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Abstract

Let $(P_{1}(x), P_{2}=dP_{1}/dx, P_{3}, \ldots)$ be a Sturm sequence with coefficients of floating-
point numbers. If $P_{1}$ contains ”close” roots the accuracy of coefficients of $P_{k}$ decreases
rapidly as $k$ increases. Furthernore, the leading coefficient of some element may become
abnormally small. Hence, the sequence must be treated carefully. In this paper, we first
describe how to handle the polynomials with floating-point number coefficients. In par-
ticular, the polynomial division is carefully defined. Then, we analyze the “abnormal“
sequence and show the usefulness of approximate Sturm sequence under some conditions.
In order to attain the desired accuracy, we present an algorithm for increasing the accu-
racy of coefficients of $P_{k}$ . By expanding $P_{k}$ as $P_{k}=P_{k1}+\epsilon P_{k2}+\epsilon^{2}P_{k3}+\ldots$ , with $\epsilon$ a small
positive number, say $\epsilon=10^{-7}$ , the algorithm increases the accuracy of $P_{k}$ from relative
error $O(\epsilon^{j})$ to $O(\epsilon^{j+1})$ iteratively, without increasing the accuracy of $P_{3},$

$\ldots$ , $P_{k-1}$ . The
algorithm has a similarity to Hensel lifting of integers, with some important differences.
Performance of the algorithm is explained by examples.

1 Introduction

The Sturm sequence has been used for long years to calculate the real roots of algebraic
equations accurately, see [2] for example. If we generate Sturm sequence by using the integer
arithmetic or the rational number arithmetic, as in [3], we often meet tremendously large
coefficients. This suggests us to use the floating-point arithmetic [4]. With the floating-point
arithmetic, however, the accuracy of coefficients of Sturm sequence often decreases largely
by the cancellation of almost equal numbers, see example in 3. This phenomenon happens
always if the given polynomial has “close” roots, and the relationship between the decrease of
accuracy and the distance of mutually close roots is almost clarified by [5] and $I6$ ]. Furthermore,
the Sturm sequence may be “abnormal”, i.e., the leading coefficient of some element of the
sequence is very small compared with other coefficients of the elements.

Three points are important in handling Sturm sequence with floating-point number coef-
ficients: the first is how to detect the decrease of accuracy, the second is how to treat the
abnormal sequence, and the third is how to calculate the Sturm sequence to a given accuracy.
As for the first point, Pinkert [7] proposed to use the interval arithmetic. In this paper, we
describe another simple method which detects the amount of accuracy decreasing by the re-
duction of magnitude of the coefficients. As for the second and third points, it seems that no
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comprehensive study has been made so far. Note that these points are never trivial, even if
we adopt the interval arithmetic, because the accuracy of the sequence may decrease as the
computation proceeds and we cannot know the accuracy of the result in advance. In particular,
the abnormal sequence must be treated carefully because neglect of a coefficient of very small
magnitude may change the property of Sturm sequence significantly. When the accuracy of
answer is not enough, we usually repeat the same computation by increasing the precision of
numbers, which is wasteful. A better method is to increase the accuracy iteratively by utilizing
expressions already computed. Although this method can be formulated easily and simply in
a general form, we show in this paper that we can increase the accuracy by a method similar
to Hensel lifting (see [8], for example) of integers.

After defining necessary notions in 2, we describe how to handle Sturm sequence with
floating-point number coefficients in 3. Usefulness of approximate Sturm sequence is shown in
4. The algorithm for increasing the accuracy of coefficients, which is similar to Hensel lifting,
is given in 5 and the performance of the algorithm is explained in 6 by examples.

2 Definitions on approximate polynomials

In this paper, by approximate polynomials, we mean polynomials with approximate numeric
coefficients. Following ref. [5], we give some definitions for treating approximate polynomials.

Let $P(x)$ be a polynomial in variable $x$ with floating-point number coefficients:

$P(x)=a_{l}x^{l}+a_{l-1}x^{i-1}+\cdots+a_{0}$ , $a_{l}\neq 0$ . (1)

The $l,$ $a_{l}$ , and $a_{l}x^{l}$ are called degree, leading coefficient, and leading term, respectively, of $P$

and written as $\deg(P),$ $1c(P)$ , and $1t(P)$ .

Definition 1 [maximum magnitude coefficient]. The absolute value of the maximum
magnitude coefficient of $P(x)$ is written as $mmc(P)$ :

$mmc(P)=\max\{|a_{l}|, \cdots , |a_{0}|\}$ . (2)

The $mmc(P)$ is nothing but the infinite “norm” of $P$ , i.e., $mmc(P)=||P||_{\infty}$ .

Definition 2 [numbers of similar magnitudes]. Let $f$ and $g$ be numbers (may be complex)
with $g\neq 0$ . By $f=O(g)$ , we mean that $1/c\leq|f/g|.\leq c$, where $c$ is a positive number not
much different from 1. (Usually $lO$ ’ denotes Landau’s notation, and we are using $\prime 0$ in
some different meaning.)

It is not easy to specify the value of $c$ precisely. For example, $c\sim 3$ or 4 in some case but
$c\sim 10$ or 20 in another case. The discussions in [5] and [6] were developed under the condition
that if polynomials $F,$ $G$ , and $H$ are such that $F=GH$ then $mmc(F)=O(mmc(G)\cross mmc(H))$ ,
by assuming that $\deg(F)$ is not so large. In this paper also, we use $O$ ’ in the same sense as
in [5]. An apparent condition on $c$ is that $1/c\gg\epsilon$ , where $\epsilon$ is a small positive number we
introduce below.

