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Abstract

Fully developed turbulent channel flow is numerically studied
by using large eddy simulation ( LES ) incorporated with the
Fourier- finite difference method. A prominent feature of this paper
lies in the use of the conservative form of Arakawa type for ‘the
convective terms 1in the Navier-Stokes equations, instead of the
rotational form. The results obtained are compared with earlier ones
by Moin and Kim ) based on the latter form. Noticeable
differences are found in quantities such as turbulence intensities,
two point correlations, etc. The difference is most prominent in the
balance of the grid scale portion of the turbulent shear stress. The
present results agree qualitatively well with the recent direct
simulation of a mildly curved channel flow by Moser and Moin (2)
using the Fourier— Chebyshev polynomials expansions. An estimate is
made of the error inherent in the rotational form combined with the
second-order central finite difference method.

1. Introduction

In the design of numerical schemes, it is well known that the
integral constraints on quadratic quantities, such as the
conservation of mean energy etc., are quite important to make the

computation stable in long-term numerical integrations (3) .
Therefore, the conservative form of Arakawa type (4] or the
rotational form (5} 1s widely used for the convective terms in the
Navier-Stokes equations. In the present paper, we refer to the
conservative form of Arakawa type in primitive variables as the
Arakawa fornm. The rotational form is useful because it preserves
mean vorticity, helicity, enstrophy etc. in addition to mean
momentum and energy 1in the absence of external forces and viscous
dissipation. The Arakawa form , however, generally preserves only
mean momentum and energy. As a matter of fact, the rotational form
has been successfully used when combined with Chebyshev polynomials
expansion as in (2) .

In the present study, a fully developed turbulent channel flow
is numerically studied by wusing LES with the Fourier— finite
difference method. The numerical scheme employed here is basically
the same as in (1) and essentially a spectral version of the
previous computation (8) in which all partial differential
operators were approximated by the finite difference method. The §i
essential point is in the choice of the approximation method for the}
convective terms in the Navier-Stokes equations and the residual
stress model (7n , (m . In (1), the convective terms wer
approximated by using the rotational form. On the other hand, in lhe
present study they are approximated by the Arakawa form and the.
residual stress model is not employed, unlike (1) . Comparison with.
(1 and the Fourier - Chebyshev computation in (2) are made and
noteworthy differences are found, especially in the balance of GS}
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portion of turbulent shear stress. It is shown that large truncation
errors can occur 1in the vicinity of the walls when the rotational
form is wused and the normal derivatives are approximated with the
second-order central finite difference method. For details, see
(8] )

Gov i uations
We consider an incompressible channel flow whose time evolution

is governed by the Navier-Stokes and continuity equations for the
velocity components u; ( i=1,2,3 ) and the pressure p

oui 9 (yu) = -9p 1 g2, :

3T + axj(u,u,) EEY + Re Veu; + 2 8i1 , (1)
au,- _ )

o= 0 ‘ (2)

Here 1,j=1,2,3 correspond to x,y,z, respectively, where x is in the
downstream direction, v is in the spanwvise direction parallel to the
walls, =z 1is 1in the direction normal to the walls, and &8;; 1s the
Kronecker delta symbol. Occasionally, u; (i=1,2,3) are denoted by
u,v,w, respectively. The flow 1is driven by the mean pressure
gradient. All variables have been made dimensionless by means of the
channel width H and the friction velocity u [=(t/po)"/? ; the
quantity 7t is the wall stress and pp the density which 1is assumed
constant ] . Re is the Reynolds number defined by u*H/v ( v is the
kinematic Viscosity) and Rc represents the Reynolds number defined
in terms of the center-plane velocity Uc and H. Moreover, the
horizontal average of a quantity is denoted by the angular brackets
<> , the deviation from the horizontal average by (-) ,- and the
length in wall units by (:).. The summation convention is used for
repeated subscripts. , S
If f is a function containing all the scales, we define the GS
component of f by the convolution of f with a filter function
Gi(x;.xy ) . (9) ¢ ,
3 .
f(xy,x2.03) = fD H] Gi(xirxi ) f(xi ,x2 ,x23°) dxy dx2’dxs” . (3)
1= .

In the present study, the Gaussian filter is used as G;(i=1,2) in
homogeneous directions and the top-hat filter is used as G3 in the z
direction. These filters are selected in the same manner as in [1)
Along with this filtering procedure, the velocity field u; and the
pressure p are decomposed into GS and SGS components as

u; = Ei'+ uf y P = 5 + p’ . (4)

Applying the filtering to equations (1) and (2), we get the
following filtered momentum and continuity equations:

Ju; 9 T - _9 1 g .

