F [10]. Since the coefficient matrix is expressed by
the factorized form, the search direction may be expected to be a descent
direction for F.

Now we construct updating formulae of the matrix Lk. The secant

~condition (2.2) or (2.3) for Ak+1 cah be reduced to the following secant
condition for Lk+1 '
(320 gy + D) gy + D) S = 20

where
(3.3) 2y,

or

Yk

(3.8 7 = vt oS
and the vectors vy, s, and y, are giveh‘in (2.3) and (2.4), respectively.
It is easily shown that, for nonzero s, and z,, the matrix equation (3.2) is
consistent if and only if
3.5 Lggh = 2= dgph A Lggso=h = dggs,
for some m-dimensional vector h. Further, the matrix equations (3.5) have a
common solution L,y if and‘only if each equation separately has a solution
and hTh = slzk.

In the sequent two subsections, we find a rectangular matrix L, .,

which satisfies the equations (3.5) under the assumption of slzk > 0.

.g-
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3.1 Least-change secant updates of Li

Since the equations (3.5) may not uniguely determine the solution matrix
Lk+1’ we use the least-change secant update technique following to Dennis
~and Schnabel [6].
For any unknown m-dimensional vector h such that h'h = slzk, minimizing
~the Frobenius norm |
(3.6) Lhy =L g

with respect to Lk+1’ subject to
T - T
B.D g = 2 gy
ve have
- _ T.\T, T
Lk+1 —,Lk + h(Zk (Lk + Jk+l) h) / h h.
By substituting the above for the other condition in (3.5) and using hTh =

sﬁzk, the vector h can be determined by the form
h = (S;‘;Zk /SkBkSk )1/2(Lk + Jk+l)sk’
where
(3.8)  B¥ =L+ 0T+ 0L
‘ k k k+1 k k+1/°

Thus we have the rank one update of Lk as follows:

- T8 P 172 _ T
(3.9) s 1™ Lk+((Lk+Jk+l)Sk /skBksk)((skB S}, /skzk) 2 B k)

Setting
= T
(3010) Bk+l - (Lk+1+Jk+l) (Lk+l+Jk+1)’
we have
= g¥ —pt # 4 T ,.T
(3011) Bk+1 - Bk kSkSkBk / SkBksk + Zkzk /Ska,

which is the analogy of the BFGS update. Note that (3.11) differs from the

standard BFGS update in that the structure of the Hessian matrix (1.5) is

. . #
included in 2 and Bk‘

Next, we consider an analogy of the DFP update. For any unknown m-

dimensional vector h, which satisfies hTh = slzk, and the nonsingular

RUXM RNXN

matrices UL £ , minimizing the Frobenius norm

with respect to L4 Subject to

R £
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(3.13) Lk+18k = h —-Jk+lsk’
we have
— _ . T T
Lk+1 - Lk + (h <Lk + Jk"'l)sk)skw / SkWSk9
where W = wéTwél. If the symmetric positive definite matrix W is chosen
such that WSk = Zps by substitdting the‘above'for the other condition in
(3.5), we have
T, _ . _ T T,,.T
(Lk + Jk+1) h=c Zk’ c = Sk(Lk + Jk+1) h/Ska.
If the matrix Lk + Jk+1 is of full rank, then
h=c¢c¢ ((Lk + Jk+1)T)+z\k’
where ((Lk+Jk+1)T)+ is the Moore-Penrose generalized inverse of (Lk+Jk+1)T.
Setting hTh = szzk, we have the rank one update of Lk as follows:
_ # -1 1/2 # _ T
Further, we have
$ $ T T, T, _/of. T Toly,.T
(3.15) Bk+1 = B + (1 + skBksk/skzk)zkzk/skzk (Bkskzk + ZkSkBk)/Skzk’
which is the analogy of the DFP update.

3.2 Least-change secan? updates of Lth_lk

In order to obtain the updating formulae which satisfy the secant
condition (3.2), we minimized the norm (3.6) or (3.12) in the previous
subsection. Instead of this strategy, we can minimize the norms

(3.18) WLyt ) =yt 3T,
and
GAD WLyt S — Lt SOl g

Then, by the same way as the subsection 3.1, we have the following updates:
(i) the update corresponding to (3.9)

, - _ T T T 172 _ T
- _ T T ‘ T,.T
(3.19) Bk+1 = Bk BkSkSkBk/SkBksk + zkzk/skzk,
(ii)the update correspondlng to (3.14)
- T 1/2 1, _
(3.20) Lk+1 = Lk+Jk Jk+1+ (Lk+Jk)((skzk/zk K zk) Bk 2}, sk)(zk/gkzk) ,