Definition 3 [polynomial with small magnitude coefficients]. Let $\epsilon$ be a small positive
number, $0<\epsilon\ll 1.$ By $O(\epsilon(x))$ , we mean a polynomial such that $mmc(O(\epsilon(x)))=O(\epsilon)$ .
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Definition 4 [regular polynomial]. The $P(x)$ , defined in (2), is called regular if

$|a_{l}|=O(1)$ and $\max\{|a_{l-1}|, \cdots, |a_{0}|\}=$ either $O(1)$ or $0$ . (3)

(Note). Any univariate polynomial $P(x)$ can be made regular by the scaling transformation
$P(x)arrow\xi P(\eta x)$ , where $\xi$ and $\eta$ are suitably chosen numbers. $-G_{A}$

Let $P(x)$ be regular and $P(x)\neq\otimes P(x))$ . Let the roots of $P(x)$ be $\alpha_{1},$ $\cdots$ , $\alpha_{l}$ , then it is
well-known that $\max\{|\alpha_{1}|, \cdots, |\alpha_{l}|\}=O(1)$ . This fact allows us to define the close roots.

Definition 5 [close roots]. Let $P(x)$ be a regular polynomial. If $\alpha_{i}$ and $\alpha_{j}$ are roots of $P(x)$

such that $0<|\alpha_{i}-\alpha_{j}|\ll 1$ then $\alpha$ ; and $\alpha_{j}$ are (mutually) close roots.

Definition 6 [accuracy of floating-point numbers]. Let $f$ be a floating-point number
containing an error $\triangle f$ , then we define the accuracy of $f$ as

$acc(f)=\log_{2}|f/\Delta f|$ . (4)

The accuracy of $f$ is nothing but the number of bits representing the correct part of $f$ . Suppose
$M$ bits are used to represent the mantissa of $f$ and only the leading $M’$ bits are correct then
$acc(f)=M’$ .

3 Approximate Sturm sequence

In this paper, by approximate Sturm sequence we mean the Sturm sequence with coefficients
computed approximately. Conversely, mathematically correct sequence is called exact Sturm
sequence. On the basis of definitions in 2, let us discuss how to calculate the approximate
Sturm sequence. As we will see below, this is fundamentally important when the floating-point
arithmetic is used.

Let $F(x)$ and $G(x)$ be polynomials in single variable $x$ with $\deg(F)\geq\deg(G)$ . The Sturm
sequence is a polynomial remainder sequence $(P_{1}, P_{2}, P_{3}, \ldots)$ calculated iteratively as

$\{\begin{array}{l}P_{1}=F(x),P_{2}=G(x)-c_{i}P_{+1}=remainder(P\dot{.}{}_{-1}P_{i})\end{array}$

$i=2,3,$ $\cdots$ ,
(5)

where $c$; is a positive number to be specified below. In particular, the case $G(x)\propto dF(x)/dx$

is very important practically. Since we are handling polynomials with floating-point number
coefficients, we must calculate the remainder sequence carefully. The remainder calculation, or
the division operation, is a successive application of leading term elimination, and we impose
the following rules for the leading term elimination.

Rule 1 [leading term elimination]. Let $F(x)$ and $G(x)$ be

$\{\begin{array}{l}F(x)=f_{l}x^{l}+\cdots+f_{0},f_{l}\neq 0G(x)=g_{m}x^{m}+\cdots+g_{0},g_{m}\neq 0\end{array}$

$l\geq m$ .
(6)

We eliminate the leading term ($x^{l}$ term) as

$\tilde{F}(x)=[F(x)-ht(F(x))]-x^{l-m}(fi/g_{m})[G(x)-ht(G(x))|$ (7)

$=\Sigma_{i=1}^{l}[f_{l-i}-(f_{l}/g_{m})g_{m-i}]x^{l-i}$.
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Rule 2 [zero coefficient]. Let $M$ bits be used to represent the floating-point number in the
system. If $x^{l-i}$ term of (7) satisfies the following condition, then we discard the term as a zero
coefficient term ($i.e.$ , we cutoff the small number at $O(2^{-M})$).

$|f_{l-i}-(f_{l}/g_{m})g_{m-i}|\leq O(2^{-M})$ . (8)

With Rule 1, we are free from error in $f_{l}-(f_{l}/g_{m})g_{m}$ which must be $0$ theoretically but may
not be $0$ in the approximate arithmetic. If $|g_{m}|=O(2^{-M})\neq 0$ , which may happen in the
approximate arithmetic, then the elimination is meaningless ( $\tilde{F}$ in (7) is almost proportional
to $G$). Rule 2 is imposed to avoid such hazardous situation.

One very important point in the calculation of approximate Sturm sequence (and approxi-
mate algebraic expressions in general) is that the accuracy of coefficients must be determined
easily; if we cannot know the accuracy we can never rely on the result obtained. We accomplish
this point by suitably choosing the normalization constant $c_{i}$ in (5) as follows.

Rule 3 [normalization of Sturm sequence]. We choose $c$; in (5) as

$\{\begin{array}{l}Q_{i}arrow quo(P.\cdot {}_{-1}P_{i})-P_{+1}arrow rem(P.\cdot {}_{-1}P.\cdot)/\max\{1,mmc(Q_{i})\}\end{array}$ (9)

where quo and rem denote the quotient and the remainder, respectively.

Lemma 1 Let $P_{i-1}$ , P. and $P_{i+1}$ satisfy (9). Let the upper bound of the errors in the coeffi-
cients of $P_{j}$ be $O(\epsilon_{j}),$ $j=i-1,$ $i,$ $i+1$ . $If|1c(P_{i-1})|\gg\epsilon_{i-1},$ $|1c(P_{i})|\gg\epsilon_{i}$ , and $\mathcal{E}:-1\geq\epsilon_{i}$ then

$\epsilon_{i+1}$ is given by $\epsilon_{i-1}$ and $\epsilon_{i}$ as

$\epsilon_{i+1}\cong\epsilon_{i}\cdot mnc(P:)/|1c(P_{i})|$ . (10)

Proof: For convenience, we denote $P_{1-1},$ $P_{i},$ $\epsilon_{i-1},$ $\epsilon_{i}$ by $F,$ $G,$ $\epsilon_{F},$ $\epsilon_{G}$ , respectively, with $F$ and
$G$ given by (6). Since the division is a successive application of leading term elimination, let
us consider (7). Let $\triangle F$ and $\Delta G$ be errors in $f_{l}$ and $g_{m}$ , respectively, then

$g_{m-i}(f_{l}+\triangle f)/(g_{m}+\triangle g)\cong(fi/g_{m})\{g_{m-i}+\triangle f(g_{m-i}/f_{l})-\Delta g(g_{m-:}/g_{m})\}$ . (11)

Note that $|\triangle f|\leq\epsilon_{F}$ and $|\triangle g|\leq\epsilon_{G}$ . If $|f_{l}/g_{m}|\equiv q\geq 1$ then (11) gives

$error[f_{l-;-}(f_{l}/g_{m})g_{m-i}]/\max\{1, |fi/g_{m}|\})$

$\leq\max\{\epsilon_{F}/q, \epsilon_{G}, \epsilon_{F}\cdot mmc(G)/|f_{l}|, \epsilon_{G}\cdot mmc(G)/|g_{m}|\}$

$= mmc(G)/|g_{m}|\cross\max\{\epsilon_{F}/q, \epsilon_{G}\}$ .

