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\S 1. Introduction

Competition and predation in multiple species interactions have been recognized as important

factors which shape community srructures. Much field and laboratory work has suggests that

predation could have two different effects on community structure: predator-mediated

coexistence and predator-induced instability. The predator-mediated coexistence represents the

phenomenon wherein the presence of a predator allows the weaker competitor to survive in a

situation where it would otherwise go to extinction. For instance, Paine (1966) showed that

removal of the top predator from an intertidal community of marine invertebrates resulted in a

decrease in the number of major space-utilizing species. Similar effects have been widely

observed in aquatic (Paine I966; Dayton 1971) as well as in terrestrial systems (Darwin 1859;

Harper 1969). On the other hand, predator-induced instability refers to the addition of an extra

predator species, leading to a decrease in the number of coexisting species (HaIper 1969; May

1971; Lubchenco 1978).

There have been many theoretical studies on community organization since the pioneer work of

Lotka (1925) and Volterra (1926). In particular the Lotka-Volterra models for a 2 prey-l

predator and a 2 prey-2 predator system have been extensively investigated to elucidate the
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mechanism of predator-mediated coexistence (Cramer and May 1972; Fujii 1977; Caswe111978;

Vance 1978; Teramoto et al. 1979) and predator-induced instability (May 1973). However,

general analysis of multiple species systems consisting of more than four species seems quite

limited except for computer simulations. In such a multiple species community, more compli-

cated interactions are expected to occur among prey and predators. If a predator specializing on

one particular prey species invades the community, it may cause a decrease in the density of that

species. Concurrently, some of the species not preyed upon may increase their population

sizes, being relieved of the competition from the prey species. This in turn could lead to a

decrease in some other competing species. Funhemlore, if more than two predator species feed

on competing species, one predator may influence other predators, either detrimentally (indirect

competition between predators) or beneficially (indirect mutualism between predators), through

altering the structure of the competition community. Thus the direct and indirect effects of

predation and competition may result in various community structures if the number of

constituent species is large.

In this paper, we focus on a community with two trophic levels: The 1st trophic level consists

of multiple interfering competitive species, and the 2nd level contains a number of specialists

which consume the species in the 1st trophic level. To describe the dynamics of the 1st trophic

level in isolation, Shigesada et al. (1984) presented a simple model using the Lotka-Volterra

equation, in which certain restrictions were imposed on the parameters representing interspecific

interference competition. To examine the effect of predation on the structure of this competitive

community, we assume that a number of predators immigrate into the competitive community

one after another. If the invasion is successful, th\‘e community will approach a new stable equi-

librium state. By comparing the community structures before and after each invasion, the

effects of the invading predator on the structures of both the 1st and 2nd trophic levels are

evaluated. We show in what situations the predator-mediated coexistence or predator-induced

instability will result. Funhermore, we investigate how indirect mutualism or indirect competi- $\rfloor$

tion will arise between predators specializing on different prey species.
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\S 2. Structures of Communities with Interference Competition

The competitive community has been extensively studied by using a Lotka-Volterra model for

N-competmg species:

$\frac{dX_{i}}{dI}=(\epsilon_{i}-\sum_{j=1}^{N}\mu_{i_{J}}X_{j})X_{i}$ for $i=1,2,$ $\ldots$ , $N$ , (1)

where $X_{i}$ is the population size of species $i,$ $\epsilon_{i}$ is the intrinsic rate of growth and $\mu_{ij}$ is the coeffi-

cient of competition of thejth species on the ith species.