: . T T T
(3.21) Biyp = By ¥ (1 + skBksk/skzk)zkzk/skzk - (B, 5.2 + ZkSkBk)/Skzk’

"

-8-
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where Bk = (Lk + Jk)T(Lk + Jk). For the case of 2y = Yy ve have the
standard BFGS and DFP updates, which are ‘identical with the results of
Dennis and Schnabel [6]. For the case of 2 = vy + JkIle+lsk’ we have

another updating fofmulae.
For (3.19) and (3.21), the inverse updating formulae can be obtained by
letting Hk Bk Then we have the inverse updates as follows: .
(i)’ the inverse update corresponding to (3.19)
(3.22) H = §, + (1+zTH Z /st )s~sT/st —(H, 2 sT+s zTH )/st
* k+1 k k" kk" "k“k”"k7 k" "k“k k“kk “k“k 'k’ °k“°k’

(ii)’ the inverse update corresponding to (3.21)

I Ty ,.T T,.T
(3.23) ey = B Mz iz b /2 2, + sksk/skzk.
in this case, the search direction can be calculated by

e —u T

without solving the linear system of eguations.

3.3. Sizing of the updating matrix

We know that, for zero residual problems, the matrices Ak and LELk +LIJk

+ JlLk shéuld ideally converge to zero. If the matrices do not at least

become small in those cases, then structured quasi-Newton methods cannot be
hoped to compete with the Gauss-Newton method. Noting that the quasi-Newton
updates do not generate the zero matrix, some remedies must be employed.
Among them, the sizing of the updating matrices which has been introduced by
Bartholomew-Biggs[1] and Dennis et al.[8] seems most promising. The Biggs’
sizing factor (2.7) is based on the idea such that if fk+1 = t3kf for some

+
Ak = ?ﬂl f?Y72f? and each fi is quadratic, then Fﬂlf Y? fk L l}kAk’

where f¥+1 and Y72f?+1 denote fi<xk+1) and Y72fi(xk+l), respectively. Dennis
et al.proposed the strategy such that the spectrum of the sized matrix [3kAk

overlaps that of the second‘part of the Hessian matrix in the direction of
Sy They obtained the factor (2.9) by using the relation

.25 1Ls {F Ao s /ss][s(BkAk)sk /s d 15
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where the vector Vi is defined in (2.3). The structured guasi-Newton methods

with the sizing factors (2.7) and (2.9) are reasonable in the sense that
if the function fk+1 becomes zero, then ViE 0 and lEk = 0, so the new matrix

A4y also becomes: zero. This fact is based on using the condition (2.3).

Now we can use the above mentioned factors for our factorized versions.
Then we have the following updates: '
(i)the sized BFGS-type update

_ T8 To# . T
(3.26) Lk+1" likLk+((13kLk+Jk+1)sk /skBksk)((SkBksk /skzk
(ii)the sized DFP-type update
_ T T oly-1 172,81, _ T \T
(3.27) Lk+1-l3kLk+(l3kLk+Jk+1)((skzk/zk(Bk) zk) (Bk) 2, sk)(zk/skzk) R
where 2, is given by (3.4), the factor l3k is the Biggs’ sizing factor

172 _ ok T
) zk Bksk) ’

(2.7) and the matrix Bﬁ is rewritten as

$ _ \T
It is reasonable to use the above because if the function fk+1 becomes zero,
then the new matrix Lk+1 becomes zero, so we have the Gauss-Newiton direction

at the (k+1)-th iteration. Since the DGW’s sizing factor (2.9) contains the
matrix Ak, we can not use it directly. However, for the factorized version,

the strategy similar to the‘DGw’s one can be considered. The factor B|(
should be chosen such that the matrix
T ; T T
has the same spectrum as that of the second part of the Hessian matrix in
the direction of S So we have the following relation
(3.30)  Istv 1 /500 (B LOTCB LY + (B LTI o # 4.1 (B, L)Is, =1
: k'k k k*k k™k k"k” “k+1 k+1 k“k’ "k ’

which yields

- I T T 172 2
(3.31) B|( = { (Lksk) Jk+lsk + sgn((Lksk) Jk+lsk) glc }/IlLkskII s
where . A | '

- T 2 \ 2,.T
(3.32) §|< = ((Lksk) Jk+lsk) + IILkskll I skvkl
and the symbol sgn(Z ) denotes the sign of Z. |In practice, it is also
reasonable to use the sizing factor

(3.33) By minl 1 =) g sitsan(ys) g 0 €472 /gy 2, 1

..8..
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in the above sense. Though the idea seems interesting, its computational
cost is more expensive than that of (2.7).

