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Introduction 2 $\gamma[$

A computational model for voluntary movement is proposed (Fig. 1) which accounts for

Marr’s [15] first level for understanding complex information-processing systems: i.e., com-

putational theory.

Consider a thirsty person reaching for a glass of water on a table. The goal of the move-

ment is moving the arm toward the glass to reduce thirst. First, one desirable trajectory in

the task-oriented coordinates must be selected from out of an infinite number of possible

trajectories, which lead to the glass whose spatial coordinates are provided by the visual

system (trajectory determination in Fig. 1). Second, the spatial coordinates of the desired

trajectory must be reinterpreted in terms of a corresponding set of body coordinate, such

as joint angles or muscle lengths (coordinates transformation in Fig. 1). Finally, motor

commands, that is muscle torque, must be generated to coordinate the activity of many

muscles so that the desired trajectory is realized (generation of motor command in Fig. 1).

Several lines of experimental evidence suggest that the the three informations in Fig. 1:

desired trajectory in visual coordinates, the desired trajectory in body coordinates and the

active torque are internally represented in the brain [13].

However, it must be noted that we do not adhere to the hypothesis of the step-by-step

$\inf_{or}\mathfrak{B}ation$ processing shown by the bottom line of Fig. 1. Rather, our $\acute{m}odel$ indicates

that there are other information processings which can realize the desired trajectory. In

the middle line of Fig. 1, the motor command is obtained directly from the desired trajec-

tory represented in the task-oriented coordinates: that is, the two problems (coordinates

transformation and generation of motor command) are simultaneously solved. We [10]

proposed that some parts of sensory association cortex (areas 2, 5 and 7) are the locus of

this computation by an iterative learning algorithm. That is, the motor command is not

determined at pnce, but in a step-wise, trial and error fashion in the course of a set of
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torque are required.

the goal of movement: that is, the three problems (trajectory determination, coordinates

transformation and generation of motor comm\’and) are simultaneously solved.

Further,

$in_{f}the$

uppermost line of Fig
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the

$motor_{1}command$

is calculated directly from
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First, the problem of the determination of the trajectory will be investigated. Second, 1

the problem of the generation of motor command will be examined.

Ill-posed motor control problems

$Aproblemiswell- posedwhenitssolutionexists,$
$isuniqueanddependscontinuous1yo_{O}n_{f}theinitialdata.Ill- posedproblemsfailtosatisfyoneormoreofthesecriteria.Mostk_{1}!.\ovalbox{\tt\small REJECT}$
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motor control problems are ill-posed in the sense that the solution is not unique.

and the problem is ill-posed.

that human hands have excess degrees of freedom.



the same movement trajectory. 29
To resolve ill-posedness of these problems, we need to introduce some performance

index other than the above conditions. We will propose such objective function in the

next section. It is worthwhile to evaluate computational schemes or neural network models

for sensory-motor control on the standard whether they can cope with the ill-posedness

inherent in these problems.

Formation of trajectory: minimum torque-change model

Flash and Hogan [3] provide a mathematical model and experimental data which suggest

that the desirable trajectory is first planned using task-oriented (visual) coordinates. They

proposed that the trajectory followed by the subject arms tended to minimize the following

quadratic measure of performance: the integral of the square of thejerk (rate of change of

acceleration) of the hand position $(x, y)$ , integrated over the entire movement.

$C_{J}= \int_{0}^{\ell_{f}}\{(\frac{d^{3}x}{dt^{3}})^{2}+(\frac{d^{3}y}{dt^{3}})^{2}\}dt$

The minimum jerk model reproduces both the qualitative features and the quantitative

details observed experimentally [3]. Their analysis was based solely on the kinematics of

movement, independent of the dynamics of the musculoskeletal system, and was successful

only ‘when formulated in terms of the motion of the hand in extracorporal space.

Based on the idea that the objective function must be related to the dynamics, Uno,

Kawato and Suzuki [18] proposed the following alternative quadratic measure of perfor-

mance:

$C_{T}= \int_{0}^{t}{}^{t}\sum_{i=1}^{n}(\frac{dT_{i}}{dt})^{2}dt$ ,

here $T_{1}$ is the torque fed to the i-th actuator out of $n$ actuators. The objective func-

tion is the sum of the square of the rate of change of torque, integrated over the entire

movement. One can easily see that the two objective functions $C_{J}$ and $C_{T}$ are closely



on the dynamics of the musculoskeletal system. Due to this fact, it is much more difficult
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. However, it must be $e^{\backslash }mphasized$ that the objective function $C_{T}$ critically depends
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Trajectories derived from the minimum torque-change model are quite different from
$\backslash i$

those of the minimum jerk model under the following behavioral situations. (i) Big hor-

to determine the unique trajectory which minimizes $C_{T}$ . Uno et al. [18] overcame this

difficulty by developing an iterative scheme, so the unique trajectory and the associated

motor command (torque) can be determined simultaneously. That is, the three problems ..

of trajectory formation, coordinates transformation and generation of motor command are.

solved simultaneously by this algorithm. Mathematically, the iterative learning scheme

can be regarded as a Newton-like method in function space.
:

izontal free movement between two targets. (ii) Constrained and horizontal movement

between two targets. (iii) Vertical arm movement between two targets (see experimental

data of [2]). (iv) Free and horizontal movement via a point. Uno et al. [18] $recently_{+}$

examined human arm trajectories under these situations and found that the minimum

torque-change $mod^{\sim}e1$ reproduced these experimental data better. ..

