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1 The Fundamental Theorem

Let $A$ be an $m\cross n$ matrix, where $m\geq 1$ and $n\geq 2$ . Let $E$ be the index set of
the columns of matrix $A$ , and $f,$ $g$ be two distinct members of $E$ . Here we consider
the standard form linear program:

(1.1) (P)
.
maximize $x_{f}$

(1.2) subject to A $x$ $=$ $0$ ,
(1.3) $x_{g}$ $=$ 1,
(1.4) $x_{j}$

$\geq$ $0$ , $\forall_{j}\in E\backslash \{f, g\}$ .

For any $J\subseteq E\backslash \{f, g\}$ , the deleted subproblem $(P\backslash J)$ can be obtained from (P) by
dropping the nonnegative constraints $x_{j}\geq 0$ for all $j\in J$, and the contracted subpro blem
$(P/J)$ can be obtained from (P) by adding the constraints $x_{j}=0$ for all $j\in J$. For any
$j\in J$, we abbreviate $\{j\}$ by $j$ . Given two disjoint subsets $J_{1}$ and $J_{2}$ of $E\backslash \{f, g\}$ ,
we define the subproblem $((P\backslash J_{1})/J_{2})$ :

$((P\backslash J_{1})/J_{2})$ maximize $x_{f}$

subject to (1.2), (1.3), and
(1.5) $x_{j}=0$ $j\in J_{2}$ ,
(1.6) $x_{j}$

一

$0$ $j\not\in J_{1}\cup J_{2}$ .

By using the artificial variables, we can transform the problem $((P\backslash J_{1})/J_{2})$ to a linear
program with the form (1.1), (1.2), (1.3), and (1.4). Thus, in the rest of this section, we
consider more general linear program defined by (1.1), (1.2), (1.3), (1.5), and (1.6). We
define the deleted and contracted subproblems of this general form linear program in the
same way.

A vector $x$ is said to be feasib le if it satisfies the constraints (1.2), (1.3), (1.5), and
(1.6) If a linear program has a feasible solution, then it is called feasible, else it is called
infeasible. For any linear program, we will refer to following three situations as characters:

1. it has an optimal solution,
2. it is infeasible,
3. there exists a vector $x$ satisfying that (1.2), (1.5), (1.6), and
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Table 1: The characters of $(P\backslash j),$ $(P/j)$ , and (P).

(1.7) $x_{9}=0$ ,
(1.8) $x_{f}>0$ .

In the situation 2, a linear programming does not have an optimal solution. In the situation
3, a linear programming with a feasible solution also does not have an optimal solution.
Each of these three situations is denoted by OPT, $INF_{f}$ and $INF*$ .

The following lemma shows the relations between the characters of linear programs $P$,
$(P\backslash j)$ , and $(P/j)$ . Originally, this lemma was proved in a more general setting of oriented
matroid programming, see Fukuda [1].

Lemma 1 Let $P$ be a linear program, and $j\in E\backslash \{f, g\}$ be an index corresponding to
a variable with nonnegative constraint $x_{j}\geq 0$ . VVhen $H_{1}$ is a character of $(P\backslash j)$ , and
$H_{2}$ is a character of $(P/j)$, either $H_{1}$ or $H_{2}$ is a character of $(P)$ . More precisely, the
following statements hold.

1. If $(P\backslash j)$ is INF, then $P$ is also INF.
1*. If $(P/j)$ is $INF*$ , then $P$ is also $INF*$ .
2. If both $(P\backslash j)$ and $(P/j)$ are OPT, then $P$ is OPT.
3. If $(P\backslash j)$ is OPT and $(P/j)$ is INF, then $P$ is either OPT or INF.
9“. If $(P/j)$ is OPT and $(P\backslash j)$ is $INF*$ , then $P$ is either OPT or $INF*$ .
4. If $(P\backslash j)$ is OPT, then $(P/j)$ is not $INF*$ .
4*. If $(P/j)$ is OPT, then $(P\backslash j)$ is not INF.
5. If $(P\backslash j)$ is $INF*and(P/j)$ is INF, then $P$ is either INF or $I1VF*$ .

The Lemma 1 is represented by the Table 1, and it implies the following theorem.

Theorem 2 A linear program has at least one of the character of OPT, INF, and $INF*$ .

Proof. Let $k$ be the cardinality of the index set of nonnegative constraints. We will
prove this theorem by the induction on $k$ .