3.4 New Algorithms

Now we present the two kinds of structured quasi-Newton methods. First,
we show the algorithm described in the subsection 3.1 as follows:
(FACNLS Algorithm)

Starting with a point Xy € R" and an m x n matrix Ll’ the algorithm

proceeds, for k =1, 2, ..., as follows: ‘
Step 1. Having XK and Lk’ find the search direction dk by solving the

linear system of equations
(3.3 Wy + IO+ ) 4 = =T,
Step 2. Choose a steplength oy by a suitable line search algorithm.

Step 3. Set x + a,d

k+1 = Xk k%

Step 4. If the new point satisfies the convergence criterion, then
stop; otherwise, go to Step 5. ’

Step 5. Construct Lk+1 by using the updating formula (3.26) or (3.27).

Next we present the algorithm described in the subsection 3.2:
(INVNLS Algorithm)

Starting with a point x; € R" and an n x n symmetric positive definite
matrix H,, the algorithm proceeds, for k =1, 2, ..., as follows!:
Step 1. Having x, and H, calculate the search direction d; by
(3.35)  d, = —HJIIf,, |
Step 2. Choose a steplength a, by a suitable line search algorithm.
Step 3. Set x4y = x t a,d.

Step 4. If the new point_satisfies the convergence criterion, then
stop; otherwise, go to Step 5.
Step 5. Construct Hk+1 by using the updating formula (3.22) or (3.23).

I 2 is given by (3.4), the information of the second part of the

Hessian matrix V72F(x) is contained only in the secant condition. Further,

. _ S TR T
in the case where fk+1 = 0, we have Hk+lsk = (Jk+le+l) S



4. Local and Q-Superlinear Convergence of FACNLS Algorithm
We prove the local and g-superlinear convergence of FACNLS algorithms.
Our proof is based on the bounded deterioration theorem by Broyden et al.

[3]. Let D be the open convex subset of R" which contains the minimum point

x¥. Ve make the following two assumptions throughout this section:

(A1) There exist positive constants & 1 &'2 and p such that

(4.1) 1VFW-VFCGEHNs & nu—x*1P for any u in D,
and '
(4.2) HJ(ul)-J(uz)H = S2|Iu1--u2l|p for any uy and Ug inD.

(A2) Y72F is symmetric positfve definite at x*.

By using the above assumptions, we have

@3 VR - VR - VEHRGE Wy ey I

s & max( Hul-x*ll,Huz—x*ll)pllul—uzll

for any uy and Uy in D, and

(1.9) s gou =x¥ 1P+ 1Jo*n for any u in D.

At first, we show the local and g-superlinear convergence of our
algorithm with the DFP-type update (3.14). The following is the key lemma,
which is shown by Broyden, Dennis and More [3, Lemma 5.2]5

Lemma 1. Let M be an nXn nonsingular symmetric matrix which satisfies
iMe—MLan s 7 umlan

Ta # 0. Let X be an

for some 7 £[0,1/3] and vectors a and ¢ in R" with c
nXn symmetric matrix, b any vector in R" and define ¥ by

Y =X + {(b=XadeT + c(b—%Xa)T}/cTa—{a (b—Xa)/(cTa)2}ecT.
Then, for any nXn symmetric G, ‘

V=Gl g yS[(1-a oV 2 s/ uMe—mlanz{a—-rHnm lan 1 x—=gun .-

1

+ 200 + 201D ma ellb=GatZnmtan,

where a = (1-27)/(1—r% ¢ [3/8,11, 6 =0 if X =G, and
& = IMX=Gall /(NX=Gll g yIM T2l if X # G.

Let M be Y72F(x*)'l/2. By the equivalence of norms for any nXn matrix

-~10-
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C, there exists a positive constant # such that
(4.5) Nch =7 HCllF’M.
For each iteration, set

- " "
(4.6) o = max(llxk x 1, lek+1 x"H).

Theorem 2. Suppose that the assumptions (A1) and (A2) are satisfied.
- Let the matrix L be updated by the DFP-type formula (3.14), where 2y is

given by (3.3) or (3.4). Let the sequence {xk} be generated by
‘ - _ T -1.,T
Then, for any re (0, 1), there exist positive constants £3(r) and &8 (r)
such that if Il xl—x* N=e(r)and I (L1+J1)T(L1+Jl)—V2F(X*) e yS 8(r),
the sequence {xk} generated by (4.7) is well defined and converges'q-linear-

ly to x* with

(4.8) lixgy = xF s ceax-xF 0, kz1 |
Further, {1 L )T IO NY,  {nC 3T+ 3 ) s,

LN+ DT SO 1 and (L Dy DT )7 H Y are

uniformly bounded.
Proof. For given r & (0, 1), choose & such that
(4.9) 0<8= r/(22 £y,

and choose £ so small that

(4.11) ePs (r/&4=278)/ ¢,
(4.12) 2p+1(1+r)7/n2£2HMI|4( :%/2 +2£)ePs 9/10,

413 ePs venvFeH 22y
and v _

(4.18)  Qus + u)eP/U-P)ss
with

4.15)  £,;=228 + 1VEHGHN,

(1.18) £y = &4+ 1JGHN,

-11-



417 fg4= A+ NV EFGH 1,
(4.18)  z, = &, + 2P £, L ,/(ptD),
4.19)  ug = (15/4)z4umu2,