31 + 31 uju; = 3z, + Re Veu; + 2 6;4 R (5)
Au;

_5%,- =0 . )

Nonlinear terms in eq.(5) .are expressed as follows.

r—

uiju;=  uju; +  up u; o+ u; u; o+ u; uj . (T

In this study, the correlations between GS and SGS variables,
namely, the second and third terms of (7) are neglected, and ihe
terms with double bars in the * and vy directions are explicitly
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calculated. The Leonard term -arising in the z direction (8] is
represented by the truncation error of the second-order central
. finite difference scheme, because the truncation error is of the
same form and order as the Leonard term (1) —_—
To proceed further, the SGS Reynolds stress u; uj must be
modeled in terms of the filtered variables. The method of evaluation
used here 1ntroduces the SGS eddy coefficient

u; uj’ —313- bi; wy T -ve(gz‘ + g%’-) s (8).

vhere v, 'is the SGS eddy coefficient. In the present study, the
Smagorinsky model (10) is used for v,

_ Qu oy
B ail',’,' '+ axi ! (9)

In these expressions, A 1is the representative grid interval
A=(AxAyAz)'3, Ax,Ay,Az denote the computational mesh size in the
r,y,z directions, respectively and c is a dimensionless constant.
This model may be derived by the use of a statistical approach
(11} , and c¢ is chosen equal to 0.1 by computer optimization as in
(12) . In order to make (9) compatible with the noslip boundary
condition, A 1is multiplied by the damping function of Van Driest
type 1-exp(-z./A.) with A,=25 (13) . The Smagorinsky model also can
be extended to the modeling of one-equation type( see (7)) , (14] ,
(18] ).

In (7) and (1) , the eddy viscosity representation (8) is
split into two parts, i.e. homogeneous and inhomogeneous parts as

=(eh)? [ F e e 12 L ey

u,-'u,-' —-:1; 51',' ul'uz’ = —ve(eij—<e,-,~>) —v;f <ei,->, (10)
which is usually named the residual streéess model. In the expression
above, v, is given by the Smagorinsky model (9) with ey simply
replaced by e;j—<e;;> . In the inhomogeneous part, v} is given as
follows ‘

v = c*(DAY)? [ § <ey> <ei> 12, | BNEED

vhere c¢* was chosen equal to 0.065 and D is another type of damping
function (1) . . _

In the present study, the residual stress model is not used
owing to the following reason; The inhomogeneous part v} is what is
called the eddy viscosity of mixing length type, which is based on
the assumption that the energy production balances with the
dissipation in the mean scale. This assumption does not always hold
in ducts and external flows, and there seems to be no systematic way
of modeling v in such flows, at present. The use of (10) may impede
the wide application of LES. Therefore, we prefer 'to avoid the use
of models of residual stress type. The necessity of the use of
residual stress model in (1) will be discussed in detail in SECTION
5.

For later <convenience, vwe _8lve the energy budget for the GS
portion of turbulent energy < u; u; > /2 ( 1=1,2,3 and no
summation rule is applied to 1 ):

a<u; " B> 1 == 3<u> d _— — -+ 2 )

—_at = > 6,1<u w>*——5z—- —$<w U > (12).

_ 1 0w ouTl - 3p du;”~ *
2<(ve+ Re) >— 2< u;’ >+ <(ve R =) 33 >

ox; ax; ox; a9z
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Similarly, the governing -equation for the GS portion of turbulent
shear stress is expressed as

a<u’ _w> _ 2 9<u> 8 _=rr 2 1..8u’ 8w
ot- <w"> az oz <u w>- 2 <{we+ Re’ 3x; Jdz;
. _ =+8p,=8p., & 1,00 w
> < u 8z+w8x>+ az<xv¢+ Re) 32 > (13)
< O (lsui—wau;) -0 (wyu—wyw;) >
9x;j ] ] ox; TR

Each term on the right-hand side of (12) and (13) is called the GS
production, convection, dissipation, velocity pressure gradient,
diffusion and cascade, respectively.

eri thod

3 1 ca . o

Eq. (5) can be recast into the form that
du; a_ = - ap _0<v.> du; du;
3t T 3z, (MY 33 "Tax, Bz, om (14)
I oo Bui ujy . 5 os 1y g2 5

axJ [ ve (ax]_’-axl)] 2 611 - (<ve>+Re) v ut?

where the horizontally averaged part of the turbulent viscous terms
and its deviation are treated separately. In numerically
discretizing eq. (14) in space, the velocity and pressure are

represented in the form of the Discrete-Fourier expansion in the
downstream and spanwise directions as

B - NX/2-1 mgfl _ ) . )
Up.qk = Uiak exp(2r /-1 (55 + F9)) (15)
=-NX/2 w=-NY/2 : :
where A/—1 is the 1imaginary wunit, p,q.k are indices of grid
positions in the x,y and z directions, respectively, and NX,NY are
the numbers of grid points in the x, y directions , respectively.
The vertical length is divided into NZ intervals. For the efficiency
of computation, the z coordinate is stretched in the hyper tangent
profile as ‘