Similarly, if $|f_{l}/g_{m}|\equiv q<1$ then the error bound is

$\max\{\epsilon_{F}, \epsilon_{G}q,\epsilon_{F}q\cdot mmc(G)/|f_{l}|,\epsilon_{G}q\cdot mmc(G)/|g_{m}|\}$

$= mmc(G)/|g_{m}|\cross\max\{\epsilon_{F}, \epsilon_{G}q\}$ .

Here, we have neglected the statistical accumulation of errors. Note that $\max\{1, |f\iota|/|g_{m}|\}=$

$\max\{1, |1c(Q_{t})|\}$ . Elimination of $x^{l}$ term of $F$ and $G$ gives

$\tilde{F}(x)=[f_{l-1}-(f_{l}/g_{m})g_{tn-1}]x^{l-1}+\cdots$ ,
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The error in the coefficients of $\tilde{F}$ can be estimated by replacing $f_{l-1}$ and $\triangle f$ in (11) by
$f_{l-i}-(f_{l}/g_{m})g_{m-t},$ $i=0,1,$ $\cdots$ , and $\epsilon_{G}$ , respectively, because $\epsilon_{G}\geq\epsilon_{F}$ . After a calculation
similar to the above, we find

error $\leq\epsilon_{G}\cross mnc(G)/|g_{m}|$ .

Continuing this estimation, we obtain (10). $\square$

Theorem 1 Let $P_{1}$ and $P_{2}$ be polynomials such that $mmc(P_{1})=O(1)$ and $mmc(P_{2})=O(1)_{f}$

with errors less than $2^{-M}$ in their coefficients. Then, we have

acc(each coefficient of $P_{k}$ ) $\geq O(\log_{2}[r_{2}\cdots r_{k-1}mmc(P_{k})\cross 2^{M}))$ ,
(12)

$r_{i}=|1c(P_{i})/mmc(P_{i})|\leq 1$ .

Proof: Putting $\epsilon_{1}=\epsilon_{2}=2^{-M}$ in Lemma 1 and using (4), we obtain (12) easily. $\square$

(Note). We see that the decrease of accuracy in the coefficients is easily determined by the
reduction of the leading $co$efficients and the maximum magnitude coefficients.

Theorem 1 is applicable to the sequences calculated with Rules 1, 2, and 3. Actually, there
may happen that the leading coefficient of some element of the sequence is extremely small if
calculated exactly, hence the term is erased by Rule 2. Analysis of such sequence is given in
the next section.

Definition 7 [abnormal sequence]. Sturm sequence $(P_{1}, P_{2}, P_{3}, \cdots)$ is called abnormal if
the following relation holds.

$\deg(P_{i})>\deg(P_{i+1})+1$ or $|1c(P_{t})|\ll mmc(P_{i})$ for some $i$ . (13)

If $|1c(P_{t})|\ll nrc(P_{i})$ and $|1c(P_{i-1})|=O(mmc(P_{c-1}))$ then mmc(rem(P. ${}_{-1}P_{i})$ ) becomes much
larger than $mmc(P_{i})$ . Hence, if we choose $c_{i}=1$ in (5), then $mmc(P_{i})$ will fluctuate largely as
$i$ increases for abnormal Sturm sequence, leading to numerical unstability of the computation.
With Rule 3, $mmc(P_{i})$ changes gently as $i$ increases and it decreases steadily if $F(x)$ and $G(x)$

have mutually close roots, see an example below. This is another important consequence of
Rule 3.

Let us show an example of Sturm sequence calcuated by formula (9). We see a strong
magnitude reduction of the coefficients.

Example 1. Sturm sequence of $P_{1}$ and $P_{2}=[dP_{1}(x)/dx]/\deg(P_{1})$ .

$P_{1}=(X+1)(X-2)(X-.5)(X-.501)(X-.503)$

$P_{2}=(dP_{1}/dX)/5$

$P_{3}=.90000136X^{3}-.135432204E^{1}X^{2}+.679323541X-$ . 113581429

$P_{4}=-.121499582E^{1}X^{2}+.121823582E^{1}X-.305370171$

$P_{5}=.349999695E^{-5}X-.175299848E^{-5}$

$P_{6}=-.192857883E^{-11}$
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Here, we had better comment on Sch\"onhage’s method of computing “quasi-GCD” [9]. Given
polynomials $P_{1}$ and $P_{2}$ , Sch\"onhage generates a sequence $(P_{3}, P_{4}, \cdots)$ by the formula

$P_{i-1}-(x-\alpha:)P_{i}=(x-\beta_{i})^{2}P_{i+1}$ , $i=2,3,$ $\cdots$ , (14)

where $\alpha$ . and $\beta_{i}$ are numbers so determined as not to generate abnormal sequence. The
polynomial sequence calculated by (12) is not the polynomial remainder sequence, but it is
free from numerical unstability and it allows us to calculate an approximate GCD. Sch\"onhage
analized the time complexity of his algorithm but did not consider the accuracy decreasing of
coefficients. As we have pointed out in 1, one very important point in the approximate Sturm
sequence is the analysis of accuracy of coefficients.