Since the dynamics of the human arm or the robotic manipulator is nonlinear, the
$\ovalbox{\tt\small REJECT}’$

problem to find the unique trajectory which minimizes $C_{T}$ is a nonlinear optimization

problem. The central nervous system does not seem to adopt the iterative algorithm

which we proposed in [18]. It was reported that some neural-network models can solve

difficult optimization problems such as the traveling $salesma_{-}n$ problem or early visions by

minimizing “energy” through the network dynamics. We [11] proposed a neural-network

model, which automatically generates the torque which minimizes $C_{T}$ without explicit

handling of the cost function. This network can be regarded as one example of autonomous

motor pattern generators such as a neural oscillator for rhythmic movements.

We

$recently^{o}developed$

the

$mode1^{r}toa^{r}repetitive^{s}networkfor^{-}1earning^{t}ofthe^{1}vector$

field
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of the ordinary differential equation which describes forward dynamics of the controlled

object (Fig. 3). The model consists of many identical three layer unit networks which are

connected in a cascade with some bypath and electrical connections. The unit network con-

sists of three layers of neurons. The first layer represents the time course of the torque and

the trajectory. The third layer represents the change of the trajectory within a unit time,

that is, the vector field times the unit time. The output line at the right side represents

the time course of the trajectory. Operations of this network are divided into the learning

phase and the pattern generating phase. In the learning phase, this network acquires in-

ternal model of vector field of forward dynamics of the controlled object between the first

$and_{5}$ the third layers using synaptic plasticity while monitoring the $realized\wedge$ trajectory as a

teaching signal. In the pattern generating phase, electrical coupling between neighboring

neurons in the first layer is activated. Then the network changes its state autonomously

by feedforward and feedback synaptic connections within it. The stable equilibrium state

of the network corresponds to minimum energy state and hence the network outputs the

torque which realizes the minimum torque-change trajectory. This model has several con-

ceptual similarities with the sequential network conjoined with a forward model network

which was proposed by M. Jordan [7]. We emphasize that the proposed repetitive net-

work model can not only resolve the trajectory determination problem but also resolve the

inverse kinematics and inverse dynamics problens for redundant manipulators (Fig. 2).

Hierarchical neural network for control and learning

Ito [5] proposed that the cerebrocerebellar communication loop is used as a reference model

for the open-loop control of voluntary movement. Allen and Tsukahara [1] proposed a

comprehensive model, which accounts for the functional roles of several brain regions in the

control of voluntary movement. Tsukahara and Kawato [17] proposed a theoretical model

of the cerebro-cerebello-rubral learning system based on recent experimental findings of
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the synaptic plasticity. Expanding on these previous models and adaptive filter model of

the cerebellum [4], we proposed a neural network model for the control of and learning of

voluntary movement [9].

In our model, the association cortex sends the desired movement pattern expressed in

the body coordinates, to the motor cortex, where the motor command, that is torque to be

generated by muscles, is then somehow computed. The actual motor pattern is measured

by proprioceptors and sent back to the motor cortex via the transcortical loop. Then,

feedback control can be performed utilizing error in the movement trajectory. However,

feedback delays and small gains both limit controllable speeds of motions.

The cerebrocerebellum-parvocellular part of the red nucleus system receives synaptic

inputs from wide areas of the cerebral cortex and does not receive peripheral sensory

input. That is, it monitors both the desired trajectory and the motor command but it

does not receive information about the actual movement. Within the cerebrocerebellum–

parvocellular red nucleus system, an intemal neural model of the inverse-dynamics of the

musculoskeletal system is acquired. The inverse-dynamics of the musculoskeletal system

is defined as the nonlinear system whose input and output are inverted (trajectory is the

input and motor command is the output). Once the inverse-dynamics model is acquired by

motor}earning, it can compute a good motor command directly from the desired trajectory.

Learning of inverse-dynamics model by feedback motor command
as an error signal

The simplest learning approach for acquiring the inverse dynamics model of a controlled

object is shown in Fig. $4a$. In Fig. 4 the controlled object is called as a manipulator. As

shown in Fig. $4a$, the manipulator receives the torque input $T(t)$ and outputs the resulting

trajectory $\theta(t)$ . The inverse dynamics model is set in the opposite input-output direction

to that‘ of the manipulator, as shown by the arrow. That is, it receives the trajectory as an

-
$l7$ $-$
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input and outputs the torque $T_{i}(t)$ . The error signal $s(t)$ is given as the difference between

the real torque and the estimated torque: $s(t)=T(t)-T_{j}(t)$ . This approach to acquire

an inverse dynamics model is called direct inverse modeling by M. Jordan [6].

