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Summary. In (4], we studied multivariate Padé-type and Padé

approximants by following similar ways to those of Brezinski[2]

in univarlate case. Brezinski[2] pointed out the fundamental fact

that Padé-type épproximants of f(t) can be derlved by operating
“the functional ¢ on an Interpolation polynomlai of the generating

function of £(t). Sablonniérel[5) and Arioka[l] extended this

fact‘to the multivariate case by using thelr own fUnctionéls and
~generating functions. In this paper, we explalin this fact from

our vfewpoint in (4] and study the relations to [1] and [5].

§1. Introduction. . In-[4], we introduced multivariate Padé-type

approximants by the following ways. Let f(t)=f(t,,---,ty) be a formal

power series in N variables ty,*°*,ty with real coefficlents,

(1.1) f.(‘t‘)=CO+C‘+C2+uot+Ci+--o.. t=(tl'.i.'tn)'

where ¢; ls a homogeneous polynomial of degree 1 in ty,-+-,ty with
real coefficlents. And let P(X) be a "formal Laurent series" 1in X
whose ‘coefficlents are polynomials in t;,---, ty,

P(X)=anX"+am|Xml+' eees, @jeRI[ty,+-+,tyl, L1=n,n+l,-+- ,

where R[ty,*+-,ty] is the polynomial ring in t,,-«-,ty over the
real number field R and n is an integer which may be negative.
N

Let j’ be the totality of the above "formal Laurent series”.

Then j> is an integral domain and contains the polynomial in X:

whose coefficlents are polynomlials 1in ty,---,ty. The lnverse
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element of a unit P(X) of_P 1s denoted by 1/P(X). For example,

(1.2) 1%‘)2 = 1axexZaxPee e L e 2, L ]

X" (1-X)

For (1.1), an operator c’acting on P_is defined by
c(jZZaiX‘)=:g;agq (with the convention that c¢j=0 for 1<0).
i i
This operator ¢ has the following property:

For P(X),Q(X)E:P and é.beR[tlp~-.tN],
(1.3)  c(aP(X)+bQ(X) )= ac(P(X))+bc(Q(X) ).
We define the operator ¢ by ¢™(P(X))=c(X"P(X)) for P(X)e P,

where n is an integer. Then cm) also has the same property as (1.3).

Operating c or c“” on the speclial element Xi of P , we have
c(Xi)=ci and cm%Xi)=cmi,

where c;=0 for 1i<0 and chd=0'for n+1i<0..

We have immediately the following lemma by (1.2).

my_ 1y _ o r e ey

Lemma 1.1 ¢ "(Zg) = £(t), t=(t;,~«-.ty), ( ns0 ).
Here 1/(1-X) 1is called a generating function of f(t).

The polynomial of P is called a g-polynomial if it is a homo-
geneous polynomial with respect to N+1 variables Ly, Lty X,
A g-polynomial V(X) is expressed as follows,

(1.4) VIX) = buxq+blﬂxq4+"‘*bnﬁxqi*;"+bnm" by # O,

where b,,; is a homogeneous 'polynomial of degree. m+} in Ly, ,ty.
Then, we call V(X) a g-polynomial of degree q with shift m.
V(1)=b,+b,.|+~‘-a+b,,,q (eR[t),*++,ty]) is called the reverse
polynomial of V(X) and denoted by v(t) for t=(ty,:+, ty).

Multivarlate Padé—type approxlmantsr"with shift m" are défined
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as follows.

Definition 1.1. Let V(X) be a g-polynomial of degree'q with

shift m and

. t)- p-qtl 7 i':l
= c(V( )lX_ XV(X))' E=(Ey, -, ty),

(1.5) w(t)
where v(t) is the reverse-polynomial‘of V(X). Then the rational
function w(t)/v(t) is called the (p/q) Padé—type approximant with
shift m and denoted by (p/q)j(t). We call the g-polynomial V(X)

a generating polynomial of the Padé-type approximant’ (p/q)?(t).