(4200w =(nli Ml 25,27 (1 (g 1249¢ 2)+2(1+2n1/2)c‘: JIMI
Set

@2 N={xeR 1 Ix-x¥l s ¢}
and ‘
(4.22) Ny = {B e R 1w —vFGHNp s 26 ).

Now we prove, by using the mathematical induction, that the following
expressions hold for all k21:
(E1;k) i Bk i §Z1 and Bk £ N2,

Ly 172
(E2;k) I L= £°°+ &,

: -1
(E3;6)  NB Il S Zg,

: % £ .
(E4;k) WX ey — X7 = r lix, —x" I and x ., & Ny

esik)  nefn s 2PMgne. e Pumn2e2 49y 4 2y,
k 2 1 2 1
&6k neh e s 10z,
(E7;k) The matrix Bk+l in (3.15) is well defined and
20 Can2 o172 p o2,k p
] Bk+l VYV F(x )’”F,Mé{(l 36k /8) + HIO’k}" Bk VeF(x )”F,lez"k’
p g 2p, % p
v S(1+ pyodNB, VF(X)liF,M+“2Gk’
where Oy My and o are defined in (4.6),(4.19) and (4.20), respectively,
and 6 is given by ’ "
4.2 6, =0 if B =VFGH
and ‘ ,
a.2) 6, =nnet -T2 eNs, 1 /B - w2y i eI s 1), othervise.

First, we consider the case of k = 1.
(E151) Since

(4.25) 0B -VHH Iy s 8 s 26,

- 12-
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it is clear that B1 £ N2 and

(4.26) 1B, S 7 1B —-VEGH I oyt 0 T2rGeh I 29 s+ VIRGH 1.
(E2;1) By (4.4) and (4.26), we have
NLp IS WLy + G+ G = 1B Y24 iy

(a2 = @28 + NVFCHIDYZ 4+ g2 4 6P
(E3;1) 1t follows from (4.9) and (4.25) that ‘
1w Zre® L ue -vFGH 1 s 27 8 1V
| = r/(l4r) < 1. ﬂ
By Banach Perturbation Lemma, B1 is nonsingular, so Bl is positive definite,

and we have

a.28) 0 s e nvEFGH .

(E4;1) By (4.3), (4.11), (4.25) and (4.28), we have

hxy, — x¥11 = 1y =8]'WFGx Y=t
s nstn VF(xl)—VF(X*)—VzF(x*)(XI —xH
+ 0B B = vFRGH 1 ux, - KFi

= (1+0)27 8+& e MHUVEFCEH T nx, - KFu
S r lx—x Il < llxl—-x*ll < g.

Thus x2 £ Nl‘

(E5;1) Since J(x2) is available, the matrix B¥ is well defined. Thus we have
# T, _ N\ T
1 Bl_Bl ] F,M s (L1+J2) (Jz Jl)ll F,M + 1l (J2 Jl) (L1+J1)|I FM
2
2 2
= n“ll M “( 2!|L1H + IIJIH + IIlel)llJz—-JIH

(4.29) s 2PH1p2 umuzsz{(zn §+1 VARG D124 25, P JH I ol
Therefore, we have -

$ §_
we¥u s we¥—p o+ ng
s 2umn2g 927 8 + 1UFGH 12

+ g6+ 1IGHINDIEP + 278 + 1VHFGH .

-13-
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(WY

(E6;1) By (4.12), (4.28) and (4.29), we have .
ne; i nst—g s 2P 2unn2e, g iz 6 + 1THRGH )2

' 28,e” + ICH I ITVEFCH i+ P
s 9/10 < 1. ,
Thus, by Banach Purterbation Lemma, the matrix B? is nonsingular, so B¥ is
positive definite, and we have
b e s et vZRed e,
(E7;1) At first, we show that there‘holds for £, in (4.18)
(2.30) Nz ~VFGHs I sg,00 s,
wvhere zy is defined by (3.3) or (3.4).