Here we assume that species in the first trophic level interact mostly with interference

competition. Typical examples of interference competition have been observed in sessile

animals and plants that live on rocky shores, and in motile animals that defend territories by

aggression or poisoning. To describe interference competition, Shigesada et al. (1984) have

previously presented a simple model which adopts the Lotka-Volterra equation. In that model,

the competition coefficients $\mu_{ij}$ are assumed to be given as a product of two factors as follows:

$\mu_{ij}=\{\begin{array}{l}\sigma_{i}\alpha_{i}(i=j)’\sigma_{i}\beta_{j}(i\neq j)’\end{array}$ (2)

where $\beta_{i}$ represents the intrinsic interference of the ith species to other species and is termed the

interspecific interference coefficient. We use another notation $\alpha_{i}$ for intraspecific interference to

distinguish it from interspecific interference $\beta_{7}\cdot$. $\sigma_{i}(<1)$ is terned the susceptibility, wherein we

assume that species $i$ can reduce the effect of interference from other individuals by a factor of

$\sigma_{i}$ , owing to its defensive ability.

Substituting $\mu_{ij}$ defined by (2) for the Lotka-Volterra equation (1) and changing units of

variables, we have the following basic equations:

$\frac{dx_{i}}{dt}=\sigma_{i}(e_{i}-\gamma_{\iota}x_{i}-\sum_{l\neq}^{N}x_{i}j=1(i))x_{i}\equiv f_{i}(x)x_{i}$ for $i\in I$ , (3)

where $I=\{1,2,\ldots,N\}$ , and

$x_{i}=\beta_{i}X_{i},$ $e_{i}=\epsilon\sqrt{}\sigma_{i}$ and $\gamma_{l}=\alpha_{i}/\beta_{i}$ . (4)

$-3-$
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For the convenienoe of discussion, we assign a subscript to each species ranked in decreasing

order of $e_{i}(=\epsilon_{i}/\sigma_{i})$:

$e_{1}>e_{2}>\ldots>e_{N}$. (5)

Thus a species with a higher intrinsic growth rate or a smaller susceptibility occupies a higher

rank. Each species is further classified dependmg on whether its intraspecific interference is

larger than its interspecific interference $(\uparrow f=\alpha_{i}/\beta>1)$, or vice versa $(\gamma_{\iota}<1)$ . Hereafter, we call a

species with $T\iota>1$ an auto-corrpetitor, and a species with $T\iota<1$ a hetero-competitor.

Equations (3) have been extensively analyzed: All the equilibrium states are obtained in

explicit forns and their stability properties are analytically examined (Shigesada et al. 1984).

Here, we briefly introduce some results of the analysis, which will later be used to describe the

structure of a competition community at the lower trophic level.

Consider an isolated competition community consisting of $N$ species which has already

reached a stable equilibrium state. Let $x^{*}=(x1^{*}J2^{*},\ldots JN^{*})$ denote an equilibrium point that

satisfies $f_{i}(x^{*})=0$ for all $i\in I$. By solving the set of equations$f_{i}(x^{*})=0(i\in l)$ , we have

$Xi^{*}=\{e_{i}-C(I)\}\xi_{i}$ for $i\in I$, (6)

where $I=\{1,2,\ldots,N\}$ , and

$\xi_{i}=\frac{1}{\gamma_{i}-1}$, $C(I)= \sum_{k\in I}e_{k}\xi_{k}/(1+\sum_{k\in I}\xi_{k})$ (7)

Local stabihty analysis of $x^{*}$ leads to the following criteria:

The equilibrium point (6) is positive and locally stable if and only if either of the following

conditions, I or $n$, is satisfied:

I. $\xi_{i}>0(i\in I)$ , (8a)

$e_{N}>C(I)_{;}$ (8b)

Il. $\xi_{i}>0(i\in I-\{N\})$ , $\xi_{N}<0$ , $1+ \sum_{i\in I}\xi_{i}<0$
, (9a)
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$e_{N-1}>C(I)>e_{N}$ . (9b)

Since species $i$ with $\xi_{i}>0$ is an auto-competitor and species $i$ with $\xi_{i}<0$ is a hetero-competitor,

relations (8a) and (9a) indicate that in case I, $aUN$ species are auto-competitors, while in case II,

auto-competitors occupy the ranks from 1 through $(N-1)$ and a hetero-competitor occupies only

the lowest rank $N$. Although the above criteria are derived from the requirement that $x^{*}$ is

positive and locally stable, an equilibrium point that satisfies either I or II is not only locally

stable but also globally stable (Kawasaki et al. 1988). Figure 1 schematically illustrates the

community structures of types I and II.