Theorem 1.1 (Th.2.1 in [4]) In Definition 1.1, v(t) and w(t)

are polynomials of degree m+q and m+p respectively. Moreover,

(1.6)  frovee)- wiey= PN S omiprr), t=try,ee .

Theorem 1.2 (Th.2.4 in [4]) Let W(t) be a function in tj,***.ty,

C(p-qs])(V(t)‘V(X)), b=(ty,ore . ty).

W(t)= 1-X

n _ W(t)
(a? If p < g, then (p/q)(t)= vit)

w(t)
v(it)’

(b) If P = g . then (p/q)j(t)= Cpte+Cpy+

§2. Relatlion between Padé—type approximation and polynomial
interpolatidn. Let Q be a function field which contains all
polynomials in tg,*++,ty (i.e. the rationai function field R(ty,---,ty)
or its extenslion field). Q[X] and Q(X) are the polynomial ring
and the rational function fieldyin X over the field Q respec-
tively. In considering the ihterpolation problem, since it 1is
algebraically meaningless to substitute an element of Q intd the
variable X of the formal infipite series g(X)=1+X+X2+---{ we need

regard the generating function g(X) as an element 1/(1-X) of Q(X).
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Let us now define the Hermite interpolation polynomial of

the generating function g(X)=1/(1-X).

Definition 2.1 Let aj,*++,as be s given distinct 'poinﬂs' of
Q. If the polynomial Pp(X) (eQIX]) of degree n in X satisfies
the following condition,

. . N3
(2.1) P (aj=g"(a;), osjsk;-1, i=1,-+-,s, S5 k;=n+1, k;=1,
i=l

where PJ”(X) and g(ﬁ(X) denote the j-th formallalgebraic deriva-

i j

tives iLTPn(X) and £L7g(X) respectively, then the polynomial
dx! ax!

P,(X) 1s called the Hermite interpolation polynomial of g(X) at

the nodes aj,***,ay.

We can prove the uniqueness of such interpolating polynomial
in the same way as in the ordinary interpolation problem for
a real valuea function. If there ekists an element a (a function
in ty,++-,ty) of Q such that P(a)=0€Q, then the function a is
called the zefo of P(X). We denote G%ETC“”(p(X)) by c“”(%%%%
for the sake of convenience.

The following theorem gives the relation between polynomial

Interpolation and Padé-type approkimation.

Theorem 2.1 Let V(X)=bpd+bquwq+--o+bmw be a g-polynomial
of degree q with shift m. Suppose that‘s distinct functions (in
ty,oee,ty) ap,o°-,a5 of Q are the zeros of multiplicity k; of

. > S .
V(X), that is, V(X)=an_‘{(X-—ai)k‘, Ky+e o+ +ke=q, k;=21.
1= .

(a) The case of p>q-1. Let P(X) be the Hermite interpolation

polynomial of degree p of the generating function 1/(1-X) at
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the nodes a;,<*+,a; and O (with multiplicity p-g+1). Then
n
c(P(X))=(p/a)f(L),  t=(ty, =+, ty).

(b) The case of psqg-1. Let P(X) be the Hermite interpolation

polynomial of degree g-1 of 1/(1-X) at the nodes a;,*+*,ag. Then
PP )=(p/a)f (), t=(ty,- ) -

In both cases, the denominator of the approximant is the reverse

. ; s - ,
polynomial of V(X) 1.e. V(1)=v(t)=bm1¥(l—ai)h. E=(t), o+, ty).
i=|

_yehetl
Proof. (a) Put F(X)-V(sgt¥(i_¥§x). Then, from the expression

by+e e+ *bn;q’bmxp.l“‘" . —bm+dxp’q'l
P(x)= v{E) (1=X)