If 2z, = y;, then it follows directly from (4.3) that
Hy,=VFGHs s & ,08 nsn.
Consider the case of z;= v, + JgJ2sl. Since fo—f —Jqo8, = J'éJ(x1+tsl)sldt
—Jg81,» we have, by 4.2),
I zl;VzF(X*)sl S 0y = V2FOs 14100101 £y =~ Jgs; I
| RPN LA u)slu :
S{E Hp2) £,2°C8 e PG 17D e s 1

Next, we show that sIz1 >0 if s1'¢ 0. This can be shown by a similar

way to the proof of Lemma 4.2(a) in [3]. Since
.30 wmzg=Mls s umn nz ~vAFGHs, 1

Sz o UM s Il s (/3) M'lsl I

and : ,
T, -1 T _u-1 -1 T/u-1
: | $12) = M Sl) (le M Sl) f (M ;31) M Sl)’
we have ’ ‘
T -1 2 -1 _wu-l -1 2
|Slzl— M Sl" | SN 8 i Mz-l M 84 ll S(1/3) UM 84 e,
Thus

2/3) 1 M"sl 12s s'{z1 s @31 M‘1s1u2,
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which suggests that SI¢ 0 implies s'{zl > 0.

Since the matrix Bf is symmetric positive definite and‘s{zl > 0, L2 is
well defined, and is given by
Ly = Ly + (Lt slz /2] @ 12264 12 =5 02y /82T
Setting By = (L +J ) (L 1t D, By = (L2+J2) (L2+J2) and Bl = (L +J2)T(L +J2)
gives
# # CJTo¥y T
Bz B + (1+SlBl 1/8121)2121/81 1 (B Zl+zlslBl)/Slzl.
Note that the above corresponds to the DFP update. Let
x=8%, v=8, , G=VFGH, v =1/3,a=5, b=z, c=z.
Then using Lemma 1 and (4.31), we have the bounded deterioration property

for Bf and B2 such that
(4.32) 18y ~V2GH UL, s {1-30% /)12
p ¥ 2., .% p
+ rlol}NBl'V NX)"F3M+ 7907,
where

=as/mumn?e,, oz, =20+ mHumnumu gz,
and & 1 is given by (4. 23) or (4.24). Moreover, by noting that

¥ V2F(x*) g, Mé ne¥-g, e+ 1B =VEGHIE
and usung (4. 32) we obtain the bounded deterioration property for B1 and Bz.

Assume that the expressions (E1;k) through (E7.k) hold for k = 1,...,
m-1. Then we have

1B~ VG N = 1B, - VHCH I
= (B -~V Hx)HFM-+u2)ak (2u18-+u2)0k
for k =1,..., m-1, and by summing both sides from k = 1 to m-1, it follows
from (4.14) that )
=X :fg(rp)j

2 % 2 % |
IIBm \V4 F(X)"F,Méusl V F(x )"F,M+ (2u18 + uz)llx

=6 + (2u 8 + u'z)s”/(l—rp)gza,

which implies (El;m). Ve can prove (E2;m) through (E7;m) by the same way as
the case of k = 1. : : :
Therefore, this concludes the |nduct|on, which completes the proof. IR

1
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Further, by combining Theorem 3.4 in [5] and (E7;k),

. 207 .%\-1/2 2 ¥\-1/2_
(4.33) kl-ingo I VAF(x™) | Bk VeF(x™) I P
exists and we have

. S S ]
(4.34) kl;go ] (Bk \VJ F(’( ))Sk, it/ Sk ] 0

Thus, by Theorem 2.2 in [5], we obtain the following theorem.

Theorem 3. Suppose that all conditions of Theorem 2 hold. Then the
sequence {xk} converges g-superlinearly to x*, that is,

; ¥ S ST
(4.35) k_ugo il ka X H/lek x" 0.

1

Next consider the BFGS-type update (3.9) of Lk. Let Hk = B& and

Hﬁ = (Bﬁ)-l. Then the relation between Hﬁ and Hk+1 can be given by

- uk Tu# T T, T _/ul, T, Tu¥\,.T
(4.36) Hk+1 = H+ (1+zkazk / zksk)sksk /2,8 (szksk+skzka)/zksk,
which is the form obtained by performing the interchange Bﬁ*——»vﬂﬁ and
S <> 2 in (3.15). So we can prove the local and q-superlinear convergence
of our algorithm with (3.9) by the same means as the above.

Let M be Y72F(x*)l/2. By the equivalence of norms for any nXn matrix
C, there exist positive constants # and #’ such that

(4.37) (177’0 cCH F,M§ el =2 IICIIF’M .