1. First, we will show that a linear program $P$, such that the cardinality of index set
of nonnegative constraints is equal to $0$ , satisfies the statement of the theorem. If $k=0$,
then $J_{1}\cup J_{2}=E\backslash \{f,g\}$ . Assume that a linear program $P$ has no optimal solution and
$P$ is not INF. Let $x$ be a feasible solution of P. Then there exists a feasible solution $x$

‘

of $P$ satisfies that $x_{j}<x_{f}’$ . The vector $x‘-x$ satisfies the conditions of INF* $ofP$. Thus
$P$ is INF*.

2. Now we will show that the theorem holds for $k=r+1$ under the assumption that
the theorem holds for all linear program satisfying $k\leq r$ . Let $P$ be a linear program such
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that the cardinality of index set of nonnegative constraints is equal to $r+1$ . Let $j$ be an
index of nonnegative constraint. Then from the assumption, the two subproblems $(P\backslash j)$

and $(P/j)$ has at least one of the characters of OPT, INF, and $INF*$ . From the lemma 1,
the linear program $P$ has at least one of the characters of OPT, INF, and $INF*$ . $\square$

2 Dictionaries

Here, we give the definition of dictionaries. For any $J\subseteq E$ , $x_{J}$ denotes the subvector
of $x$ indexed by $J$, and $A_{J}$ denotes the submatrix of $A$ consisting of columns indexed
by $J$. In the rest of this paper, we assume the followings.

Assumption 1 There exists $a$ index subset $B$ of $E$ satisfying that $|B|=m$ ,
$f\in B\geq g$ , and the submatrix $A_{B}$ is nonsingular.

The above assumption implies that $n\geq m+1$ . In the rest of this paper, we consider the
linear programs defined by (1.1), (1.2), (1.3), and (1.4).

If $B$ and $N$ are subsets of the index set $E$ , satisfying that: $|B|=m$ , $f\in B\geq g$ ,
$N=E\backslash B$ , and the submatrix $A_{B}$ is nonsingular, then we can transform the linear
system (1.2) as:

(2.1) $x_{B}=-A_{B}^{-1}A_{N}x_{N}$ .

We refer to this system (2.1) as dictionary Cl). Each index in $B$ is caIled basic, and
each index in $N$ is called non-basic. The coefficient matrix of Z), denoted by $\overline{A}$ , is
the matrix $A_{B}^{-1}A_{N}$ . We consider $\overline{A}$ as the matrix whose rows (columns) are indexed by
$B(N)$ , and $\overline{A}=(\overline{a}_{ij} : i\in B, j\in N)$ . For any dictionary $\prime D$ , we identify the dictionary
(linear systems (2.1)) with the following matrix:

$=-\overline{A}$.

For any dictionary $\mathcal{D},$ a basic solution with respect to $\mathcal{D}$ , is a vector indexed by $E$

which satisfies that:

$x_{j}=0$ , $\forall_{j\in N\backslash g}$

$x_{g}=1$ ,
$x_{i}=-\overline{a}_{ig}$ , $\forall_{i\in B}$

Clearly, the basic solution $x$ satisfies the linear system (2.1). For any index $j\in N$ , we
denote the column of $\overline{A}$ corresponding to the index $j$ by $\overline{A}_{j}$ . For any index $i\in B$ , we
denote the row of $\overline{A}$ corresponding to the index $i$ by $i\overline{A}$ .

Now we define special three dictionaries, called terminal dictionaries. Let $J_{1}$ and $J_{2}$

be disjoint index subsets of $E\backslash \{f,g\}$ . A dictionary $\mathcal{D}$ satisfying that:
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Figure 1: Terminal dictionaries.

(2.2) $J_{1}\subseteq B,$ $J_{2}\subseteq N$ ,
$-\overline{a}_{ig}\geq 0,$ $\forall_{i\in B\backslash f}$

$-\overline{a}_{fj}\leq 0,$ $\forall_{j\in N\backslash g}$

is an optimal dictionary of $((P\backslash J_{1})/J_{2})$ , (see Figure l.a). A dictionary $\mathcal{D}$ is an inconsistent
dictionary of $((P\backslash J_{1})/J_{2})$ , if it satisfies (2.2) and there exists an \’index $r\in B\backslash (J_{1}\cup f)$

satisfying that;