— L2 B p . 0 0 . 8 & pq
= v(t) {bm(1+X+ +xPy+ +Dgyq (1+X+0 0 o +X )}

it follows that F(X) 1s a polynomial of degree p with respect
to X. We are going to show that the polynomial P(X) satisfies

the condition (2.1) for n=p. P(X) can be written as follows,

s+l
. A TT(X- ) ki
pocye Lo XUveo o1 Pe e m
X=1Tx " vm1-x) I-Xx vty 1 -X

where ag,;=0 and kg =p-q+1. Differentiating j times with respect

to X and substituting a; into X,

s+l ‘
II(X aj ) (4

(j) 1,
(P00 ) (), T T,

where 0g£jsk;-1, 1=1,---,s+‘1_and %Ki=q+(p—q+l)=p+l. As t}:yhe

last terms equal zero, the condition (2.1) holds. By the uniqueness
of the interpolation polynomiel, the polynomial P(X) coincides
with P(X). Oon the other hand,

p-q+l
c(F(X))— V(t)v("(t)lx_ XV‘X))—(p/q) (t),

k-



which implies the result of the case (a).

(b) Put s "
b TL(X-aj)™!
Bexye VEIZVX) 1 Pa i
, Tov(t) (1-X)  1-X v(t) 1-X

Then, from the similar consideration to that of (a), it follows
that P(X) is a polynomial of degree g-1 with respect to X and
coincides with the Hermite interpolation polynomial of 1/(1-X)

at the nodes ay,*-*,as. On the other hand, by Theorem 1.2 (a),

1 oty V(L) -VI(X)y_ n
—c (‘fr-i‘““ =(p/q)f (L),

which proves the result of the case (b).

Exahple 2.1 The functions al=Jt2+s2 and az;—JEY:;T are the
zeros of a g-polynomial V(X)=X2—t2—52, t,seR. Let P{(X) be the
interpolation polynomial of first degree of 1/(1-X) at the nodes
a), ap; and Py(X) the Hermite interpolation polynomial of third

degree of 1/(1-X) at the nodes a;,a2y,0,0. Then

‘ A 3.2, . 2 2 22
1-t"-s ‘ 1-t°-s
and ’
. C|+l ’
c(Pi(X) )= —— = (1/2)4(t,s), t,seR,
1-t"-s )
ca+cz+(1—t2—sz)(c|+c0) ‘
c(Py(x) )= = e T = (3/2)¢(t,s), t,seR,
. 1-t"-s ;
where

0 ) j k (s 9] . j Kk .
£(t,s)=> (S catls’)==c;, cj==catls’, cu.t.s eR.
i=0 ° jk=i i=0 jHk=i , .

Now let us consider the particular case in Theorem 2.1 such
that m=0, bp=1, aj=a(i)-t, i=1,-+*,s, where a(i):(ax‘l’!...,aélf).

t=(ty, e, ty), a;n,tieR and *- % denotes the scalar product in rY.

Then, since the polynomial,
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s §
V(X)=Z[%(X—ai)h=ZF¥(X-a(1)-t)h, Ki+e+e+ks=q,
1= 1= R
is a homogeneous polynomial of degree ¢ in ty,---,ty.X, that is,
a g-polynomial of degree q with shift 0, we have the following

corollary.

Corollary 2.1 (a) The case of p>g-1. Let P(X) be the Hermite
interpolation polynomial of degree p of the generating function

1/(1-X) at the p+1 nodes, afl)<t, -+« ,a(q)*t,0,-,0. Then

c(P(X))=(p/a)f(t), t=(ty, -, ty).
(b) The case of p<£q-1. Let P(X) be the Hermite interpolation

polynomial of degree q—l of 1/(1-X) at the q nodes a(l)-t, *++ ,a(q)-t

Then
PPy )=(p/adft), b=ty eee Lty .
In both cases, the denominator of the approximant is a polynomial

of degree q, I#(l-a(i%t), where {a(i)) are not always distinct.
i=

In this corollary, the cases of p=q-N and p=gq-1 correspond to

[5] and [1] respectively (See §3 in detail).