2 = L(tanh(cog)/a + 1) (k=1,NZ), | (16)

where 2z 1is the coordinate of the k-th grid point in the =z
direction, co=log((1+a)/(1-a))/2, ¢&=—1+2(k-1) A¢ and A¢=1/(NZ-1).
The stretching parameter a is selected equal to 0.98346 as in (1)

In discretizing (14) in time, the terms on the right-hand side are
approximated by the implicit scheme of Crank-Nicolson type to avoid
the use of prohibitively small time intervals, whereas the explicit
scheme of Adams— Bashforth type is used for the remaining terms. As
stated in SECTION 1, the essential point in the numerical scheme 1in
the present study exists in the choice of an approximation form for
the convective terms in the Navier-Stokes egqs. To use the Arakawva
form, a regular mesh system is adopted, and all velocity components
and pressure are defined at grid points zx, as given by (18), and
both the momentum and continuity equations are enforced at z.. This
grid system eventually 1leads to the timewise and meshvise
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oscillatory solution of p . This fact led (1] to adopt a staggered
grid system. There, the mesh system is staggered only in the 3>
direction. Namely the velocity is defined at z. and the pressure ig
defined at (zx+zkv1)/2. The momentum equations are enforced at z,
whereas the continuity equations are enforced at (zk+zks1)/2. In the

present study, the Adams-Bashforth method is applied to the pressure

gradient terms to avoid oscillations 1in p. Thus, we get linear

coupled equations for u;"' and p" as

o 1 27 nel u;™! ap"
>n LI . — i ap
( <pot + Re ) V4u; 2 AT 3 EFY (1
_ noy Ly goge - p W ap™! .
= ( <po" + Ro ) Veu; 2 AT a1, + d;
aﬂim—I B
ax. =0 , (18)
where superscript n denotes the time step and d; consists of the
remaining terms. To avoid the iteration procedure, <yp.> is
evaluated at the nth time step. Consequently, eqs. (17) and (18) are
solved as a system of coupled equations as in (1) , (5) . Partial

differential operators in the z direction are approximated with the
second-order central finite difference as

du _ Up.gksel—Up.qk-!

(19)

9z hicer +hi
3%y Up g, k-1 Up q.k Up g, k+]
_— o~ o - L + ..
z° ( (his1+hi) hic hivr hi (hk+r+hk)hk+1)
where hr=zx—zk-1 . Partial differential operators in the x and y

directions are approximated by a pseudospectral method.

A system of linear coupled difference equations for every pair
of wavenumbers (k, ,ky, ) 1is obtained by inserting the expansion (15)
to eqs. (17) and (18); namely

Lk Q-1 + Mk ak + Uk Qrst = 8k (k=2,NZ-1), (20)

where Ly, M and Ux are 4 x 4 matrices , qi=(Uk,Uk>W,-pk)t! and the
right-hand side of (17) is denoted by gk . (20) can be easily solved
by the conventional method for solving block tri-diagonal equations
with only O((NZ-2)) arithmetic operations.

stj i inv ed i wa
rotati

In this study, two types of approximation method are applied to

the convective terms in the Navier-Stokes equations. One is the ;

Arakawa form, and another is the rotational form. In () , the
Arakawa form

1y & 73 = Bu; —.5_1}

5 { 6rj(uuh). + u’éxj + u‘&xj (21)
was employed following (12) ( 6/6x; denotes the second-order

central finite difference in the j direction ). It was found that
the Arakawa form works quite well. Moreover we extended the method

of (12} to impose the noslip boundary condition on the walls. Tn |
the .present study, the second-order Arakawa scheme is modified to |
its spectral version. That is, partial differential operators in the |
v and y directions are replaced by those in a pseudospectral method. ]

On the other hand, the rotational form of the convective terms can
be written as
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ou;_Ou; 1 8 (375
Uil e v B an (wud | (22)

Here, no summation rule is applied to i and we note that the GS
total energy uj;u;/2 is not added to the pressure. Both the Arakawva
and rotational forms preserve mean momentum and energy in the
discretized sense. ‘

The major error in the Arakawa form stems from the x component
of (2%1) as

1 - 8u . 1 70w, 1 8 7=

5 W 32 + 5 U 32 + 5 33 (u w). , (23)
On the other hand, the major error in the rotatlonal form comes from
the term in the z component of (22) as

7 9u 1l 49
- u P + 5 33 . (24)