4 Usefulness of approximate Sturm sequence

Consider that an exact Sturm sequence is abnormal, i.e., $|1c(P_{i})|\ll nunc(P_{i})$ for some element
$P_{1}$ of the sequence. Then, $1t(P_{i})$ may vanish in the approximate Sturm sequence. Since the
leading term plays an essential role in the division, one may be afraid that the approximate
Sturm sequence is much different from the exact sequence if it is abnormal. In fact, the length
of such approximate sequence is not the same as that of exact sequence. In this section, we
show that such approximate sequences are still useful under some conditions.

We first note that the leading term may be cutoff during the division process. This cutoff
does not cause any problem unless $|lc(divisor)|\ll mnc(divisor)$ , as the following lemma shows.

Lemma 2 Let $\epsilon$ be a small positive number, $0<\epsilon\ll 1_{J}$ and $F(x)$ and $G(x)$ be polynomials,
with $|1c(F)|\gg\epsilon$ and $|1c(G)|\gg\epsilon$ . Let

$\{\gamma=\max\{1,mmc(quo(F,G))\}R’(x)=rem(F(x),G(x))/\gamma withR(x)=rem(F(x),G(x))/\gamma,$

.
coefficient cuttoff at $o(\epsilon)$ , (15)

Then, we have

$\{\begin{array}{l}R(x)=R’(x)+\triangle R(x)/\gammammc(\triangle R(x))\leq O(\epsilon)\cross n1mc(G)/|lc(G)|\end{array}$ (16)

Proof: Let $\deg(F)=l\geq m=\deg(G)$ . Suppose that, after eliminating terms of degrees
greater than $m’,$ $m’\geq m$ , of $F$ by $G$ , we obtain

$H(x)=h_{m’}x^{m’}+\cdots+h_{m}x^{m}+H’(x),$ $\deg(H’)<m$ ,

$|h_{m’}|,$ $\cdots,$
$|h_{m}|<\epsilon$ .

Then, $R’(x)=H’(x)/\gamma$ . In order to get $R(x)$ , we must eliminate terms of degrees $m’,$ $\cdots,$ $m$

further. This elimination is performed by multiplying numbers of $O(\epsilon)$ or less to $G/1c(G)$ .
Hence, we obtain (16). $\square$

Next, we consider the case that $R=rem(F, G)/\gamma$ is such that $|1c(R)|<\epsilon$ if calculated
exactly; thus, $1t(R)$ vanishes in the approximate sequence.
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Lemma 3 Let $\epsilon$ be such that $0<\epsilon\ll 1$ . Let $(P_{1}, P_{2}, P_{3}, \cdots)$ be an exact Sturm sequence
and $(P_{1}’\cong P_{1}, P_{2}’\cong P_{2}, P_{3}’, \cdots)$ be an approximate Sturm sequence, with coefficient cutoff at
$O(\epsilon)$ , generated by (9). (Hence, $|1c(P_{i}’)|>\epsilon$ for every $i$). Let $k1+1<k\lambda$ and

$\{\begin{array}{l}deg(P_{k1})=deg(P_{k}’)=ldeg(P_{k1+1})=m,n<m<ldeg(P_{k\lambda})=deg(P_{k+1}’)=n\end{array}$

(That is, terms of degrees greater than $n$ in $P_{k+1}’$ are cutoff, hence the approximate sequence
does not contain elements corresponding to $P_{k1+1},$ $\cdots$ , $P_{k\lambda-1}.$) If $1c(P_{k}’)\gg\epsilon$ and $1c(P_{k+1}’)\gg\epsilon$

then we have the following relations, where

$r_{i}\equiv|1c(P’.)|/mmc(P_{i}’)$ , $i=1,2,$ $\cdots$ . (17)

When $k1+1\leq i\leq k\lambda$ ,

$\{\begin{array}{l}P_{i}/mmc(P_{i})=\neq[P_{k+1}’+O(\epsilon’(x))+O(\eta’(x))]/mmc(P_{k+1}’)\epsilon=\epsilon/(r_{2}\cdots r_{k}),\eta’=\epsilon/\min\{r_{k},r_{k+1}\}\end{array}$ (18)

When $i=k\lambda+1$ ,

$\{\begin{array}{l}P.\cdot/nmc(P_{i})=\pm[P_{k+2}’+O(\epsilon’’(x))+O(\eta’’(x))]/mmc(P_{k+2}’)\epsilon’=\epsilon/(r_{2}\cdots r_{k}r_{k+1}),\eta’=\epsilon/(r_{k}r_{k+1})\cross mmc(P_{k+2})/mmc(P_{k+1}’)\end{array}$ (19)

Here, $\pm sign$ means $either+or$ –sign.

Proof: Let $P_{k1}$ and $P_{k1+1}$ in normalized form be

$P_{k1}/mmc(P_{k1})\equiv F=a\iota x^{l}+\cdots+a_{0},$ $a_{l}\neq 0$ ,

$P_{k1+1}/mmc(P_{k1+1})\equiv G=b_{m}x^{m}+\cdots+b_{0},$ $b_{m}\neq 0$ .

By assumption, $G\cong P_{k+1}’/mmc(P_{k+1}’)$ and

$\eta\equiv\max\{|b_{m}|, --, |b_{n+1}|\}\leq O(\epsilon)/mmc(P_{k+1}’)$ , (20)
$P_{k+1}’/mmc(P_{k+1}’)\equiv G’=b_{n}x^{n}+\cdots+b_{0}+\triangle H(x)$ . (21)

Lemma 1 and Lemma 2 tell that

$mmc(\triangle H)\leq O(\epsilon)/[r_{2}\cdots r_{k}\cross mmc(P_{k+1}’)]$ . (22)

According to the subresultant theory (see [10], for example), the element $P_{i},$ $i\geq k1+2$ , of
the exact sequence can be represented by $P_{k1}$ and $P_{k1+1}$ as

$a_{l}$ $a_{l-1}$ $a_{2\nu+2-m}$
$Fx^{m-\nu-1}$

$a_{l}$ $a_{2\nu+3-m}$
$Fx^{m-\nu-2}$

.
$a_{l}$ $a_{\nu+1}$

$Fx^{0}$

$P$. $\propto$ (23)
$b_{m}$ $b_{m-1}$ $b_{2\nu+2-l}$ $Gx^{l-\nu-1}$

$b_{m}$ $b_{2\nu+3-l}$ $Gx^{l-\nu-2}$

.. .
$b_{m}$ $b_{\nu+1}$ $Gx^{0}$
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where $\nu=\deg(P:-1)-1$ and $a_{j}=b_{j}=0$ if $j<0$ .