Theorem 4. Suppose that the assumptions (AD) and‘(A2) are satisfied.
Let the matrix Lk be updated by the BFGS-type formula (3.9), where 2y is

given by (3.3) or (3.4). Let the sequence {x,} be generated by
- - T -1,T,
Then, for any re (0, 1), there exist positive constants £(r) and & (r)
such that it Wx;—x* Il S e(r) and WL+ DT+ I T=-9HG6H T,
= S(r), the sequence {kk} génerated by (4.38) is well defined and converges

q-linearly to x* with
(4.39)  lixg — ¥ s roux—x*u0, kzl

-16-



Further, {1l (Lt )T I3, L+ 3T 50y,

uniformly bounded. ;
Proof. For given r & (0, 1), choose & such that
(4.40) 0<8= r/(27 Zé),

and choose £ so small that
(4.41) £ 51,

(4.42)  ¢}5,ePs r2/(141),
4.43)  Peozrzy+ 23V eP s 910,

4.40)  ePs anvrFeH Tz p

and

(a.45)  Qujs + uPePra-Prs=s

with ,

4.46) g =278 + 1A,

447y £y = £, + WIGHN,

4.48) 24 = N vECH,

(4.49) &) = &+ P £, 8 5/(ptD),

@50 wj=szymnantinvFed e,

@50 py =108, a2y (2 VD

+ (871531 + 20Dy umnpunta,

Set

4.52) N ={xe R 1 Ix-x¥N s e}

and

(4.53) Ny ={H e RN —vHH g, s 25 1.

~ Now we prove, by using the mathematical |nduct|on, that the followmg

expressions hold for all kZ1:
(EL;k)’ N Hkllétl and er Ni,

(E2;K)7 1l B,k ] §Z§ s

-17-
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10.0)

ey < g 13172
(E3;k)* Ny = g5+ (g7

BBK’ Nxyq — x5 s v lixe—x* 1 and x4 e N,
. ) # p+1 ] s 172 ,'
(E5k)” Wl = 2P g,Q85 + (675 + 23,
B6:k)’ nHn = 103,
(E7;k)’ Hk+1 is well defined and
7 2pr k-1 _ 2 1/2
g = VEFGH iy s {(1=30¢ /)12
» P - 2 ¥\-1 ’ p
+ ulqk}ll Hk VAF(x™) “F,M t o0,
s P 7 2pr.¥\-1 y P
= + ulak)IIHk VF(x™) "F,M + hoO i,
where 01 jti and ;zé are defined in (4.6),(4.50) and (4.51), respectively,
and G'k is given by

50 6, =0 if #=vZeH!
and
= et — o 2pe¥y-] ¥_ o2, by 1
.55 8, = it -v2GE Dz s - v2rehH g iz,
othervise. |

First, we consider the case of k = 1.
(E1;1)’ Since the proof is very similar to that of Theorem 2, it is omitted.
(E2;1)’ 11 follows from (4.40) that

EVZFCEH 1R -V s 22 80 vFCH N s Q) < 1
By Banach Perturbation Lemma, we have
HB N = wHLn = A nvIFCH .

Since the proofs of (E3;1)’ through (E6;1)’ are very similar to those
of Theorem 2, they are omitted.
(E7;1)’ By the same way as the proof of Theorem 2, we can show that

(4.56) Nz~ VH&Hs 52500 ns
’for Z’& in (4.49), where zluis defined by (3.3) or (3.4), and that s'lrz1 >0

if 8 # 0. Using Lemma 1, we have the bounded deterioration property for Hf

and H2 such that

.51 Wy =VERGH T, = (a-302 /)12

-18-



188

+ 7ot -v2rody 1||FM+ 508,
where

’

T

i

sumn umtnnv2rodH e g,

3= @D tnZuwn wwn o v e ¢ g,
and @ 1 is given by (4.54) or (4.55).
Moreover, by (E1;1)’ and (EG;I)’,'we have
$_ - $ .8 s ult $_
HH1 Hl"F,M = lIHl(Bl BI)H1||F,M s 7 lIHIH |IH1|HIB1 BIH
s 107°e P P e e+ 2PV D!
and
2. % "1 $_ 7 2pr .81
tIH1 VeF(H) 1 FM §IIH1 HI“F,M + IlHl- V4F(x™) llp’M
Therefore, we obtain the bounded deterioration property for H1 and H2‘

Since the remainder of the proof is very similar to that of Theorem 2, it is
omitted. WM |

Moreover, by a similar way to the proof of Theorem 3.4 in [5],

(4.58)  lim sz(x*)l/sz viFuH2 "
exists and we have '
(8.59)  lim 0 CH ~ sz(x*) 1)z WAl zk = o.

Finally, we show that the above lsvat least the sufficient condition for the
superlinear convergence of the algorithm.