1 8

Egs. (23), (24) are approximated by using the central finite
difference as

1= Upe)=Uk-| " 1= Wies 1~ W | 4 1 umnz—ﬁkﬁ

Zuk his1+hi Zuk hist+hi 2 hiei+hi (25)
= Ukr )= Ug—] 1 ﬂk+12—ﬂk-12
Uk hie1+hi + 2 hi+he (26)
respectively. By wusing the Taylor expansion around zr, we get the
error estimate for (24) as '
_ duy2
( hka—hg ) (az)' | (27)
Here, the horizontal average of (27) can be written as follows:
Chihi ) (2582)2 4 ( pprohy ) <(22)2, | (28)

Because <u> stands linearly in wall units near the walls in
turbulent channel flow, the first term in (28) becomes (hh1}w)Re
In addition, (hx.—hi) is estimated as

( hra—he )~ (A&)% x(¢) (29)
where ‘
9%z 2 _tanh(cof)
§)= = -
x(£) a¢ co a coshz(cof)
Hence, the estimate of the first term in (28) is glven -as
~(AE)? x(1) Re? . This amounts to the order of 10% to 10% in the

current computation. Thus, the term (28) introduces a critical
source of error into the right hand side of (20) in the vicinity of
the wall, which leads to the spurious solutions of p and w near the
walls, as will be discussed in SECTION 5. Similarly, the
corresponding truncation error for (23) is estimated as

- - _ 2" _ 2_
( hihe ) < 949U +u%§ +wg—§ >. | (30)

The limiting slope for the normal velocity in the wvicinity of the
wvall, 1s zero. Therefore, in the current computation, with the
noslip boundary condition on the wall, the error (30) 1is estimated
to be smaller than (28) by the order of 10° to 10*. Thus, no serious
error is introduced by using the Arakawa form (21).
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3 d e

The region to be treated has a streamwise length ( L, ) of 3.2
H and a spanwise one ( L, ) of 1.6 H. The size of computational
domain in the x and y directions must minimize the effect of imposed
periodic boundary conditions. The two-point correlation measurements
in (16} are used as a criterion. Re is set at 1280 ( Rc = 27800).

The initial condition was generated from the interpolation of
the data obtained in the previous computation (15)] with the number
of grid points as 32x32x32. For the details of this computation, see
(15) . Computations were done until a statistically steady state was
reached, and then further continued to obtain reliable statistical
quantities. In all cases shown here, the time interval At is set at
0.0005. ‘ ' '

The Arakawa form is employed in Case 1. The integration time of
Case 1 is 9.85 in non-dimensional time units. The rotational form is
used in Case 2. There, the computation 1is restarted from the
intermediate stage of Case 1 ( at t=9.6 ), and the convective terms
are switched from the Arakawa form to the rotational form and
extended until t= 11.1. Horizontal averaged values are averaged
further over the last 3.0 and 1.5 time wunits in Case 1 and 2,
respectively. In SECTIONS 4 and 5, <-> indicates horizontal as well
as time averaged values. _

Computation was done with the HITAC S-810 model 20 system of
the Computer Center of the University of Tokyo.

Using flow visualization +techniques, several features of the
boundary layer flow in the near wall region have been revealed by
Kline et "al. (17) . The flow was visualized by the time lines of
hydrogen bubbles released from a wire. It was found that even when
the wire. was placed very near the wall, the bubbles did not follow
straight trajectories, but rather accumulated into an alternating
array of high- and low—- speed regions called ' streaks °. The mean
spacing of streaks is known to be approximately 100 in wall units.
This value can be used as one of indicators of the reliableness of
simulated results.

t i si 0

In this section, we show the results from Case 1. For
comparison with previous numerical simulations, we refer to (1) and
(2] . In (1) , Fourier series were used with NX=64, NY=128 and
finite difference was used in the z-direction with NZ=63. 1In the
present study, NX=NY=64 Fourier series with finite difference in the
z direction with NZ=62 are used. Note that the number of grid points
employed in the spanwise direction in the present study is half that
in (1) . In (2) , NX=NY=128 Fourier series were used with 65
Chebyshev polynomials expansion in the z-direction.

Figure 1 shows the mean streamwise velocity profile obtained in
Case 1. This profile approximately fits the curve <u > = z, 1in the
vicinity of the wall, and in the logarithmic region approximately
fits the curve B
< u > = 5%2 logz, + 6.2. (31)
The Karman constant 0.4 ohtained is in good agreement with the value
determined experimentally in (18) , (19) , but the constant 6.2 is
larger than the generally accepted value of 5.0 in (19) , (20) and
that in (1) , and close to the value of 5.9 in (21) . The value of
6.2. however, 1is considerably improved from 7.0 in the computation
with 32x32x32 grid points (15) . We note that this constant seems to
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be controllable by optimizing a constant c¢* in (11) in case of

adopting the residual stress model (1) . In the present study, ve
have abondoned the use of the residual stress model as mentioned in
SECTION 2.