Since $|b_{m}|,$ $\cdots$ , $|b_{n+1}|\ll 1$ , while $mmc(F)=mmc(G)=1$ , we can evaluate the above
determinant by expanding it w.r. $t$ . the first, second, $\cdots$ columns successively.

When $n\leq\nu<m$ . In this case, we have

$P_{s}\propto D+\{terms$ smaller by $O(\eta/|a_{l}|)$ ],
$b_{\nu}$ $b_{2\nu+2-l}$ $Gx^{l-\nu-1}$

$D=a_{l}^{m-\nu}$ . . .
$b_{\nu+1}$ $Gx^{0}$

Expansion of $D$ gives $D\propto G+$ [ $terms$ smaller by $O(\eta/|b_{n}|)$ ]. Eqs. (20) and (21) tell that
$G=G’-\triangle H(x)+O(\eta(x))$ . Hence, noting that $|a_{1}|=r_{k}$ and $|b_{n}|=r_{k+1}$ , we obtain (18).

When $\nu<n$ . In this case, we have

$P_{1}\propto D+$ [ $terms$ smaller by $O(\eta/|a\iota|)$ ],

$a_{l}$

$a_{l-1}a_{l}$

$\ldots$

$a_{2\nu}^{2\nu}a_{\ddagger_{3-n}^{2-n}}$

$Fx^{n-\nu-1}Fx_{n-\nu-2}$

.
$a_{l}$ . . .

$a_{\nu+1}$
$Fx^{0}$

$D=$
$b_{n}$ $b_{n-1}$ . . . $b_{2\nu+2-l}$ $G’x^{l-\nu-1}$

$b_{n}$ . . . $b_{2\nu+3-l}$ $G’x^{l-\nu-1}$

.. .
$b_{n}$ . . . $b_{\nu+1}$ $G’x^{0}$

That is, $D$ is a subresultant of $F$ and $G’$ . In particular, if $\nu=\deg(G’)-1=n-1$ , we have
$D\propto rem(F, G’)$ . This division increases the error term by $mmc(P_{k+1}’)/|1c(P_{k+1}’)|$ , as Lemma
1 asserts. Hence, we obtain (19) easily. $\square$

Lemma 2 tells that, except for $the\pm sign$ in (18) and (19), both exact and approximate
sequences contain nearly the same elements so long as $\epsilon\ll 1$ . However, the sign is very
important in the Sturm sequence and the sign is dependent on the situation.

Example 2. Abnormal sequence

$P_{1}=(x^{2}+\epsilon x+\epsilon’)(x^{3}-1)$ , $\epsilon’=O(\epsilon),$ $0<\epsilon\ll 1$ .

The exact sequence $(P_{1}, P_{2}=(dP_{1}/dx)/5,$ $P_{3},$ $\cdots$ ) and approximate sequence $(P_{1}, P_{2}, P_{3}’, \cdots)$ ,
with coefficient cutoff at $O(\epsilon)$ , are as follows.

$P_{3}=-(2/3)\epsilon’x^{3}+x^{2}+(6/5)\epsilon x+(5/3)\epsilon’+O(\epsilon^{2}(x))$ ,

$P_{4}=-x^{2}-(6/5)\epsilon x-(5/3)\epsilon’+O(\epsilon^{2}(x))$ ,

$P_{3}’=x^{2}$ ,

$P_{4}’=x$ ,

$P_{S}’=0$ .

The $P_{4}$ corresponds to P’3, but we see $P_{3}’=-P_{4}+O(\epsilon(x))$ .
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Finally, let us consider $the\pm sign$ in Eqs. (18) and (19). As we have seen in Lemma 3

and Example 2, a small change in the coefficients of initial polynomials may change the sign
in Eqs. (18) and (19), if the sequence is abnormal. According to the Sturm theorem, the
sign change must be due to the existence of close roots, although the Sturm sequence may
be abnormal even if there is no close root. Fortunately, we can determine the existence of
mutually close roots by the approximate Sturm sequence, so long as $P_{1}$ and $P_{2}$ are regular.

Theorem 2 [Sasaki &Noda [5]] Let $\epsilon$ be a small positive number, $0<\epsilon\ll 1$ , and $F(x)$

and $G(x)$ be regular polynomials, in single variable $x$ , such that

$\{\begin{array}{l}F(x)=D(x)\tilde{F}(x)+O(\epsilon(x))G(x)=D(x)\tilde{G}(x)+O(\epsilon(x))\end{array}$ (24)

where $|1c(D)|=1$ and $\tilde{F}$ and $\tilde{G}$ have no mutually close roots. Let $(P_{1}’\simeq F, P_{2}’\simeq G, P_{3}’, \cdots)$

be an approximate polynomial remainder sequence, with coefficient cutoff at $O(\epsilon)$ , generated
by (9). Then some two successive elements, let them be $P_{k}’$ and $P_{k+1}’$ , are such that

$\{\begin{array}{l}P_{k}’=constant\cross D+O(\epsilon(x)),deg(P_{k}’)=deg(D)P_{k+1}=O(\epsilon(x))\end{array}$ (25)

(Let $\delta$ be an average separation of mutually close roots, then $\epsilon=O(\delta)$ usually but $\epsilon=O(\delta^{2})$

if $G\approx dF/dx$ , etc.) $\square$

According to the celebrated Sturm theorem, or its generalized versions, what we are inter-
ested in is not Sturm sequence itself but the following quantity:

$N(a, b)=V(a)-V(b)$ , (26)

where $a$ and $b$ are real numbers and $V(c),$ $c\in\{a, b\}$ , is the number of sign changes in
$(P_{1}(c), P_{2}(c),$ $P_{3}(c),$ $\cdots$ ) scanned from the left to right direction.

With this in mind, let us summarize the above results.