$-r\overline{A}\leq 0$ ,
$-\overline{a}_{rg}<0$ ,

(see Figure l.b). A dictionary $\mathcal{D}$ is an a dual inconsistent dictionary of $((P\backslash J_{1})/J_{2})$ , if
it satisfies (2.2) and there exists an index $s\in N\backslash (J_{2}\cup g)$ satisfying that;

$-\overline{A}_{s}\geq 0$ ,
$-\overline{a}_{fs}>0$ ,

(see Figure 1. c). From the above definition, any dictionary $\mathcal{D}$ is an optimal dictionary
of $((P\backslash (B\backslash f))/(N\backslash g))$ . In figures, the symbol $\oplus$ denotes a nonnegative number, $+$

denotes a positive number, $\ominus$ denotes a nonpositive number, and - denotes a negative
number.

From the definition of dictionary, we can easily verify the following Lemma.

Lemma 3 For any linear program $P$, and two disjoint subsets $J_{1},$ $J_{2}$ of $E\backslash \{f, g\}$ ,
the following statements hold.

1. If there exists an optimal dictionary $\mathcal{D}$ of $((P\backslash J_{1})/J_{2})$, then the basic solution of
$\prime D$ is an optimal solution of $((P\backslash J_{1})/J_{2})$ .

2. If there exists an inconsistent dictionary of $((P\backslash J_{1})/J_{2})_{f}$ then $((P\backslash J_{1})/J_{2})$ is INF.
3. If there exists a dual inconsistent dictionary of $((P\backslash J_{1})/J_{2})$, then $((P\backslash J_{1})/J_{2})$ is

$INF*$ ,

3 Tlie Fundamental Theorem in Dictionary Form

In this section, we strengthen the Lemma 1 by applying the notion of dictionaries. The
case 1 and 1’ of Lemma 1 can be strengthened easily as follows.

$\Lambda L$
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$g$ $g$ $s$

$(b):D^{2}$ $(d):\mathcal{D}^{4}$

Figure 2: Terminal dictionaries of $(P\backslash j)$ and $(P/j)$

Claim 4 Let $P$ be a linear program and $j$ be an index in $E\backslash \{f, g\}$ . Then the following
statements hold.

1. If $\mathcal{D}$ is an inconsistent dictionary of $(P\backslash j)$ , then it is also an inconsistent dictionary
of $(P)$ ,

2. If $\mathcal{D}$ is a dual inconsistent dictionary of $(P/j)$, then it is also a dual inconsistent
dictionary of $(P)$ ,

Now we strengthen the other cases of Lemma 1. Given a index $j\in E\backslash \{f, g\}$ , we
consider the following four special dictionaries.

1. A dictionary $\mathcal{D}$ satisfying that $j\in N\backslash g$ and $D$ is an optimal dictionary of $(P/j)$ ,
(see Figure 2.$a$ ). In this case, we denote $-\overline{a}_{fj}$ by $\alpha$ for simplicity.

2. A dictionary $D$ satisfying that $j\in B\backslash f$ and $\prime D$ is an optimal dictionary of $(P\backslash j)$ ,
(see Figure 2.$b$ ). In this case, we denote $-\overline{a}_{jg}$ by $\beta$ for simplicity.

3. A dictionary $\mathcal{D}$ satisfying that $j\in N\backslash g$ and $\mathcal{D}$ is an inconsistent dictionary of
$(P/j)$ , (see Figure 2. $c$ ). In this case, we denote $-\overline{a}_{rj}$ by $\gamma$ for simplicity, where
$r$ is the row index of $\prime D$ which implies the inconsistency.

4. A dictionary $\mathcal{D}$ satisfying that $j\in B\backslash f$ and IP is a dual inconsistent dictionary
of $(P\backslash j)$ , (see Figure 2.$d$ ). In this case, we denote $-\overline{a}_{js}$ by $\delta$ for simplicity, where
$s$ is the column index of $\prime D$ which implies the dual inconsistency.

Then the case 2, 3, 3*, and 5 of Lemma 1 can be strengthened as follows.

Lemma 5 ($c.f$. Fukuda [1])
Let $P$ be a linear program and $j$ be an index in $E\backslash \{f, g\}$ . Assume that $\mathcal{D}$ is a

terminal dictionary of $(P\backslash j)_{f}j$ is a basic index of $\prime D$ , $\prime D’$ is a terminal dictionary of
$(P/j)$ , and $j$ is a non-basic index of $\mathcal{D}’$ . Then either $D$ or $D’$ is a terminal dictionary
of $(P)$ . More precisely, Claim 4 and the following statements hold.