_Figure 2 plots the profiles of the GS mean Reynolds stress
<u w> and the total stress '

<u’l ow>- < oy, (_Q}i +%)> ___LM

oz Re 04z ‘
The total stress balances the downstream mean pressure gradient,
which is plotted by a dashed 1line in the figure. So, our

computations are considered to be statistically in equilibrium.
Figure 3 shows the profiles of the correlation function between

the GS streamw1se’and normal components of fluctuations,

<u T w> / <ulT B2 <u>lE

These profiles agree fairly well with the data in (22) and we find

that streamwise and normal fluctuations are highly correlated.
Figure 4 (a) displays GS turbulence intensities in the x,vy,z

directions from Case 1 and Fig. 4 (b) shows the intensities in the

vicinity of the lower wall vs. wall units. For comparison, the

computational data in (1) or the experimental measurement in (23)

are plotted in the figure. From these figures, we see that the
amplitude of <u 172 g larger than in (1) and (23) , and <w®!7?
is slightly larger than in (1) and (23] . We find an appreciable

difference in <v®>!2 between the present result and that of (1)
the position of the peak in our case is closer to the wall than that
in (1) , and shows better agreement with (23) . The overall
agreement with (23) 1is good.

Figure 5 ©plots the streamwise two point. correlation function
Rii(ry:z) at two locations ( z= 0.0128 and 0.0626 ). Rii(r1;2) is
defined by

Rii(riiz)=<u;” "(z+ri,y,2) wi (x,y,2)>/<uw;” %(z,y,2)> . (32)

The profiles of Ry(r1;z) at z= 0.055 from {18) and Ryj(r;;z) at z=
0.0125 and 0.0605 from [{1) are included. We should note that these
profiles are obtained at slightly different vertical locations. As
found in (1) , for small values of r;, the measured correlations in
(18] are smaller than the computed results. For larger values of
ri. it was pointed out in (1] that computed results are smaller
than experimental measurements in {[18] . The present correlation
persists over a longer distance in the downstream direction than in
(1) and shows good agreement with the experimental observation that
mean streamwise length of streak extends beyond 1000 in wall  units
(24) '

The spanwise two point correlation functions R;;(rz;z) defined
by :

Rii(roiz)=<u; " (x,¥.2) W ~(x,y+re,z)>/<ui” 2(x,y,2)>, (83)

at the same locations as in Fig.5 are plotted in Fig. 6. By using
the position of the negative peak closest to the wall in Ry (rz;z),
ve can estimate the mean spacing of neighbouring streaks as 250,
wvhich 1is considearbly 1larger than the generally accepted value of
100 in (17) . A similar defect is also reported in (1) . The reason
for this discrepancy may be, as pointed out in (1) , that the grid
resolution is not sufficient for the Reynolds number considered.
Nevertheless, our mean spacing of streaks is found to be very close
to that in (1) , in spite of the fact that the number of grid points
employed in the spanwise direction is half that in (1] .

Figures 7 (a),(b) and (¢) display the budget of the GS portion
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of three components of turbulent intensities from Case 1. In the

downstream component, the production and dissipation terms are
dominant in the central region, but the diffusion term 1is dominant
near the wall. The diffusion term changes sign from positive tg
negative as we depart from the wall [(15)] .  The balances in both the
streamwise and spanwise components are qualitatively the same as in
(1) , but the peak values of the production and dissipation terms in

the streamwise component are larger than in (1) . On the contrary,
the GS energy balance in the z direction is qualitatively different
from that of (1) . For comparison, the energy balance of the GS

normal component from (1) is reproduced in Fig. 7 (d), where only
convection, velocity pressure gradient and dissipation terms are
plotted. Both in (1] and the present study., the velocity pressure
gradient term compensates for the loss in the dissipation term in
the central region of the channel. On the other hand, 1in the
vicinity of the wall, the velocity pressure gradient term has a
large gain, peaked at z. ~ 10 in (1) . The convection term makes up
for this peak. By contrast, this peak is absent in the present
study. Figure 7 (e) plots the corresponding energy balance from a
direct simulation of a mildly curved channel flow (2] . Although the
contribution of the convection term in the present study 1is larger
than in (2] , the result in (2) qualitatively agrees well with the
present study. Here, we should refer to the effect of curvature 1in
[2] and the difference in the Reynolds number in (1) and (2) . For
the former, in (2) , computation was performed at a mild curvature,
say H/(4R)~0.01 where R denotes a radius of curvature. Therefore,
the comparison with the present study will be plausible because the
curvature 'will not affect the results crucially until =z, is
sufficiently large, as pointed out in (23 . Moreover, - only the
balance in the vicinity of the concave wall is shown in Figs. 7(e)
and 8(c), but the balance is remarkably similar on both the convex
and concave sides when normalized by local wall units in (2] . For
the Reynolds number dependence, the simulation in (2) 1is done at a
relatively lower Reynolds number of 336 compared with 1280 in (1)
Therefore, the large peak of the velocity pressure gradient term in
the wvicinity of wall in (1) may be attributed to the higher
Reynolds number effect.