Remark 2.1 In one variable case in [2], the polynomial v(x)=
I?(x—ai) always.becomes a generating polynomial of a Padé-type
approximant for any given finite points (ai}. But in our éase,
this fact does not hold. In order to be applied Theoremvz.l to
the given functions {ai), it is necesséry that the polynomial
V(X)=an;(X—ai) is a g-polynomial. Let us give a simple counter
example. The polynomial in X, V(X)=(X—t2)(X—s2), t,seR, is not

a g-polynomial. Let P(X) be the Hermite interpolation polynomial

of first degree of 1/(1-X) at the nodes t2,52. Then
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X+1-t%-s? )= e+ (1-t?-s?)cy

,» t,seR.
(1-t%) (1-s?)

c(P(x))=c(
(1-t?) (1-s%)
On the other hand, as the denominator (1—t2)(1—52) is the reverse

2

polynomial of the g-polynomial Xt-uﬂ+sz)xz+tas and the numerator

!
has second degree, we have, by the definition,

22,20 ol b 2 2.2 22
(2/4)¢(t,s)= 21 . o(iztizs'+t's f - (eTes )X vt s Y
(1-t") (1-s87)

C2+C]+(1“t2“52)C0 .

1 2 2 2
= c(1+x+x%-(tl+s?) )=
(1-t2) (1-s1) ( ) (1-t?) (1-s?)

They are not colncideht.

Remark 2.2 Let P(X) be the polynomial such that c(P(X))=(p/q):(t),
t=(ty,*++,ty) for any formal power series f(t), provided that the
denominator 1is fixed. We note that the polynomial P(X) is uniquely

determined for p=g-1, but for p<g-1, such polynomial is not unique.

In fact, putting P,(X)=¥%%%%¥é§%, then CWW'H(PI(X))=(p/q)?(t) by

Xy -ven
Theorem 1.2(a). On the other hand, putting Pj(X)= VO (=X

. el
then c”“'”(Pz(x1)=c(V($gt¥(l_X§x’ =(p/q)j(t) by the definition.

Here, P;(X) and P;(X) are different polynomials of degree g-1 in X.
We derived Theorem 2.1(b) by using the polynomial P;(X). By taking
P,(X), we can also get the different result from Theorem 2.1(b):
"In the case of p<q-1, let P(X) be the Hermite interpolation
polynomial of degree ¢g-1 of x971/(1-X) at the nodes ap, e aq.

Then ¢V (p(x))=(p/a)f(t). ™

By operating ¢ or CWW”) on the determinantal expression of
the Hermite interpolation polynomial P(X) in Theorem 2.1, we can

obtain the determinantal expression of Padé—type approximants
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by the zeros of the generating polynomial.

Theorem 2.2 Let a;,:++,aq be the distinct zeros of a

g-polynomial V(X) of degree ¢ with shift m, i.e V(X)=bnf%(X—ai),
i=

b,#0. Then
| n —W(t)—" p— s e | q_l
(p/Q)¢ () =grgy= ?}zci Cp-qtl Cp-gu2°°* Cy Loay--a
.l. q-l * . . »
- 1 a ooy . . .
Fap . W0t g !
: . . . q q
R S g

s .
where v(t)=V(1)=me¥(l-ai)h, t=(t;,---,ty) and %ﬂ(ﬁ=0 for p-g<o0.
i= i=0

Proof. Let g(X) be the generating function 1/(1-X).
. {a) For p<gq, the interpolation polynomial in Theorem 2.1(b) is

‘expressed by the determinant as follows,

P(X)'—" -0 1 X s e Xq-l 1 \ al .. a,q-‘
-g(ay)l ap - a,T' T .
R ; Loag e agt
~glag) 1 ag -+ o

g A
Operating c“W“’ on P(X), the result immediately follows.

{b) For p=q, P(X) in Theorem 2.1(a) is written by

OO‘."