1 2 $N$
Fig 1. Possible structures of stable communities

I $O$ $O$ $O$ $O$ $O$ $O$ consisting of $N$ competing species. $N$ species are
ranked in decreasing order of $\epsilon\sqrt{}\sigma;$. I. AU the con-
stituent species are auto-competitors. II. Auto-com-1 2 .... .... .... $N$

petitors occupy the ranks from 1 through N-l and a
$\Pi$ $OOOOO\bullet$ single hetero-competitor occupies the lowest rank. $O$ ,

auto-competitor; $\bullet$ , hetero-competitor.

\S 3. Effects of invasions of predators on community structures

Let us now proceed to analyze the effects of predation on the interference competition

community as described in the previous section. We assume that a number of predators

imnmuigrate into this competitive community one after another. Suppose that the time intervals

between successive immigrations of predators are long enough so that the pre-occupant species

have already reached a stable equilibrium state before each immigration of predator. We regard

a predator as a successful invader if the community colonized by a small propagule of the

predator will evolve into a new stable equilibrium state, in which the predator becomes a

constituent member. Once a predator invades successfully, the population sizes of the pre-
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occupant species will change and some may become extinct, thereby altering the $s\sigma ucture$ of the

community.

Let us consider the situation where the n-th predator specializing on a competing species of

rank $g$
’ (called predator $g’$) immigrates to a stable equilibrium community, which has been

established after invasion of the $(n- 1)th$ predator. The dynamics of the community after inva-

sion of the $n-\ddagger h$ predator are given by combining (3) with the dynamics of $n$ predators:

$\frac{d}{dr}xi=\sigma_{i}(e_{i}-\sum_{j(\neq i)}xj-\gamma i^{X}i)xi\equiv F_{i}(z)Xi$ $(i\in I-P)$ ,

$\frac{d}{d1}xi=\sigma_{i}(e\iota-\sum_{j(\neq i)}xj-\gamma_{i^{X}i}-\mathcal{Y}i)_{X}\iota\equiv c_{i(z)x\iota}$ $(i\in P)$ , (10)

$\frac{d}{\ell k}y\iota=K_{i(-d_{i}+Xi)y_{i}\equiv H_{i}(z)_{\mathcal{Y}i}}$ $(i\in P)$ ,

where $I=\{1,2,\ldots,N\}$ and $P$ is the set of $n$ predators (i.e., $P=\{k_{1},k_{2},\ldots,k_{n}\}$ ). $y_{i}$ is the popula-

tion size of the predator specializing on species $i$ . $z=\{xy\}$ . The initial condition is given by

$z(t=0)=\tilde{z}+\delta$, where $\tilde{z}$ is the equilibrium state which has been established after invasion of the

(n-l)the predator $and\delta$ is an arbitrarily small positive vector. As we assumed that predator $g’$

can successfully invade the preexistent $communi\ddagger y\tilde{z}$, the following should be satisfied:

$H_{g’}(\tilde{z})/K_{g’}=-d_{g’}+\tilde{x}_{g’}>0$. (11)

When (11) holds, system (10) has a stable equilibrium point, $\hat{z}=(\hat{x},\hat{y})$ , which is given by

(Shigesada et al., 1988),

$\hat{X}_{i^{=}}\{e_{\ulcorner}C(\hat{S},\hat{P})\}\xi_{i}(i\in\hat{S})$ , $\hat{X}_{i}=d_{i}(i\in\hat{P})$ , $\hat{x}i=0(i\in\hat{E})$ ,
(12)

$\hat{y}_{i}=e_{i}-d_{i}/\xi_{i}-C(\hat{S},\hat{P})(i\in\hat{P})$, $\hat{y}_{i}=0(i\in\hat{E}_{p})$ ,
where