A more distinctive difference, however, is identified 1in the
balance of the GS portion of turbulent shear stress as follows.
Figures 8 (a),(b),(c) display the budget of the GS portion of
turbulent shear stress 1in the present study, (1) and (2] ,
respectively ( only production, convection, velocity pressure
gradient terms are reproduced in Figs. 8 (b), (¢) ). In accordance
with the large peak of the convection term near the wall in Fig. T
(d). large peaks can be depicted in both the convection and the
velocity pressure gradient terms in (1) , whereas these peaks are
absent 1in the present study and {(2) . Instead, the production term
has a large peak at z,~25 in the present study and at z.~15 in (2]
In the central region of the channel, the convection term balances

with the production term in (1) , whereas the velocity ' pressure
gradient term balances with the production term in both the present
study and (2) . This discrepancy will be quite crucial for the

modeling of stress equation type. So far no experimental measurement
of the budget of turbulent shear stress is available, but the result
that the production term has a large peak near the wall in Figs. 8
(a) and (¢) is consistent with the experimental observation that the
turbulent energy production is maximum at z,~15. ( see (25) ) _
Figure 9 (a) plots the instantaneous contour lines of u in
the x-y plane located at z,= 6.4 and at t= 9.6. In Fig. 9, positive
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values are contoured by solid lines and negative values by dashed
lines. In this figure, an array of highly elongated regions of

high-speed fluid u can be discerned, which corresponds to the
experimentally observed streaks. However, the mean spacing. of
streaks in Case 1 is approximately 250 in wall units as estimated by
the spanvise correlations. The instantaneous contour lines of p in

the x—y plane located at z,= 6.4 and at t= 9.6 are displayed in Fig.
8 (b). With the Adams-Bashforth method for pressure gradient terms,
the meshwise oscillations are suppressed as shown in the figure, and
the root mean square value of the GS wall pressure fluctuations 1is
about 2.0, which 1is in fair agreement with the experimental
measurement of 2.3 in (26] and the computational result 2.05 in
(1)

Time lines from Case 1 are displayed in Fig. 10, where a wire
is set parallel to the y-axis at =z.,= 12.8. The streaks can be
clearly 1identified in this figure and agreement with experimental
observations in (17] 1is good as in (1]

5 u d Discussio Case

In Case 2, the convective terms are switched from the Arakawa
form to the rotational form. The mean streamwise velocity profile,
the Reynolds stress distribution and turbulence intensities ~of
streamwise component are plotted in Figs. 11, 12 and 13,
respectively. As can be found in the figures, GS Reynolds stress and
turbulence intensities gradually decayed. Thus the mean streamwise
velocity profile returned to the laminar parabolic profile.
Therefore, unless we use a residual stress model with the rotational
form. the turbulence will die out. It is numerically found that
right after the Arakawa form is switched to the rotational form, a
source of error introduced by the large truncation error (28) 1into
the right hand side of eq. .(20) in the vicinity of the wall induces
the spurious solution of p. As a result, the amplitude of the
velocity-pressure gradient term in the normal component of turbulent
energy balance, substantially increases. Thus, <w?>172 appreciably
increases. Because the approximation method for the convective terms
is designed to preserve mean energy, the net transfer of turbulent
energy from the downstream component to the spanwise and normal
components is carried out: <u = %!2 gsubstantially decreases and
<uv>"2 glightly increases.

Figure 14 shows the balance of turbulent shear stress.
Comparison with Fig. 8 (a) reveals that the velocity pressure
gradient term changes its sign from positive to negative and, as a
matter of fact, this change occured right after we had switched the
Arakawa form to the rotational form. This abrupt change is caused by
the large truncation error (28) as in the balance of normal
component of turbulent energy. Consequently, the total summation of
all terms in the right hand side of (13) turned out to be negative

in the lower half of the channel. If we employ the residual stress
model with the rotational form, the convection term will compensate
for the velocity pressure gradient term as in (1) . Otherwise, the

total summation remains negative, which means that the turbulent
shear stress decreases with the lapse of time. In order to reach a
statistical equilibrium, the total summation should asymptotically
approach zero. In keeping the total summation negative, an
equilibrium can be accomplished only by setting all terms in the
right hand side of (13) to zero. This is why the GS shear stress
decayed, as depicted in Fig. 12. The large peak in the production
term observed in Case 1 gradually disappeared, and it is totally

~10-
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absent from Fig. 14. The distributions of velocity pressure gradient
and production terms from Case 2 qualitatively agree with those in
(1) . It will be interesting to note here that at i=11.1 in Case 2,
we switched back to the Arakawa form again, and then the turbulence
began to revive.