0 1 XX xPULx L 6 -0
-1 1 O Qs QO @ +e+00 O 110 -« O .:,O
. -l! 01‘00-0 0 e 002!.. 0 se e
p(X)= —2! 0 0 2.‘ 0 "'0 : : ';. : :
: » . - . : : O 0 0--.(p-~q)' .,O
~(p-q)} 0 0 0 -+ (p-q)} *-0 TR TLARERY 14
-gla)l a; = alP'Q...aIP .ol : :
Lo - X S ¥ B
: : : : . 1 aq aq aq
—g(aq)l aq LRIRY aqpqo.-aqp .

Taking account of 1-g(aj)=-ajg(aj;), we get
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Px)=| Elx; x xP02LL w 1 v oVt
~gl(:‘911) 1 Q| alq-’ : . :
: -: S ; 1 (;q e aq(l‘l
~glag) 1 ag e eV

Operating c on P(X), we obtain the result.

| §3. Relation to [11 and [51.

As an interpolating polyhomial in many variables, Sablonniére[S]
and Ariokal[l] take up the Hakoplian iﬁterpolation polynomial‘and
the Kergin one respectively. We are going to study the relation

between these polynomials and the polynomial P(X) in §2.

(A) The relation to [1]. Let f(t) be a formal power series,
(3.1) f(t)=%§aiti. t=(ty,+--,ty) eRY, i=(1;,-++,1y) eN',
= nDlil=n .

: a R
where lil=i;+--++iy. He defines the functional C by c(xl)=ci/(i),

) — 1
x=(X;,***,Xy), n=11l and shows that f(t)zc(T:ETE)’ where x-t=
Xyty++ e+ +xyty, that is, the generating function in [1l] is 1/(1-x-t).

Then it holds that

C(X")zcﬂ-:'%-éiti:—é((X't)n) , X=X, e, Xy) t=(t1,’°" Jty),
1{=n

which implies that to obtain the expression in [1], it is sufficient

— 1 — -1
to change ¢ into ¢ after putting X=x-t. For example, c(l—x)zc(l—x-t)'
Now, applying Corollary 2.1 for p=g-1 and g distinct points

al(l),«+,a(q) of RN, and putting X=x-t, we have

(q-1/q@)5(t)=c(P(X))=E(P(x-t) ), X=(xp,++,xy), t=(ty, =+, ty),
where . _
_ Vv(t)-V(X) — . = —: = .
P(X)= m. V(X)-—-jﬁ%(x a,). v(t) :{3{:(1 al), aj a(i)/t.
Here, P(x-t) is a polynomial of degree gq-1 in x because P(X) 1is

one of dégree g-1 in X.bMoreover the condition of the interpolation,

“‘]O’-
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P(ai)= 1-a:’ i:l.---'q’
1

means the condition with respect to x,

P(a(i)'t): l—_';%—i—)—‘—i—, i::l’-o-’q'

that is, the polynomial P(x-t) is the interpolating polynomial of
degree g-1 in x of 1/(1-x+t) at the nodes a(l),---,a(d) of RV
and it is nothing else but the Kergin interpolation polynomial

K(x) of 1/(1-x-t). In fact, from the expression of K(x) (in the

proof of Theorem 4.3 in [1]), we have

Igl(x-t—a(i)-t)
i=| )= v(t)-V(X)

1
K(x)= (1— . = l =P(x*t).
1-x-t VIE) (1-X) | yeye
TI(1-a(i)-t) X=x-t

(B) The relation to [5]. For a formal power series (3.1),

n+N 1 -
Sablonniére[5] defines the functional T by Cj= ( (i)c(x).
Ii1l1=n, x=(X{,°**,Xy) and shows that f(t)=5( N)’ that is,
(1-x-t)

the function 1/(1-—x-t)N is the generating function in [5). Thus

there is the following relation between our operation c and ¢c.

c(X")=cy= %‘:ﬂcxt_ e[ (") xe 02"
Nl

' X" n+N-1
Taking account of the fact that Nl((N o7 X )=("yo; )X". we nave

N1 (N-1)
n
(3.2) c(X"y= T
)= (((N 17! )|x,.)
where (‘..)mq) denotes the (N-1)th derivative with respect to X.