1. If $(P)$ has an optimal dictionary Cl)i of $(P/j)$ and an optimal dictionary $D^{2}$ of
$(P\backslash j)$, then either $\alpha\leq 0$ or $\beta\geq 0$ .

2. If $(P)$ has an optimal dictionary $\prime D$ ‘ of $(P/j)$ and a dual inconsistent dictionary
$D^{4}$ of $(P\backslash j)$ , then either $\alpha\leq 0$ or $\delta\geq 0$ .

3. If $(P)$ has an optimal dictionary $D^{2}$ of $(P\backslash j)$ and an inconsistent dictionary $D^{3}$

of $(P/j)$, then either $\beta\geq 0$ or $\gamma\leq 0$ .
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4. If $(P)$ has an inconsistent dictionary $\mathcal{D}^{3}$ of $(P/j)$ and a dual inconsistent dictionary
$\mathcal{D}^{4}$ , of $(P\backslash j)$ , then either $\gamma\leq 0$ or $\delta\geq 0$ .

Proof. For each dictionary $\prime D^{k}$ (for $k=1,2,3,4$ ), we denote the basic solution, the
basic index set, and the non-basic index set of $\prime D^{k}$ , by $x^{k}$ , $B^{k}$ , and $N^{k}$ .

1. It is obvious that $x^{1}$ is optimal to $((P\backslash B^{1})/j)$ . If $\alpha>0$ , then there exists a vector
$d$ indexed by $E$ , satisfying that $d_{j}=1$ , $d_{f}>0$ , and $x^{1}+d\in\Omega(P\backslash B^{1})$ . It
implies that $x_{f}^{1}<(x^{1}+d)_{f}$ . lf $\beta<0$ , then $x_{j}^{2}<0$ , and $x_{f}^{1}\leq x_{f}^{2}$ . It implies that
there exists $0<\lambda<1$ , satisfying that $x’=\lambda(x^{1}+d)+(1-\lambda)x^{2}$ , $x_{j}’=0$ , and
$x_{f}^{1}<x_{f}’$ . Since $x^{1}+d\in\Omega(P\backslash B^{1})$ , $x^{2}\in\Omega(P\backslash B^{1}\cup j)$ , and $x_{j}’=0$ , it is obvious
that $x’\in\Omega(P\backslash B^{1}/j)$ . It contradicts with the optimality of $x^{1}$ to $((P\backslash B^{1})/j)$ .

2. Let $d$ be the vector defined above which corresponds to $D^{1}$ . If $\delta<0$ , there
exists a vector $d’$ indexed by $E$ , satisfying that $d_{j}^{J}<0$ , $d_{f}’>0$ , and
$x^{1}+d’\in\Omega(P\backslash (B^{1}\cup j))$ . Then it implies that there exists $0<\lambda<1$ satisfying
that $x’=x^{1}+\lambda d+(1\neg)\lambda)d’$ , $x_{j}’=0$ , and $x_{f}^{1}<x_{f}’$ . Since $x^{1}+d\in\Omega(P\backslash B^{1})\rangle$

$x^{1}+d’\in\Omega(P\backslash (B^{1}\cup j))’$ and $x_{j}’=0$ , it is obvious that $x’\in\Omega(P\backslash B^{1}/j)$ . It
contradicts with the optimality of $x^{1}$ to $(P\backslash B^{1}/j)$ .

3. It can be proved in the same way as in case 2.

4. From the existence of $\mathcal{D}^{3}$ , it is obvious that $(P\backslash (B^{3}\backslash r)/j)$ is infeasible. If $\gamma>0$ ,
then there exists a vector $d$ indexed by $E$ , satisfying that $d_{j}=1$ , $d_{r}>0$ ,
$d_{9}=0$ , $Ad=0$ , and $d_{k}=0,$ $\forall_{k}\in N^{3}\backslash j$ . It implies that therer exists A $>0$

such that $x’=x^{3}+\lambda d$ , $x_{r}’=0$ , $x_{j}’>0$ , and $x’\in\Omega(P\backslash (B^{3}\backslash r))$ . If $\delta<0$ ,
then there exists a vector $d’$ indexed by $E$ , satisfying that $d_{s}’=1$ , $d_{j}’<0$ ,
$d_{9}’=0$ , $Ad=0$ , and $d_{k}\geq 0,$ $\forall_{k}\in E\backslash j$ . It implies that there exists $\lambda’>0$ such
that $x”=x’+\lambda’d’$ , $x_{j}^{n}=0$ , $x_{g}’’=1$ , and $x_{k}’’\geq x_{k}’,$ $\forall_{k}\in E\backslash j$ . It follows that
$x’\in\Omega(P\backslash (B^{3}\backslash r)/j)$ , and it is a contradiction. $\square$

The Lemma 5 implies the following theorem.