6. Conclusions

Turbulent plane channel flow is numerically studied wusing a
large eddy simulation combined with the Fourier— finite difference
method. Namely, the pseudospectral method is used in the downstream
and spanwise directions, while the second-order <central finite
difference method is applied in the normal direction. The numerical
method is basically the same as in (1) , but we have four choices in
the combination of the approximation method for the convective terms
in the Navier-Stokes equations { i.e. the conservative form of
Arakawa type ( refered to as "CS” below ) or the rotational form
(RT) ) and the turbulence modeling { i.e. with the residual stress
model (RS) or without the residual stress model (NORS) ] . In this
paper, the citation 1is limited to the results with a regular grid
system. The results with a staggered grid system combined with the
combination of RT- NORS have been omitted. The latter computation
showed no significant differences from Case 2 of the present study,
in which RT-NORS is found to fail. In (1) , RT-RS is employed, and
in Case 1 of the present study CS-NORS 1is used. These two
computations, however, showed considerable differences. Among them,
the difference in the balance of the grid scale portion of the
turbulent shear stress is considerable. Consequently, appreciable
differences are found in turbulence 1intensities and two point
correlations. The mean spacing of streaks is estimated as 250 in
wall units, which is close to that in (1] , although the number of
grid points 1in the spanwise direction used here is half that in

(1) . Comparison with a direct numerical simulation in [2) is made
and it 1is confirmed that the results in the present study are
qualitatively consistent with (2) . An analytical estimate of the

error 1in the vicinity of the wall inveclved in the rotational form
combined with the Fourier- finite difference method is made and 1its
conformity with the results in the numerical simulation is shown.
Although these errors are absent in case that higher-order schemes
or Chebyshev polynomials expansion 1is used, the truncation error
associated with the second-order central finite difference can lead
to significantly inaccurate results. Finally, vwe mention the last
combination CS-RS: this combination may be useful to improve the
higher constant 6.2 in the mean streamwise velocity profile.

Acknowledgement

The author is grateful to Professor J.H. Ferziger of Stanford,

University and A. Yoshizawa for valuable comments.

7. References

1. P. Moin and J. Kim, J. Fluid Mech. 118 , 341 (1982).

2. R. D. Moser and P. Moin, NASA Technical Memorandum No. 85974,
1084.

3. N.A. Phillips, Quart, J. Roy, Meteorol. Soc. 82 , 123 (1956).

4. A. Arakawa, J. Comp. Phys. 1 , 119 (1966).

5. D. 0. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral

Method : Theory and Applications, (NSF-CBMS Monograph No.26, Soc.
11—



2C1

Indus. Appl. Math., Philadelphia, 1977).

6. K. Horiuti, Theor. Appl. Mech. 31 , 407 (1982).

7. U. Schumann, J. Comp. Phys. 18 , 376 (1975).

8. K. Horiuti, To appear in J. Comp. Phys. (19886).

9. A. Leonard, Adv. Geophys. 18A , 237 (1974).

10. J. Smagorinsky, S. Manabe, and J. L. Holloway, Mon. Weath. Rev.
g3, 727 (1965). :

11. A. Yoshizawa, Phys. Fluids 25 , 1532 (1982). -

12. J. W. Deardorff, J. Fluid Mech. 41 , 453 (1970).

13. E. R. Van Driest, J. Aero. Sci. 23 , 1007 (1956). - __
14. A. Yoshizawa and K. Horiuti, J. Phys. Soc. Jpn. 54 , 2834
(1985) .- ~

15. K. Horiuti, J. Phys. Soc. Jpn. 54 , 2855 (1985).

16. G. Comte-Bellot, Thesis, University of Grenoble (1963).

17. S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. ¥.
Runstadler, J. Fluid Mech, 30 , 741 (1967). ,

18. P.S. Klebanoff, NACA Report No. 1247, 1955. ‘
19. A.K.M.F. Hussain and W.C. Reynolds, J. Fluids Engrg. 97 , 568
(1975) .

20. H. Tennekes and J.L. Lumley, A First Course in Turbulence (The
MIT Press., Cambridge., 1972).p. 149.

21. H. Ecklemann, J. Fluid Mech. 85 , 439 (1974).

22. J. Sabot and G. Comte-Bellot. J. Fluid Mech. 74 , 767 (1976).
23. H. Kreplin and M. Ecklemann, Phys. Fluids 22 , 1233 (1979).