Theorem 3 Let $\epsilon$ be a small positive number, $0<\epsilon\ll 1$ , and $F$ and $G$ be regular polynomials,
where $\deg(F)\geq\deg(G)$ . Let $(P_{1}’\simeq F, P_{2}’\simeq G, P_{3}’, \cdots,P_{k}’)$ be an approximate $Stu7m$

sequence, with coefficient cutoff at $O(\epsilon)$ , generated by formula (9). Furthermore, let $a$ and $b$

be real numbers, with $c\in\{a, b\}$ , such that

$\{\begin{array}{l}|P_{t}’(c)|\gg O(\epsilon_{i}(c))foreveryi=l,2,\cdots,k\epsilon_{i}=\epsilon/(r_{2}\cdots r_{i-1}),r_{j}=|lc(P_{j})|/mmc(P_{j})\end{array}$

$j=2,$ $\cdots,$ $i-1$ .
(27)

(i) If $P_{1}$ and $P_{2}$ are regular and $P_{k}’=$ constant such that $|P_{k}’|\gg\epsilon^{1/2}$ then we can calculate
$N(a, b)$ correctly using approximate sequence, instead of exact sequence.

(ii) Let $P_{2}=[dP_{1}/dx]/\deg(P_{1})$ . If we count the $\mu$ mutually close roots of root-separation
$\leq O(\epsilon^{1/2})$ as $\mu$ multiple roots, then we can count the number of ”different” real roots of
$P_{1}$ by using approximate sequence.

9
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Proof: We note that $\epsilon_{i}$ in (27) specifies the coefficient bound of the error term of $P_{i}’(x)$ .
Suppose $P_{1}$ and $P_{2}$ have mutually close roots of root-separation $\leq O(\delta),$ $0<\delta\leq 1$ , and
consider that these mutually close roots are moved to their respective center positions. This
root-moving changes the coefficients of $P_{i}’,$ $i=1,2,$ $\cdots$ , by $O(\delta)$ or less, but we can increase
the accuracy of approximate sequence to any precision. Hence, the claim (ii) is obtained. If
$P_{k}’=constant$ and $|P_{k}’|\gg\epsilon^{1/2}$ , then $F$ and $G$ have no mutually close roots hence we have
the claim (i). $\square$

The condition (27) tells that, if $\deg(P_{i}’)<\deg(P_{i-1}’)-1$ for some $i$ , we cannot set $a=-\infty$

or $b=\infty$ unless we know that no leading term of exact sequence vanishes by the cutoff at
$O(\epsilon)$ . This restriction is, however, not severe because we can bound the magnitude of roots
easily.

5 Iteratively increasing the accuracy

The analysis in the previous section suggests that, even if we find that the Sturm sequence is
abnormal, we proceed the calculation of approximate sequence. After that, we calculate $P_{k}$

accurately when the error terms become significant. This section presents an algorithm which
calculates $P_{k}$ accurately without increasing the accuracy of $P_{3},$

$\cdots,$ $P_{k-1}$ anymore.

Throughout the following, we assume that $mmc(P_{1})=O(1),$ $mmc(P_{2})=O(1)$ .
As is well-known, the Sturm sequence $(P_{1}, P_{2}, P_{3}, \cdots)$ is associated with cofactor sequences

$(A_{1}, A_{2}, A_{3}, \cdots)$ and $(B_{1}, B_{2}, B_{3}, \cdots)$ satisfying

$\{\begin{array}{l}A_{i}P_{1}+B.P_{2}=P_{i},i=1,2,3,\cdotsdeg(A.\cdot)<deg(P_{2})-deg(P_{i})deg(B_{i})<deg(P_{1})-deg(P_{i})\end{array}$ (28)

With formula (9), we can generate the cofactor sequences as

$\{\begin{array}{l}A_{1}=1,A_{2}=0,-A_{+1}=(A_{-1}-Q_{j}A.\cdot)/\gamma.\cdot B_{1}=0,B_{2}=l,-B_{i+1}=(B_{i-1}-Q.\cdot B_{i})/\gamma_{i}\gamma_{*}\cdot=\max\{l,mmc(Q_{i})\}\end{array}$ (29)

Let $\epsilon$ be a small positive number, say $\epsilon=10^{-7}$ or $10^{-10}$ . We consider that polynomial $P_{i}$ ,
$mmc(P_{i})\leq O(1)$ , is expanded as

$\{\begin{array}{l}P_{i}=P_{i1}+\epsilon P_{i2}+\cdots+\epsilon^{j-1}P_{j}+\cdotscoeffi cientsofP_{ij}arecutoff at\epsilonmmc(P_{ij})\leq O(l),j\Rightarrow 1,2,\cdots\end{array}$ (30)

For simplicity, we denote

$P_{\mathfrak{i}}^{(j)}=P_{i1}\epsilon P_{i2}\cdot-\cdot+\epsilon^{j-1}P_{1j}$ . (31)

Then, we have

$P_{:}(x)=P^{(j)}:(x)+O(\epsilon^{j}(x))$ . (32)

We increase the accuracy of $P_{k}$ as follows.

10



41
[Initial setup].

We calculate approximate Sturm and cofactor sequences satisfying
$A_{t}^{(1)}P_{1}^{(1)}+B_{i}^{\langle 1)}P_{2}^{(1)}=P_{t}^{(1)}+O(\epsilon(x)),$ $i=3,4,$ $\cdots$ . (33)

This calculation can be done iteratively by using formulas (9) and (29) with fixed-precision
floating-point arithmetic.

[Iteration on $j$ ].