By (3.2) we can obtain the expression in [5]. For examples,

o1 (N-1)
C(Xn)=§6( ( IN-1) Y n)|x=x~t)

_ XN‘] 1 (N1 — 1 o= 1
=C(((N—l)! —X)l)(xt) C((l—X)N X=X‘l).‘- C((l“X't)N)’

Ms

(3.3)  cyx)=

1]
[—2

-1 -
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Moreover, (3.2) holds also for n such that 1-N<n<O0 since the

both sides equal zero. Thus we have

Nl
o[ (merr

C(P(X))

P(X) N1 - P( (N-1)
)= S )

(3.4) LI AT
XN‘! 'xzx.t (N—l) ! |X=x~l

where P(X) is a polynomial in X.
Now let us apply Corollary 2.1 for g=r+1, p=r-N+1 and a(i+l)=

X(i) (i=0,1,+++,r). Then,

(r-N+t/ren) () =c M (P )= (B b=y, e Ly,
X
P(X) (N-1)
= ( (N7 1)')hx:) (by (3.4)),
where _
_ V() -V(X) L  TT(1-%(1)-
PX)= Griyrioxye VOO=TIX-x()-t), vit)=TI(1-x(1)-t).

P(X) (WD
Put p(x,t)= (N—l)'” . Then it is a polynomial of degree r-N+1
X=x-t

Iin x because P(X) is one of degree r in X. We are going to show
that this polynomial p(x,t) 1is nothing else but the Hakopilan

interpolation polynomial in [5]. From the expression

r
TT(X-x(1)-t)
iz

; 1 — 1 L]
we have II X-x(1)-t)
1 D 1 R )mq’
(3.5) p(x,t)= (N- 1)'(——)Z)|X=X°t (N-1)tv(t) 1-X |X=x-l
_ : 1 ml)
, =9t v Y ()
where r
. I%(x—x(i)-t)
1=
g(x,t)= ———— and U(X)= -
(1-x-t)N X

We prepare some notations. Let i=(ig,ij,**°,1iy;) be a subset of
{0,1,-++,r} and X;={x(1g),x(1}),+*++,x(iy|)} a subset of points

(xun.x(l)u--.x(r)} in R'. For a function h(x), h{X;} is defined by

(3.6) h{Xi)=(N—1)!gbw|h(Aux(ig)+.-.¥Aw|x(1m[))da.
Q
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N-1 - L
where Q ={(A1.---.AWI)ERN’; Apte e+ Ay =1, A420), Ag=1->A; and
L : - izl ,
dA=dA;+--dAy,. Now let us prove that p(x,t) satisfies the condi-

tion of the Hakopian interpolation, i.e.

(3.7)  p({X;i).t)=g({x).t) fér'every multi-index 1=(ig,iy,***,1y).

1

From the expression (3.5) and the definition (3.6), we obtain that

p{{xi}.t)=g({x;}.t)- W}fﬂ'gn-n UMD ({Xgx (1g)++ + + + Ay x 1y )+ £)dA

=g {X;}.t)- VTlETSQN-l UMD (A (x(1g) e t) e e v +2yy {x(1p)-t))an,

by the Hermite-Gennochi formula,

. e _ ,
=g({Xi}.t)- S ulxp-t, oo xQyg-t],

where U[X(ig)'t, v ,X(iWI)-t] denotes the divided difference
of U at x(ig)-t, «++ ,x(iy4)*t. In the last expression, the second
term in the right hand side is vanished by the fact U(x(i)-t)=0

(i=0,1,+++,r), which implies the result.
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