24. R.F. Blackwelder and H. Eckelmann, J. Fluid Mech. 94 , 577
(1979). :

25. H.T. 'Kim, S. J. Kline and W. C. Reynolds, J. Fluid Mech. 50 ,
133 (1971). _

26. W.W. Willmarth, Ann. Rev. Fluid Mech. 7 , 13 (1975).

igure

25.0

20.0 1

15.0 -

<u >
10.0 1 ,©
/0
s 0 - ./A
. e
QI
0.0 T T T T T
1 5 10 50 100 500 1000
Za

Fig. 1: Mean streamwise vélocity profile <u> from Case 1 ; O ,
computation, —— - — - = <u > = Zs ’

<u>= 1/0.4 logz., + 6.2 .

—12-



202

1.00 A i i
0.50 ©© 0000
o ° q
eQ [u] o
0.50 ’,56 ‘: 0.25 - [
& a o
I. g
0.00 —wt¥ 0.00 4
]

b v 4

<}
-0.50 © 2 ' -0.25 1

o a® &

000
. -0.50

-1.00

I T T - T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.5 0.8
2

Fig.

O ., <u

=

<

Fig. 3: Correlation coefficient between the GS streamwise and normal
components of fluctuations from Case 1

u T w>- < oy, (g—;

du
+ax>>

experimental data in (22)

1 a<u>
Re 4z

0.50
0.00 4 T T v - 0.00
0.0 0.2 0.4 0.5 0.8 1.0
4
1.50
1.00 1 °o°,,—\bo
0® .-~ \©
<cwi» e ‘o
g I'Q
B
0.50 b
o
0.00 T
0.8 1.0
¥ 4
Fig. 4 (a): GS turbulence intensities from Case
jo= = = == = =— — | computational data in (1]
experimental data in (23]

«( O )

2: Mean GS Reynolds stress and the total stress from Case |
w> 5 b,

.
b

.

( O




A
i 1.50 yATRY
000 o
- O O O O | O.@aceempgeeeremenaneenen
3.00 o ® © V] et o ®
025172 °o R
] o] J o .
© e © 1.00 y
2.00 1 o el “Bennnnn b < vis\n °
o/ ©/
/ 0.s0 4%
| 1007/ /
0/' i
4/ o
| / '
0.00 @ T T T T )
0.00 .
0.0 25.0 50.0 75, . ' ! "
l 5.0 100.0 0.0 25.0 50.0 75.0 100.0
Z.
i 24
1.50
1.00 1 o ° ¢
. . T
- O e
(VI:)V: 0 e
o .-
o',-"’
0.50 - o
O/"
o,r"
o/
&/
0.00 4 i T T T
0.0 25.0 50.0 75.0 100.0
Z.
Fig. 4 (b): GS turbulence intensities in the vicinity of the lower
vall from Case 1 ( Q ); == =—=————, computational data 1in
(1)
2z 0,0626
1.0
R
R 22 0.5 -
R ss )
0.0 =S ——————T
-0.5 T T .
0.0 0.4 0.8 1.2 1.6
r
2z 0,1007
1.0 T
R 1
R 22 0.5 - \
R 33 )
0.0 S == e
’ -0.5 T T T
‘ 0.0 0.4 0.8 1.2 1.6
‘ r
Fig. 5! Streamwise two point correlation function R;i(ri;z) ;
-_— v Ry from Case 1 of the present study;
B R22 : - - s R33 , eeteccercccmecascmces R
y ==~ — =— —— | computational data 1in

€Xperimental data in {18)

[



2= 0.0626
1.0 % :
. \
R 1
R 22 \
015 T ‘i
R 33 AN
B \\
\~\~
0.0 \::;V,;;ﬁa——~ - ==
-0.5 T T T
0.0 0.2 0.4 0.5 0.8
ra
2= 0,1007
1.0 TS
R 1 "
R 22 o
. 9 \‘
R 33 .
\\ ‘\\
0.0 '\::=,_:§§ -------------
-0.5 T T T
0.0 0.2 0.4 0.8 0.8
ra
Fig. 6: -Spanwise two point correlation function R;;(rz;z)
— : ; . R” ;o m e e e e - R22 ; -
R33 : : o
500

250 4

0 A
-2501
-500 T — T —
0 20 40 60 , 80
z,
Fig. 7 (a): Balance of ensemble averaged GS portion of the

streamwise component of turbulent kinetic energy from Case 1. A&

production ; O , convection ;. X , velocity pressure gradient
¢ , diffusion ; O , dissipation ; X , cascade.

.fS'




205

50

Fig. 7 (b): Balance of GS portion of the spanmvise component of
turbulent kinetic energy. See caption of Fig. 7(a) for details.
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Fig. 10: Top view of streaky structure visualized by passive markers
introduced along a horizontal wire set at z.= 12.8 from Case 1.
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Fig. 11: Mean streamwise velocity profile <u> from Case 2. See
caption of Fig. 1 for details.
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