Theorem 5. Suppose that the seme assumptions of Theorem 4 hold. Let
the sequence {xk} be generated by

(4.60) : xk+l = xk - kVF(xk)-

Then {xk} converges q-superlinearly to x*

Proof. For the case of zk = Yo |t is proved in [5, p.559] that (4. 59)

implies the g- superllnear convergence. ' So we only consider the DGW secant
~ condition (3.4).  Since

N P Ty
Zk = yk Jk(fk‘i'l fk Jk+lsk) + ("'k+1 Jk) Jk'l'lsk’
we have ’

-19-
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VP 1S 10 =26 Dzt + 126 iy, = 72 (s, 1
L CO R I AR BT S |

—o2p, %y _
+ I = VARG Ty =y 0 gy WS,

Using (4.2), (4.4), (4.56), (4.58), (4.59) and (E1;k)’, a similar way to [5,
p.559] yields

(4.61) kligollY7F(xk+1)II/ lek+l-xkl| =0

and ;
: _ .k N TR
(4.62) kl;gollxk+l x“ 1/ lek x“l =0.

Thus the proof is complete. W

5. Computational Experiments ‘
Computational experiments were performed to compare the factorized ver-
sions proposed in this paper with the Gauss-Newton method and the structured
quasi-Newton methods from the viewpoint of the number of iterations and the
number of the objective function evaluations.
The numerical calculations were carried out in double precision
arithmetic on a NEC PC-9801VX personal computer, and the program is coded
in FORTRAN 77. For all the methods, the initial matrices Al and L1 are set

to zero matrices, and H1 is set to the unit matrix. The iterative process

is terminated
(D if NI N, S max(TOLL, &),
or , ;
@ it 1l P Hx P TS max(TL2, &) 1 fl DI 1
for j=l,...,n and Wx 4 —x I o= max(TOL3, £ dmax( Hx 41 o5, 1.0,
where €] denotes the j-th column of the unit matrix,

or
(3) if the number of iterations exceeds the prescribed limit (ITMAX),
or
(4) if the number of function evaluations exceeds the prescribed limit
(NFEMAX), ;
where |l ~II§° denotes the maximum norm and € is a machine epsilon.
Further, the Jacobian matrix is evaluated by'the forward difference
approximation and the bisection line search method with Armijo’s rule

-20-
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Flx, + oy d) S F(x) + 010, VF(x)Td,
is employed.

In the experiments, we set TOL1 = TOL2 = TOL3 = 10'4, ITMAX = 500 and
NFEMAX = 2000. Since the sized DFP-type update (3.27) includes the inverse

matrix of BE, we used only the sized BFGS?type'update (3.26) in the FACNLS

methods. The test functions to be minimized are listed as follows [2]:
Problem 1.(Powell)

_ 2 IRY _ ] VRN
F o= Ot 10%,)° + 5(xg=x,)% + (x, 2x3)- +100x; —x4)",
Starting point=(3, -1, 0, 1), Minimum point=(0, 0, 0, 0), Value = 0,

Problem 2.(Freudenstein and Roth)

- (_ _ 2_.3\2 _ _ 2 3.2
F=(—-13+ Xy~ 2xgt 5x2 x2) +(—29 + X4 14x2+ xy + x2) ,

Starting point=(15,-2) or (6,6), Local minimum point = (11.4128,

-0.89681), Value = 48.98425; Global minimum point = (5,4), Value = 0,
Problem 3.(Kowalik)

11 2 2 2
F=3 a. —x , +xu )W, +xu, +x)),

J=1(J l(J 2] J 3 4)
The data a. and u. are given in [2],

J J
Starting point = (0.25, 0.39, 0.415, 0.39),

Minimum point =(0.19281,0.19128,0.12306,0.13606), Value=3.075 x 10-4
Problem 4.(Jennrich)

10

F= §3j_ (aj—-(exp(jxl) + exp(sz)))z, where aj =2+ 2j,

1
Starting point=(0.3,0.4), Minimum point=(0.25783,0.25783), Value=124.36
Problem 5.(0sborne)

33 2
- — + - + - -t ,
F 2j=1 (aj (x1 x2exp( xqtj) x3exp( x5 j)))
The data aj are given in [2] and tj = 10(j—-1),

Starting point = ( 0.5, 1.5, -1, 0.01, 0.02),
Minimum point = (0.3754, 1.9358, -1.4647, 0.01287, 0.02212),