For $k\geq 3$ , suppose we have $P_{k}^{\langle j)},$ $A_{k}^{(j)}$ and $B_{k}^{(j)},$ $j\geq 1$ , satisfying

$A_{k}^{(j)}P_{1}^{(j)}+B_{k}^{(j)}P_{2}^{(j)}=P_{k}^{(j)}+O(\epsilon^{j}(x))$ . (34)

Calculating this equation with cutoff at $\epsilon^{j+1}$ , we obtain a polynomial $D(x)$ satisfying

$\{\begin{array}{l}A_{k}^{(j)}P_{1}^{(j+1)}+B_{k}^{(j)}P_{2}^{\langle j+1)}=P_{k}^{\langle j)}+\epsilon^{j}D(x)+O(\epsilon^{j+1}(x))deg(D)\leq deg(P_{1})+deg(P_{2})-deg(P_{k-1}),mmc(D)\leq O(1)\end{array}$ (35)

Putting $P_{k}^{(j+1)},$ $A_{k}^{(j+1)},$ $B_{k}^{(j+1)}$ , as

$P_{k}^{(j+1)}=P_{k}^{\{j)}+\epsilon^{j}\tilde{P},$ $A_{k}^{(j+1)}=A_{k}^{(j)}+\epsilon^{j}\tilde{A},$ $B_{k}^{\langle j+1)}=B_{k}^{(j)}+\epsilon^{j}\tilde{B}$ , (36)

we determine $\tilde{P},\tilde{A}$ and $\tilde{B}$ so as to satisfy

$A_{k}^{(j+1)}P_{1}^{(j+1)}+B_{k}^{\langle j+1)}P_{2}^{(j+1)}=P_{k}^{(j+1)}+O(\epsilon^{j+1}(x))$ . (37)

Substituting (36) into (37), and using (35), we obtain

$\tilde{A}P_{1}+\tilde{B}P_{2}=\tilde{P}-D(x)+O(\epsilon(x))$ . (38)

Therefore, we have only to solve (38) with conditions

$\{\deg(\tilde{A})\deg(\tilde{P})\deg(\tilde{B})\leq\deg(P_{2})-\deg<\deg(P_{k-1}^{\langle 1)})\leq\deg(P_{1})-\deg\{P_{k-1}^{(1)})P_{k-1}^{(1)})$ (39)

[Solving Eq. (38) with conditions (39)].

We can solve (38) by using the theory of secondary polynomial remainder sequence, ref. [11].
Let $(\tilde{P}_{1}=S,\tilde{P}_{2}, \cdots)$ be the secondary sequence and $(\tilde{A}_{1},\tilde{A}_{2}, \cdots),$ $(B_{1},\tilde{B}_{2}, \cdots)$ and $(\tilde{C}_{1},\tilde{C}_{2}, \cdots)$

be its cofactor sequences. The secondary sequence is calculated from $S$ and polynomial re-
mainder sequence $(P_{1}, P_{2}, P_{3}, \cdots)$ by the following iteration formula.

$\tilde{P}_{1}=S$ ,
$\tilde{Q}_{i}arrow quo(\tilde{P}{}_{:-1}P_{i})$ , $i=2,3,$ $\cdots$ , (40)
$\tilde{P}_{i}arrow(\tilde{P}_{i-1}-\tilde{Q};P_{i})/\tilde{\gamma}i$ ,
$\tilde{\gamma}$. $= \max\{1, mmc(\tilde{Q}.)\}$ .

Similarly, the cofactor sequences are calculated as

$\tilde{A}_{1}=\tilde{B}_{1}=0,\tilde{C}_{1}=1$ ,
$\tilde{A}_{i}arrow(\tilde{A}_{i-1}-\tilde{Q};A_{i})/\tilde{\gamma}i$

(41)
$\tilde{B}_{i}arrow(\tilde{B}_{i-1}-\tilde{Q}_{i}B_{i})/\tilde{\gamma}_{1}$,
$\tilde{C}_{i}arrow\tilde{C}_{i-1}/\tilde{\gamma}:$ , $i=2,3,$ $\cdots$ .

11
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where $(A_{1}, A_{2}, \cdots)$ and $(B_{1}, B_{2}, \cdots)$ are cofactor sequences of the main sequence $(P_{1}, P_{2}, \cdots)$ .
The $\tilde{A}_{i},\tilde{B}_{i}$ and $\tilde{P}_{i}$ satisfy

$\{\begin{array}{l}\tilde{A}_{i}P_{1}+\tilde{B}_{i}P_{2}+\tilde{C}_{i}S=\tilde{P}_{i}, i=1,2, \cdots ,\tilde{C}_{t} is a number.\end{array}$ (42)

Thus, the solution $(\tilde{A},\tilde{B},\tilde{P})$ of equation (38), with degree condition (39), is obtained by
putting $S=D$ and calculating the secondary polynomial remainder sequence and its cofactor
sequences with fixed-precision floating-point number arithmetic; if $i$ is such that $\deg(\tilde{P}_{i-1})\geq$

$\deg(P_{k-1}^{(1)})$ and $\deg(\tilde{P}_{i})<\deg(P_{k-1}^{(1)})$ then we obtain

$\tilde{A}=\tilde{A}_{i}/\tilde{C}_{i},\tilde{B}=\tilde{B}_{i}/\tilde{C};,\tilde{P}=\tilde{P}_{i}/\tilde{C};$ . (43)

Let us consider the above calculation method in detail.

On the expansion in (30)

We note that the expansion, $P;=P_{11}+\epsilon P_{2}+\cdots$ , in (30) is not unique: for each $P_{ij}$ in (30),
the last several digits of its coefficients (corresponding to numbers of magnitude $\sim\epsilon^{j}$ ) may be
erroneous because of rounding. However, the errors are exactly corrected by the first several
digits of the coefficients of $P_{:,j+1}$ , see examples in the next section. That is, $P_{i_{1}j+1}$ is such
that $mmc(\epsilon^{j}P_{i,j+1})\leq O(\epsilon^{j})$ and not mmc$(\epsilon^{j}P_{i,j+1})<\epsilon^{j}$ . This situation is quite different from
Hensel lifting of integers: in the Hensel lifting, the numbers calculated with $(mod \psi)$ , with $p$

a prime, is exact and not corrected by the calculation with $(mod \dot{\psi}^{+1})$ .