$C( \hat{S}\hat{f})=(\sum_{i\in\hat{S}}e_{i}\xi_{i}+\sum_{i\in\hat{P}}d_{t})/(1+\sum_{i\in\hat{S}}\xi_{i})$
. (13)

$\hat{P}$ is a set of competing species which are preyed on. Since predator $g’$ is capable of invading, $\hat{P}$

always contains $g’$ but not necessarily the preexistent predators, because the presence of predator
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$g^{1}$ may cause extinction of the resident predators. $\hat{S}$ is a set of competing species that survive

but are not preyed upon. $\hat{E}(=I-\hat{S}-\hat{P})$ is a set of competing species which go to extinction, and

$\hat{E}p$ is a set of predators that survive in the preexisting community but go to extinction in the

resulting community. These sets $\hat{S},\hat{P},\hat{E}$ and $\hat{E}p$ are determined from the requirements that

surviving species have positive population sizes and extinct species can not reinvade when rare:

$\hat{x}_{i}>0(i\in\hat{S})$ , $\hat{y}_{i}>0(i\in\hat{P})$ , $F_{i}(\hat{z})<0(i\in\hat{E})$, $H_{i}(\hat{z})<0(i\in\hat{E}p)$. (14)

lt can be shown that there always exists a set of $\hat{S},\hat{P},\hat{E}$ and $\hat{E}p$ which satisfy (14). Further-

more, the equihibria (12) for these sets of $\hat{S},\hat{P},\hat{E}$ and $\hat{E}p$ are shown to be globally stable by

means of the following positive defmite function:

$V(z)= \sum_{i\in\hat{S}}\{x-\hat{x}-\hat{x}\ln(X\sqrt{}\hat{X}_{i)\}/\sigma_{i^{+\sum_{i\in\hat{P}}}}}\{\mathcal{Y}i^{-}\hat{\mathcal{Y}}i-\hat{y}_{i}\ln(y_{i}/\hat{y}_{i})\}/K_{i}$

$+ \sum_{i\in\hat{E}}xi/\sigma_{i}+\sum y_{i}/K_{i}\geq i\in\hat{E}_{p}0$
. (15)

The derivative of $V(z)$ with respect to $t$ is given by

$\frac{d}{k}V(z)=-$

$\sum_{i,j\in I,(i\neq J)}(x_{i}-\hat{x}_{i})(x_{j}-\hat{x}_{j})-\sum_{i\in I}\gamma_{i}(x_{i}-\hat{x}_{i})^{2}+\sum_{i\in\hat{E}}F_{i}(\hat{z})x\sqrt{}\sigma_{i}+\sum_{i\in\hat{E}_{p}}H_{i}(\hat{z})y_{i/}K_{i}$

. (16)

The right hand side of (16) is negative definite because the first two terms constitute a negative

definite function and $F_{i}(\hat{z})<0(i\in\hat{E})$ and $H_{i}(\hat{z})<0(i\in\hat{E}p)$ from (14). Thus (15) acts as the

Lyapunov function and hence $\hat{z}$ is globally stable.

Noting that the preexisting stable $state\tilde{z}$ is given by (12) in which
$\wedge$

is substituted $for^{\sim}$ , the

change in the population size of each species after invasion of the nth predator is calculated by

subtracting $Z=\{x,y\}$ from $\hat{z}=\{\hat{x},\hat{y}\}$ :

$(y-\tilde{y})(\hat{x}_{i^{i}}-\tilde{x}_{i^{i}})/\xi$ $(i\in\hat{S}\cap\tilde{S})(i\in\hat{P}\cap\tilde{P})\}=C(\tilde{S},\tilde{P})- C(\hat{S},\hat{P})$
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$=$