Theorem 6 Under the assumption 1, every linear program $P$ has at least one of the
three terminal dictionaries.

Proof. We will prove this theorem by induction on $n+m$ . From the assumptions, it is
clear that $m\geq 1,$ $n\geq 2$ , and $n\geq m+1$ .

1. If $n+m=3$ , then the linear program has only one dictionary whose corresponding
coefficient matrix is a scalar. From the definition, the dictionary is a trivial optimal
dictionary.

2. Now we show that the theorem holds for $n+m=r+1$ under the assumption that
the theorem holds for $n+m\leq r$ . From the assumption 1, there exists a dictionary
$\mathcal{D}$ of P. Let $B(N)$ be the basic (non-basic) index set of $\prime D$ . Let $\overline{A}^{X}$ be the
coefficient matrix of $\prime D$ . First, we consider the trivial case such that $B\underline{r}\{f\}$ , or
$N=\{g\}$ . In this case, each dictionary is row or column vector. Then it is clear that
each dictionary is one of the three terminal dictionaries. Next; we consider the case

6



J. 23

that both $B\backslash f$ and $N\backslash g$ are non-empty. If the coefficient matrix $\overline{A}$ satisfies
$\overline{a}_{jk}=0,$ $\forall_{j}\in B\backslash f,$ $\forall_{k}\in N\backslash g$ , then it is clear that the dictionary $\prime D$ is one of the
three terminal dictionaries. Now we assume that there exists a index $j\in B\backslash f$ ,
and $k\in N\backslash g$ , satisfying that $\overline{a}_{jk}\neq 0$ . Let $\tilde{A}$ be the submatrix of the coefficient
matrix $\overline{A}$ whose rows are indexed by $B\backslash j$ and colunns are indexed by $N$. Then
we can construct a linear program $P$ ’ as follows:

(P’) maximize $x_{f}$

subject to (1.3) and
$[\tilde{A}I]$ $x$ $=$ $0$ ,

(3.1) $x_{j}$
$\geq$ $0$ , $\forall_{j}\in E\backslash \{f, g, j\}$ ,

where the variable vector $x$ is indexed by $E\backslash j$ . From the definition of $P’$ , it
is clear that $P$ ’ satisfies the assumption 1. It follows that there exists a terminal
dictionary of $P’$ . Let $B’$ be the basic index set of a terminal dictionary of $P’$ . Then
it is obvious that the submatrix $\ulcorner I]_{B’\cup j}$ of $\ulcorner I$] is non-singular. From the
definition, $\ulcorner I]_{B^{t}\cup j}=A_{B}^{-1}A_{B’\cup j}$ . The non-singularity of $[\overline{A}I]_{B’\cup j}$ and $A_{B}$ implies
that $A_{B’\cup j}$ is also non-singular. Then there exists a dictionary $\mathcal{D}’$ of $P$ with basic
index set $B’\cup j$ . It is clear that $D’$ is a terminal dictionary of $P\backslash j$ . From the
assumption that $\overline{a}_{jk}\neq 0$ , it is clear that by pivoting on $(j, k)$ , vve can obtain a
new dictionary such that the index $j$ is non-basic and $k$ is basic. Let $\tilde{A}$ ‘ be the
submatrix of the new dictionary whose rows are indexed by $(B\backslash j)\cup k$ , and columns
are indexed by $N\backslash k$ . Then we can construct a linear program $P$ ’ as follows:

$(P’)$ maximize $x_{f}$

subject to (1.3), (3.1), and
$[\tilde{A}’I]$ $x$ $=$ $0$ ,

where the variable vector $x$ is indexed by $E\backslash j$ . Then there exists a terminal
dictionary of $P’$ . Let $B^{u}$ be the basic index set of a terminal dictionary. We can
easily prove that the matrix $A_{B^{ll}}$ is nonsingular in the same way with $P’$ . The
nonsingularity of $A_{B’’}$ implies that there exists a dictionary $\prime D$

“ of $P$ whose basic
index set is $B”$ . Then $\mathcal{D}^{u}$ is a terminal dictionary of $P/j$ . The Lemma 5 implies
that either $D’$ or $D”$ is a terminal dictionary of P. $\square$

4 Tlie Criss-Cross Method

In this section we describe the criss-cross method for solving a linear program. (Terlaky
$[2],[3]$ and Wang [4]).