Minimum Value = 0.546 x 1077

The computational results are summarized in Tables 1 through 6;
In each table, we use the following symbols;
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GN - the Gauss-Newton method,
Biggs: the Bartholomew-Biggs update (2.6),
DGW : the Dennis, Gay and Welsch update (2.8),
- FACO : the FACNLS algorithm with (3.3) and (3.9),
FACL : the FACNLS algorithm with (3.4) and (3.9),
FAC2 : the FACNLS algorithm with (2.7), (3.4) and (3.26),
FAC3 © the FACNLS algorithm with (3.33), (3.4) and (3.26),
INVO : the INVNLS algorithm with (3.4) and (3.22),
INVI : the INVNLS algorithm with (3.4) and (3.23),
BFGS . the standard BFGS method,
DFP { the standard DFP method,
T . the number of iterations for convergence,
EV - . the number of the objective function evaluations,
Fv. I the obtained final function value,
¥ . the method had failed to converge in the specified number of
the objective function evaluations.
Table 1. Results for Problem 1 Table 2. Results for Problem 2
with (15, -2)
IT EV Fy IT EV Fv
GN 9 50 2.3 x1079 GN 105 % 58.02
Biggs 14 15 | 7.0 X 10'9 Biggs 6 21 48.98
DGW 14 75 6.6 x 10"9 DGV 6 21 48.98
FACO 20 105 6.2 x 10'9 FACO 9 33 48.98
FACL 14 75 4.8 x 107 FACL 7 31 48.98
FAC2 14 75 5.4 x 10'9 FAC2 7 31 48.98
FAC3 14 75 5.1 x 10'9 FAC3 11 102 48.98
INVO 27 158 3.5 x 10'9 INVO 8 36 48.98
WL 77 419 1.5 x 1078 WL 7 33 48.98
BFGS 32 184 1.0 x 10'8 BFGS 9 39 48.98
DFP 97 513 7.6 x 1070 DFP 10 42 48.98

-22-



Table 3. Results for Problem 2

with (6,6)

SR S
GN 5 18 2.8 x 10717
Biggs 6 21  8.7x101°
Dow 6 21 8.1 x101°
FACO 9 30 85«10 13
FACL 6 21  6.5x 107
FAC2 6 21 6.2x10°1°
FACS 6 21  6.2x101P
INVO 92 £ 730.41

INVI 92 £ 730.41

BFGS 13 57  48.98 ($)

DFP 44 172 48.98 ($)

................................

- ($)The local minimum is obtained.

Table 5.‘Results for Problem 4

--------------------------------

IR
GN 138 %  2.7x10°
Biggs 9 32 124.36
DGW 9 32 124.36
FACO 10 70  124.36
FACI 9 50  124.36

FACB 15 178 124.36

Table 4. Results for Problem 3

B I I I e e IR

TR TR
6N 13 103  3.075 x 1072
Biggs 10 59  3.075 x 10°%
p&w 12 70  3.075 x 107¢
FACO 14 94  3.075 x 1074
FACl 11 67  3.075 x 1072
FACZ 10 62  '3.075 x 1072
FACS 11 89  3.075 x 1072
INVO 28 152 3.075 x 107
INVI 399 £ 3.711 x 107
BFGS 32 167  3.075 x 107%
DFP 399 £ 3.772 x 1072
Table 6. Results for Problem 5

I L - AL A S
6N 6 44  5.465 x 107°
Biggs 27 172 165 x 1070

5
DGW 21 148 5
FACO 43 274 5
FACL 26 190 5
FACC 18 128 5 3
FACS 16 119  5.265 x 107
INVO 93 + 6
INVL 3209 % 6
BFGS 51 350 5
PP 172 % 6

LI R e e e R
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~ From these tables, we can see that the Gauss-Newton method performed
very well for the zero or small residual problems (Tables 1 and 6), but
did not necessarily well for the large residual problems (Tables 2 and 5).
For all the probiems, the FACNLS methods except FACO, the structured quasi-
Newton methods with the Biggs and the DGW updates performed well and were
numerically stable. These numerical results suggest that the FACNLS methods
are compakable with the structured quasi-Newton methods with the Biggs and
the DGV updates. However, the INVNLS methods, the standard BFGS and the
standard DFP methods did not perform well compared‘with.the other methods.

6. Concluding Remarks ;

This paper has been concerned with the iterative methods based on the
structured quasi-Newton methods for nonlinear least squares problems. Our
idea is to compute the search direction by solving the linear system of
equations (3.1). This enables us to obtain descent search directions for
the objective function. ‘ ‘

We proposed the FACNLS and the INVNLS algorithms. However, since the

information of the second part ?EI fj(x)i72fj(x) in (1.5) is contained only

in the secant condition, the INVNLS methods did not perform well compared
with the other structured quasi-Newton methods in our experiments.

We recommend the FACNLS algorithm with the sized BFGS-type update (3.26) for
practical computations. In addition, the FACl seems numerically stable
though it does not employ a sizing technique.
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