$\{ \sum_{\sim_{\cap},S\hat{E}}x\sim_{i}+H_{g’}(z\sim)/K_{g’}-\sum_{\hat{S}\cap\tilde{E}}F_{i}(z\sim)\xi J\sigma_{i}-\sum_{\hat{4}}H_{i}(z)/K_{i}\}/(1+ \sum_{\wedge\wedge,s- S\cap\hat{b}}\xi_{i})$

. (17)

From (8), (9) and (14), $\tilde{x}_{i}>0(i\in\tilde{S}\cap\hat{E}),$ $F_{i}(\tilde{z})\xi_{i}<0(i\in\hat{S}\cap\tilde{E}),$
$H_{g’}(\tilde{z})>0$ and $H_{i}(\hat{z})<0(i\in\hat{E}_{p})$ ,

and hence the numerator in the r.h. $s$ . of (17) is always positive. On the other hand, the denomi-

nator becomes negative if the set of surviving competitors that have never been preyed upon

(i.e., $\hat{S}-\hat{S}\cap\hat{E}_{p}$ ) includes a hetero-competitor, and positive if otherwise. Summarizing the

above analyses, we obtain the following:

Remark

Consider a competition community which has been invaded by a number of predators

(specialists) and already reached a stable equilibrium state. If a new predator invades this pre-

existent community, then the resulting community has the following propenies, depending on

whether the 1st trophic level in isolation has a structure of type I or 11 as shown in Fig. 1:

(1) When the 1st trophic community has a structure of type $L$ invasion of the new predator leads

to increases in the population sizes of all the pre-occupant species except the prey species. Any

pair of predators are associated by indirect mutualism.

(2) When the lower trophic level has a structure of type II,

(a) if one of the pre-occupant predators or the newly invading predator specializes on the

hetero-competitor, the population sizes of all the pre-occupants $excep\overline{t}he$ prey species as well as

some previously extinct species increase so that species richness in both the lower and upper

trophic levels tends to increase. Any pair of predators are associated by indirect mutualism;

(b) if au pre-occupants and the new invading predators specialize only on auto-competitors,

the hetero-competitor increases its population size, while all the pre-occupant auto-competitors

and their predators decrease, and some of them with lowernost ranks may go extinct, so that the

species richness of the lower and upper trophic levels tends to decrease. Any pair of predators

specializing on auto-competitors involves indirect competition.
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In short, if there remains a hetero-competitor not preyed upon after invasion of the nth predator,

all pre-occupant species except the hetero-competitor tend to decrease their population sizes.

Therefore the predator-induced instability and indirect competition between predators are

induced. (see Fig. $2b$). Conversely, if there exists no hetero-competitor not preyed upon after

invasion of the nth predator, the population sizes of all the pre-occupant species except the prey

species increase. Therefore the predator-mediated coexistence and indirect mutualism between

predators are induced(Fig. $2a$).

(a)

66 $06^{j}oo***::.:$
:

$\circ^{\dagger}06_{0\cross}’lO::::0\#*0\star-*0$

(b)

$\delta\overline{O0}O_{-}^{\dot{\dagger}’}:*\backslash \delta\overline{O0}\cross_{-}$

X $\bullet*$

Fig 2. Changes in the community structure after invasion of the n-the predator.
$O$ , auto-competitor; $\bullet$ , hetero-competitor; $\cross$, extinct species. $l’\backslash ’\dagger^{\backslash ,}$ is a newly invading predator $n$.

$\varphi$ is a pre-occupant predator. $Signs+,$ $0$ and– indicate an increase, no change and decrease,

respectively, in the population sizes after invasion of the n-th predator. (a) If there exists no hetero-

competitor not preyed upon after invasion of the nth predator, all pre-occupant species except the prey

species increase their population sizes so that predator-mediated coexistence and indirect mutualism

between predators are induced. (b) If there remains a hetero-competitor not preyed upon after invasion

of the nth predator, au pre-occupant $s_{N^{cies}}$ except the hetero-competitor decrease their population

sizes, so that predator induced $instabil\tilde{n}y$ and indirect competition between predators are induced.
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