In the following algorithm, we maintain a 0-1 vector $L$ indexed by $E\backslash \{f, g\}$ , and
dictionary $\mathcal{D}$ . The vector $L$ does not affect the performance of the algorithm, but in the
next section, the finiteness of the algorithm can be proved by using the vector $L$ .

In the following algorithm, we identify the index subset $E\backslash \{f, g\}$ with the set of
integer numbers $\{1, 2, 3, \cdots, |E|-2\}$ . Given a 0-1 vector $L$ indexed by $E\backslash \{f, g\}$ , we
define the operation $+$ as follows. For any index $j\in E\backslash \{f, g\}$ , $L+j$ is a 0-1 vector
indexed by $E\backslash \{f,g\}$ , satisfying that:



124

$(L+j)_{k}$ $=0$ , $\forall_{k}<j$ ,
$(L+j)_{j}$ $=1$ ,
$(L+j)_{k}$ $=L_{k}$ , $\forall_{k>j}$ .

The criss-cross method
Step $0$ . Set $D$ be any dictionary.

Set $L$ be the zero vector indexed by $j\in E\backslash \{f, g\}$ .

Stepl. Let $r$ be the minimum index satisfying that:
$r\in B\backslash f,$ $-\overline{a}_{rg}<0$ , or
$r\in N\backslash g,$ $-\overline{a}_{fr}>0$ .
If $r$ does not exists, then stop.

(The current dictionary is an OPT dictionary.)

Step2. Let $s$ be the minimum index satisfying that:
$r\in B\backslash f,$ $s\in N\backslash g,$ $-\overline{a}_{rs}>0$ , or
$r\in N\backslash g,$ $s\in B\backslash f,$ $-\overline{a}_{sr}<0$ .
If $s$ does not exists, then stop.

(If $r\in B\backslash f$ , the current dictionary is an inconsistent dictionary.)

(If $r\in N\backslash g$ , the current dictionary is a dual inconsistent dictionary.)

Step3. Pivot on $(r, s)$ and set the resulting dictionary as $\prime D$ .
Set $t$ $:=m_{c}\gamma_{x}x\{r, s\}$ .

Set $L:=L+t$ .
Go to Stepl.

The index $t$ chosen in Step3 is called the key pivot index. In the above algorithm, it
is clear that if the algorithm terminates, one of the terminal dictionaries is obtained. In
the next section, we show the finiteness of the algorithm.

5 Discussion of the Algorithm

In this section, we show the finiteness of the criss-cross method, and discuss about the
flexibility of the algorithm.

At first, we define the lexicographic ordering. Let $L$ and $L’$ be the vectors indexed
by $\{1, 2, \cdots, |E|-2\}$ . Then the vector $L$ is lexicographically greater than $L’$ , if there
exists an index $k$ satisfying that:

$L_{j}=L_{j}’,$ $\forall_{j>k}$

$L_{k}>L_{k}’$ .

Given a 0-1 vector $L$ indexed by $\{1, 2, \cdots, |E|-2\}$ , it is obvious from $thedefinition\backslash$

that if $L_{j}=0$ , then $L+j$ is lexicographically greater than $L$ . $b$

Lemma 7 The criss-cross method terminates in finite steps.

8
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Proof. Now we show that the vector $L$ increases monotonically in the sense of
lexicographic ordering. For this, it suffices to show that at each iteration, $l_{\mathfrak{c}}$ he vector $L$

(before updating) satisfies $L_{t}=0$ for the key pivot index $t$ . Suppose that $L_{t}=1$ at an
iteration $k$ . In the rest of this proof, the index $t$ denotes the key pivot index at iteration
$k$ . Let $\overline{A}$ be the coefficient matrix, and $B(N)$ be the basic (non-basic) index set at
iteration $k$ . Let $J_{1}$ and $J_{2}$ be the index subset such that:

$J_{1}=\{j\in E\backslash \{f,g\} : j\in B, j\leq t\}\cup f$,
$J_{2}=\{j\in E\backslash \{f, g\} : j\in N, j\leq t\}\cup g$ .