The direct inverse modeling does not seem to be used in the central nervous system

because of the following reasons. First, after the inverse-dynamics model is acquired, large

scale connection change must be done for its input from the actual trajectory to the desired

trajectory, while preserving the minute one-to-one correspondence, so that it can be used in

feedforward control. Second, we need other supervising neural network which,determines

when the connection change should be done. Third, this method which separates the

learning and control modes can not cope with dynamics change of a controlled object.

Fourth, this learning scheme is not goal directed. Finally, it can not cope with the second

and the third ill-posed problems in Fig. 2. M. Jordan explained this reason in the many to

one inverse kinematics problem associated with motor control of redundant manipulators

with excess degrees of freedom $[6,7]$ .

Fig. $4b$ shows the alternative computational approach which we proposed and called

as feedback error learning. This block diagram includes the motor cortex (feedback gain

$K$ and summation of feedback and feedforward commands), the transcortical loop (neg-

ative feedback loop) and the cerebrocerebellum-parvocellular red nucleus system (inverse

dynamics model).

The total torque $T(t)$ fed to an actuator of the manipulator is a sum of the feedback

torque $T_{f}(t)$ and the feedforward torque $T_{1}(t)$ , which is calculated by the inverse-dynamics

model. The inverse-dynamics model receives the desired trajectory $\theta_{d}$ represented in the

body coordinates such as joint angles or muscle lengths, and monitors the feedback torque

$T_{f}(t)$ as the error signal.

The feedback error learning scheme has several advantages over other motor learning
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schemes including direct inverse modeling. First, the teaching signal or the desired output

for the neural network controller is not required. Instead, the feedback torque is used as

the error signal. Second, the control and learning are done simultaneously. Third, back-

propagation of the error signal through the controlled object or through a forward model

of the controlled object [6] is not necessary. Fourth, the learning is goal directed. Finally,

it can resolve the ill-posedness in the second and the third problems in Fig. 2 because of

good characteristics inherent in the feedback controller.

It is expected that the feedback signal tends to zero as leaming proceeds. We call

this learning scheme as feedback error learn$ing$ emphasizing the importance of using the

feedback torque (motor command) as the error signal of the heterosynaptic learning.

There are two possibilities about how the central nervous system computes nonlinear

transformations required for making an inverse dynamics model of a nonlinear controlled

object. One is that they are computed by nonlinear information processing within the

dendrites of neurons [8,9,16]. The other is that they are realized by neural circuits, and

are acquired by motor leaming [12].

Examining the first possibility, we [16] have successfully applied the feedback er-

ror leaming neural network to trajectory control of an industrial robotic manipulator

(Kawasaki-Unimate PUMA260) with prepared nonlinear transformations which were de-

rived from a dynamics equation of a manipulator idealized mechanical model. A simple

training movement pattem lasting for $6s$ was 300 times given. Both the error of trajectory

and the feedback torque decreased dramatically during $30 \min$ learning. Moreover, the

effect of leaming for faster and quite different movement pattem from the training pattem

was marked, that is the network has great capability of learning generalization.

Regarding the second possibility, we [12] succeeded in learning control of the robotic

manipulator by an inverse-dynamics model made of a three-layer neural network (Fig. 5).

$\frac{A^{u}}{*,4}$
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In this network, nonlinear transformation was made only of cascade of linear weighted

summation and sigmoid nonlinearity. That is, we did not use any a priori knowledge

about the dynamical structure of the controlled object. The learning went well and the

network has some extent of generalization capability. In the learning, we still used the

feedback torque command as the error signal.

Summary

In order to control voluntary movements, the central nervous system must solve the fol-

lowing three computational problems at different levels: (1) determination of a desired

trajectory in the visual coordinates, (2) transformation of trajectory from visual coordi-

nates to body coordinates and (3) generation of motor command. Based on physiological

information and previous models, computational theories are proposed for the first two

problems, and a hierarchical neural network model is introduced to deal with motor com-

mand. Combination of the second and the third approach was found to be very efficient

for learning trajectory control of an industrial robotic manipulator [14].
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Informations internally represented in the brain are shown in ovals. Possible algorithms

are shown in parentheses.

Fig. 2 Three ill-posed problems in sensory-motor control.

Fig. 3 A repetitive neural network model learns and minimizes energy for generation of

torque waveforms which realize minimum torque-change arm trajectory.

Fig. 4 Two schemes for learning inverse dynamics model of a controlled object. $a$ . direct

inverse modeling. $b$ . feedback error learning scheme.

Fig. 5 A feedback error learning neural network model. The inverse dynamics model is

acquired in the three layer neural network.
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