On the necessary precision of numbers to solve Eq. (38)

One may think that we can solve Eq. (38) by approximating it as

$\tilde{A}P_{1}^{(1)}+\tilde{B}P_{2}^{(1)}=\tilde{P}-D(x)+O(\epsilon(x))$ ,

but this is not the case actually. This can be seen easily from the formulas in (40): the $\tilde{P}_{1}$ is
generated by the division of $\tilde{P}_{1-1}$ and $P_{1}$ , and $mmc(P_{i})$ (hence the accuracy of $P_{i}$ ) decreases
almost steadily as $i$ increases, see Example 1 shows. The magnitude reduction of the coefficients
in $P_{i}$ makes $\tilde{C}$; and coefficients of $\tilde{P}$. in (42) small in such a way that mmc $(\tilde{P}_{i})$ , mmc$(P_{i})\leq$

$O(\tilde{C}_{i})$ . The condition $mmc(\tilde{P})\leq O(1)$ is then satisfied by the relation $\tilde{P}=\tilde{P}_{i}/\tilde{C}$; in (43).
Therefore, we must solve Eq. (38) with an extra accuracy $\lambda$ . The value of $\lambda$ is

$\lambda\approx-\log_{2}|1c(P_{k-1})|$ .

On abnormal sequence

Suppose $d\equiv\deg(P_{k}^{(j)})<\deg(P_{k-1}^{\{j)})-1$ . Then, in the iteration step of calculating $P_{k,j+1}$ ,
$P_{k}=P_{k}^{(j)}+\epsilon^{i}P_{k,j+1}+O(\epsilon^{j+1}(x))$ , we may find that $\tilde{P}_{i}$ , the the solution of Eq. (38), satisfies
$d<\deg(\tilde{P}_{i})<\deg(P_{k-1}^{(1)})$ . In such a case, we must split $P_{k}$ into several polynomials $P_{k},{}_{1}P_{k,2}$ ,
$\ldots$ , where

$\deg(P_{k,1})=d_{1}=\deg(\tilde{P}_{i})$ , $d_{1}>\deg(P_{k,2})>\cdots$ .

The $P_{k,1}$ is nothing but $P_{k}^{(j+1)}$ :

$P_{k,1}arrow P_{k}^{(j+1)}=P_{k}^{\langle j)}+\epsilon^{j}\tilde{P}$ . (44)

12
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Other polynomials $P_{k,2},$ $\cdots$ are generated by division as

$\{\begin{array}{l}P_{k,0}=P_{k-1}Q_{k,i}arrow quo(P_{k},{}_{i-1}P_{k},.\cdot),i=l,2,\cdots P_{k,i+1}arrow(P_{k,\cdot-1}-Q_{k},{}_{i}P_{i})/\max\{1,mmc(Q_{k,i})\}\end{array}$ (45)

This iteration is stopped if we find $P_{k,j}$ such that $\deg(P_{k,j})=\deg(P_{k+1})$ . Then, we modify
the signs of $P_{k+1},$ $P_{k+2},$ $\cdots$ by comparing the sign of $P_{k,j}$ and $P_{k+1}$ , so that the sign of $P_{k+1}$

becomes the same as that of $P_{k,j}$ .

6 Performance of algorithm

Let us show the performance of our algorithm by an example.

Example 3.
$P_{1}=(X+1)(X-2)(X-0.5)(X-0.501)(X-0.503)$

This is the polynomial used in Example 1, where the Sturm sequence was calculated by double-
precision floating-point arithmetic. Below, we calculate $P_{5}$ and $P_{6}$ accurately by using $(P_{1},$ $P_{2}=$

$[dP_{1}/dX]/5,$ $P_{3},$ $P_{4}$) calculated up to $10^{-14}$ precision. For comparison, we show $A_{k}^{(j)}P_{1}+B_{k}^{(j)}P_{2}$ also.

$P_{5}^{(1)}=.350E^{-5}X-.175E^{-5}$

$A_{5}^{(1)}P_{1}+B_{5}^{(1)}P_{2}=.1E^{-7}X^{6}-.1E^{-7}X^{5}-.1E^{-7}X^{4}+.2E^{-7}X^{3}+.349E^{-5}X-.175E^{-5}$

$P_{5}^{(2)}=.349,99969195E^{-5}X-.175,29984617E^{-5}$

$A_{5}^{(2)}P_{1}+B_{5}^{(2)}P_{2}=-.1E^{-15}X^{3}+.349,99969196E^{-5}X-.175,29984617E^{-5}$

$P_{5}^{(3)}=.349$ , 99969195, $11529587E^{-5}X-.175$ , 29984616, $86797682E^{-5}$

$A_{5}^{(3)}P_{1}+B_{5}^{\langle 3)}P_{2}=.349$ , 99969195, $11529586E^{-5}X-.175$ , 29984616, $86797682E^{-5}$

$P_{5}^{(4)}=.349$ , 99969195, 11529586, $61936188E^{-5}X-.175$ , 29984616, 86797681, 91827946 $E^{-5}$

$A_{5}^{(4)}P_{1}+B_{5}^{\langle 4)}P_{2}=$ $-.2E^{-31}X^{3}-.1E^{-31}X^{2}$

$+.349$ , 99969195, 11529586, $61936190E^{-5}X$

$-.175$ , 29984616, 86797681, $91827946E^{-5}$

$P_{6}^{(1)}=0$

$A_{6}^{(1)}P_{1}+B_{6}^{(1)}P_{2}=-.1E^{-7}X^{7}+.3E^{-7}X^{5}-.3E^{-7}X^{4}+.3E^{-7}X^{2}-.1E^{-7}X$

$P_{6}^{(2)}=-.19286E^{-11}$

$A_{6}^{(2)}P_{1}+B_{6}^{(2)}P_{2}=-.1E^{-15}X^{5}D+.1E^{-15}X^{4}-.2E^{-15}X^{2}-.19286E^{-11}$

$P_{6}^{(3)}=-$ . 19285, $78751616E^{-11}$

$A_{6}^{(3)}P_{1}+B_{6}^{(3)}P_{2}=.1^{-23}X^{3}-.1E^{-23}X^{2}-$ . 19285, $78751617E^{-11}$

$P_{6}^{(4)}=-$ . 19285, 78751616, $44705762E^{-11}$

$A_{6}^{(4)}P_{1}+B_{6}^{(4)}P_{2}=-.1E^{-31}X^{5}+.1E^{-31}X^{4}+.1E^{-31}X-.19285$ , 78751616, $44705762E^{-11}$
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