Now we define the submatrix $\tilde{A}$ of $\overline{A}$ whose rows are indexed by $J_{1}$ , and columns are
indexed by $J_{2}$ . Then $-\tilde{A}$ is a dictionary of the following linear program:

(P’) maximize $x_{f}$

subject to $[\tilde{A}I]$ $x$ $=$ $0$ ,
$x_{9}$ $=$ 1,
$x_{j}$

$\geq$ $0$ , $\forall_{j}\in E’,$ $\backslash \{f,g\}$ ,

where $E’=J_{1}\cup J_{2}$ , $x$ is a variable vector indexed by $E’$ , and $I$ is the identity matrix
whose columns are indexed by $J_{1}$ . From the definition of the algorithm, it is clear that if
$t\in B$ , then $-\tilde{A}$ is one of the terminal dictionaries of the linear program $(P’\backslash j)$ and if
$t\in N$ , then $-\tilde{A}$ is one of the terminal dictionaries of the linear progran $(P’/j)$ .

From the assumption that $L_{t}=1$ at iteration $k$ , there exists an iteration before $k$

at which $t$ is also chosen as the key pivot index. Let $k’$ be the last such iteration. Let
$\overline{A}’$ be the coefficient matrix, and $B$ ‘ $(N’)$ be the basic (non-basic) index set at iteration
$k$ ‘. Then it is clear that the key pivot index chosen at each iteration between $k’$ and $k$ is
lower than $t$ . It implies that $B\backslash J_{1}\subseteq B’$ , and $N\backslash J_{2}\subseteq N’$ . Let $\tilde{A}’$ be the submatrix of
$\overline{A}’$ whose rows are indexed by $B’\cap(J_{1}\cup J_{2})$ , and columns are indexed by $N’\cap(J_{1}\cup J_{2})$ .
Then it is clear that, if $t\in B’$ , then $-\tilde{A}’$ is one of the three terminal dictionaries of the
linear program $(P’\backslash j)$ and if $t\in N’$ , then $-\tilde{A}’$ is one of the three terminal dictionaries
of the linear program $(P’/j)$ .

If $t\in B$ , then it is obvious that $t\in N^{J}$ . It follows that $-\tilde{A}$ is a terminal dictionary
of $(P’ j)$

ハげ’ and $-\tilde{A}$ is a terminal dictionary of $(P’/_{\backslash }j)$ . Then Lemma 5 implies that $-\tilde{A}$

or $-A’$ is one of the terminal dictionaries of $P’$ . It contradicts with that $t$ is chosen as
a pivot element at iteration $k$ and $k$ ‘. If $t\in N$ , then we can show the contradiction in
the same way.

Thus, for each iteration the 0-1 vector $L$ increases monotonically in the sense of
lexicographic ordering. The finiteness of $tl_{1}e$ number of 0-1 vectors indexed by

$E\backslash \{f, g\}\square$

implies the finiteness of $t1_{1}e$ criss-cross method.
Now we discuss the flexibility of the criss-cross method. In the criss-cross method, the

pivot elements are chosen uniquely. However, we can relax the uniqueness of the selection
rule of pivot elements without violating the finiteness of the algorithm. In section 4, we
assigned the integer numbers $\{1, 2, \cdots, |E|-2\}$ to the indices in $E\backslash \{f, g\}$ before
starting the algorithm. The relaxation of the selection rule of pivot elements is given by
permuting the integer numbers at the entrance of step 1 at each iteration. The original
algorithm can be seen as the trivial permutation is used at the entrance of step 1 at each

9
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iteration. To maintain the finiteness of the algorithm, each permutation needs to satisfy
some properties described below.

Let $L$ be the 0-1 vector indexed by the integer numbers $\{1, 2, \cdots, |E|-2\}$ at the
entrance of step 1 at an iteration. An index (integer number) $j\in\{1,2, \cdots, |E|-2\}$ is
called O-labeled with respect to $L$ when $L_{j}=0$ . A O-interval with respect to $L$ is a subset
of $\{1, 2, \cdots, |E|-2\}$ which consists of consecutive O-labeled integer numbers. The proof
of lemma 7 does not depend on the order of the elements in any O-labeled interval. Then
it is clear that for each O-interval, any permutation of integer numbers does not violate
the proof of finiteness. Thus we can permute the integer numbers inside of any O-interval
maintaining the finiteness of the algorithm.
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